|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > slttrieq2 | Structured version Visualization version GIF version | ||
| Description: Trichotomy law for surreal less-than. (Contributed by Scott Fenton, 22-Apr-2012.) | 
| Ref | Expression | 
|---|---|
| slttrieq2 | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 <s 𝐵 ∧ ¬ 𝐵 <s 𝐴))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sltso 27721 | . 2 ⊢ <s Or No | |
| 2 | sotrieq2 5624 | . 2 ⊢ (( <s Or No ∧ (𝐴 ∈ No ∧ 𝐵 ∈ No )) → (𝐴 = 𝐵 ↔ (¬ 𝐴 <s 𝐵 ∧ ¬ 𝐵 <s 𝐴))) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 <s 𝐵 ∧ ¬ 𝐵 <s 𝐴))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 class class class wbr 5143 Or wor 5591 No csur 27684 <s cslt 27685 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-ord 6387 df-on 6388 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-1o 8506 df-2o 8507 df-no 27687 df-slt 27688 | 
| This theorem is referenced by: sletri3 27800 nocvxmin 27823 om2noseqf1o 28307 | 
| Copyright terms: Public domain | W3C validator |