MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nosupbnd1lem2 Structured version   Visualization version   GIF version

Theorem nosupbnd1lem2 27621
Description: Lemma for nosupbnd1 27626. When there is no maximum, if any member of 𝐴 is a prolongment of 𝑆, then so are all elements of 𝐴 above it. (Contributed by Scott Fenton, 5-Dec-2021.)
Hypothesis
Ref Expression
nosupbnd1.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
nosupbnd1lem2 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → (𝑊 ↾ dom 𝑆) = 𝑆)
Distinct variable groups:   𝐴,𝑔,𝑢,𝑣,𝑥,𝑦   𝑣,𝑊   𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑊(𝑥,𝑦,𝑢,𝑔)

Proof of Theorem nosupbnd1lem2
StepHypRef Expression
1 simp3rr 1248 . . . 4 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → ¬ 𝑊 <s 𝑈)
2 simp2l 1200 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → 𝐴 No )
3 simp3rl 1247 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → 𝑊𝐴)
42, 3sseldd 3947 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → 𝑊 No )
5 simp3ll 1245 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → 𝑈𝐴)
62, 5sseldd 3947 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → 𝑈 No )
7 nosupbnd1.1 . . . . . . . 8 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
87nosupno 27615 . . . . . . 7 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
983ad2ant2 1134 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → 𝑆 No )
10 nodmon 27562 . . . . . 6 (𝑆 No → dom 𝑆 ∈ On)
119, 10syl 17 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → dom 𝑆 ∈ On)
12 sltres 27574 . . . . 5 ((𝑊 No 𝑈 No ∧ dom 𝑆 ∈ On) → ((𝑊 ↾ dom 𝑆) <s (𝑈 ↾ dom 𝑆) → 𝑊 <s 𝑈))
134, 6, 11, 12syl3anc 1373 . . . 4 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → ((𝑊 ↾ dom 𝑆) <s (𝑈 ↾ dom 𝑆) → 𝑊 <s 𝑈))
141, 13mtod 198 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → ¬ (𝑊 ↾ dom 𝑆) <s (𝑈 ↾ dom 𝑆))
15 simp3lr 1246 . . . 4 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → (𝑈 ↾ dom 𝑆) = 𝑆)
1615breq2d 5119 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → ((𝑊 ↾ dom 𝑆) <s (𝑈 ↾ dom 𝑆) ↔ (𝑊 ↾ dom 𝑆) <s 𝑆))
1714, 16mtbid 324 . 2 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → ¬ (𝑊 ↾ dom 𝑆) <s 𝑆)
187nosupbnd1lem1 27620 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑊𝐴) → ¬ 𝑆 <s (𝑊 ↾ dom 𝑆))
193, 18syld3an3 1411 . 2 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → ¬ 𝑆 <s (𝑊 ↾ dom 𝑆))
20 noreson 27572 . . . 4 ((𝑊 No ∧ dom 𝑆 ∈ On) → (𝑊 ↾ dom 𝑆) ∈ No )
214, 11, 20syl2anc 584 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → (𝑊 ↾ dom 𝑆) ∈ No )
22 sltso 27588 . . . 4 <s Or No
23 sotrieq2 5578 . . . 4 (( <s Or No ∧ ((𝑊 ↾ dom 𝑆) ∈ No 𝑆 No )) → ((𝑊 ↾ dom 𝑆) = 𝑆 ↔ (¬ (𝑊 ↾ dom 𝑆) <s 𝑆 ∧ ¬ 𝑆 <s (𝑊 ↾ dom 𝑆))))
2422, 23mpan 690 . . 3 (((𝑊 ↾ dom 𝑆) ∈ No 𝑆 No ) → ((𝑊 ↾ dom 𝑆) = 𝑆 ↔ (¬ (𝑊 ↾ dom 𝑆) <s 𝑆 ∧ ¬ 𝑆 <s (𝑊 ↾ dom 𝑆))))
2521, 9, 24syl2anc 584 . 2 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → ((𝑊 ↾ dom 𝑆) = 𝑆 ↔ (¬ (𝑊 ↾ dom 𝑆) <s 𝑆 ∧ ¬ 𝑆 <s (𝑊 ↾ dom 𝑆))))
2617, 19, 25mpbir2and 713 1 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → (𝑊 ↾ dom 𝑆) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  Vcvv 3447  cun 3912  wss 3914  ifcif 4488  {csn 4589  cop 4595   class class class wbr 5107  cmpt 5188   Or wor 5545  dom cdm 5638  cres 5640  Oncon0 6332  suc csuc 6334  cio 6462  cfv 6511  crio 7343  2oc2o 8428   No csur 27551   <s cslt 27552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517  df-fv 6519  df-riota 7344  df-1o 8434  df-2o 8435  df-no 27554  df-slt 27555  df-bday 27556
This theorem is referenced by:  nosupbnd1lem3  27622  nosupbnd1lem4  27623  nosupbnd1lem5  27624
  Copyright terms: Public domain W3C validator