Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nosupbnd1lem2 Structured version   Visualization version   GIF version

Theorem nosupbnd1lem2 33204
Description: Lemma for nosupbnd1 33209. When there is no maximum, if any member of 𝐴 is a prolongment of 𝑆, then so are all elements of 𝐴 above it. (Contributed by Scott Fenton, 5-Dec-2021.)
Hypothesis
Ref Expression
nosupbnd1.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
nosupbnd1lem2 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → (𝑊 ↾ dom 𝑆) = 𝑆)
Distinct variable groups:   𝐴,𝑔,𝑢,𝑣,𝑥,𝑦   𝑣,𝑊   𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑊(𝑥,𝑦,𝑢,𝑔)

Proof of Theorem nosupbnd1lem2
StepHypRef Expression
1 simp3rr 1243 . . . 4 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → ¬ 𝑊 <s 𝑈)
2 simp2l 1195 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → 𝐴 No )
3 simp3rl 1242 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → 𝑊𝐴)
42, 3sseldd 3968 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → 𝑊 No )
5 simp3ll 1240 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → 𝑈𝐴)
62, 5sseldd 3968 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → 𝑈 No )
7 nosupbnd1.1 . . . . . . . 8 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
87nosupno 33198 . . . . . . 7 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
983ad2ant2 1130 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → 𝑆 No )
10 nodmon 33152 . . . . . 6 (𝑆 No → dom 𝑆 ∈ On)
119, 10syl 17 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → dom 𝑆 ∈ On)
12 sltres 33164 . . . . 5 ((𝑊 No 𝑈 No ∧ dom 𝑆 ∈ On) → ((𝑊 ↾ dom 𝑆) <s (𝑈 ↾ dom 𝑆) → 𝑊 <s 𝑈))
134, 6, 11, 12syl3anc 1367 . . . 4 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → ((𝑊 ↾ dom 𝑆) <s (𝑈 ↾ dom 𝑆) → 𝑊 <s 𝑈))
141, 13mtod 200 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → ¬ (𝑊 ↾ dom 𝑆) <s (𝑈 ↾ dom 𝑆))
15 simp3lr 1241 . . . 4 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → (𝑈 ↾ dom 𝑆) = 𝑆)
1615breq2d 5071 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → ((𝑊 ↾ dom 𝑆) <s (𝑈 ↾ dom 𝑆) ↔ (𝑊 ↾ dom 𝑆) <s 𝑆))
1714, 16mtbid 326 . 2 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → ¬ (𝑊 ↾ dom 𝑆) <s 𝑆)
187nosupbnd1lem1 33203 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑊𝐴) → ¬ 𝑆 <s (𝑊 ↾ dom 𝑆))
193, 18syld3an3 1405 . 2 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → ¬ 𝑆 <s (𝑊 ↾ dom 𝑆))
20 noreson 33162 . . . 4 ((𝑊 No ∧ dom 𝑆 ∈ On) → (𝑊 ↾ dom 𝑆) ∈ No )
214, 11, 20syl2anc 586 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → (𝑊 ↾ dom 𝑆) ∈ No )
22 sltso 33176 . . . 4 <s Or No
23 sotrieq2 5498 . . . 4 (( <s Or No ∧ ((𝑊 ↾ dom 𝑆) ∈ No 𝑆 No )) → ((𝑊 ↾ dom 𝑆) = 𝑆 ↔ (¬ (𝑊 ↾ dom 𝑆) <s 𝑆 ∧ ¬ 𝑆 <s (𝑊 ↾ dom 𝑆))))
2422, 23mpan 688 . . 3 (((𝑊 ↾ dom 𝑆) ∈ No 𝑆 No ) → ((𝑊 ↾ dom 𝑆) = 𝑆 ↔ (¬ (𝑊 ↾ dom 𝑆) <s 𝑆 ∧ ¬ 𝑆 <s (𝑊 ↾ dom 𝑆))))
2521, 9, 24syl2anc 586 . 2 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → ((𝑊 ↾ dom 𝑆) = 𝑆 ↔ (¬ (𝑊 ↾ dom 𝑆) <s 𝑆 ∧ ¬ 𝑆 <s (𝑊 ↾ dom 𝑆))))
2617, 19, 25mpbir2and 711 1 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ ((𝑈𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑊𝐴 ∧ ¬ 𝑊 <s 𝑈))) → (𝑊 ↾ dom 𝑆) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  {cab 2799  wral 3138  wrex 3139  Vcvv 3495  cun 3934  wss 3936  ifcif 4467  {csn 4561  cop 4567   class class class wbr 5059  cmpt 5139   Or wor 5468  dom cdm 5550  cres 5552  Oncon0 6186  suc csuc 6188  cio 6307  cfv 6350  crio 7107  2oc2o 8090   No csur 33142   <s cslt 33143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-ord 6189  df-on 6190  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-1o 8096  df-2o 8097  df-no 33145  df-slt 33146  df-bday 33147
This theorem is referenced by:  nosupbnd1lem3  33205  nosupbnd1lem4  33206  nosupbnd1lem5  33207
  Copyright terms: Public domain W3C validator