MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiinfg Structured version   Visualization version   GIF version

Theorem fiinfg 9236
Description: Lemma showing existence and closure of infimum of a finite set. (Contributed by AV, 6-Oct-2020.)
Assertion
Ref Expression
fiinfg ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦)))
Distinct variable groups:   𝑥,𝑅,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧

Proof of Theorem fiinfg
StepHypRef Expression
1 fiming 9235 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥𝑅𝑦))
2 equcom 2025 . . . . . . . . . . . 12 (𝑥 = 𝑦𝑦 = 𝑥)
3 sotrieq2 5534 . . . . . . . . . . . . 13 ((𝑅 Or 𝐴 ∧ (𝑦𝐴𝑥𝐴)) → (𝑦 = 𝑥 ↔ (¬ 𝑦𝑅𝑥 ∧ ¬ 𝑥𝑅𝑦)))
43ancom2s 647 . . . . . . . . . . . 12 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑦 = 𝑥 ↔ (¬ 𝑦𝑅𝑥 ∧ ¬ 𝑥𝑅𝑦)))
52, 4bitrid 282 . . . . . . . . . . 11 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 = 𝑦 ↔ (¬ 𝑦𝑅𝑥 ∧ ¬ 𝑥𝑅𝑦)))
65simprbda 499 . . . . . . . . . 10 (((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑥 = 𝑦) → ¬ 𝑦𝑅𝑥)
76ex 413 . . . . . . . . 9 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 = 𝑦 → ¬ 𝑦𝑅𝑥))
87anassrs 468 . . . . . . . 8 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝑥 = 𝑦 → ¬ 𝑦𝑅𝑥))
98a1dd 50 . . . . . . 7 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝑥 = 𝑦 → ((𝑥𝑦𝑥𝑅𝑦) → ¬ 𝑦𝑅𝑥)))
10 pm2.27 42 . . . . . . . 8 (𝑥𝑦 → ((𝑥𝑦𝑥𝑅𝑦) → 𝑥𝑅𝑦))
11 soasym 5535 . . . . . . . . 9 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑅𝑦 → ¬ 𝑦𝑅𝑥))
1211anassrs 468 . . . . . . . 8 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝑥𝑅𝑦 → ¬ 𝑦𝑅𝑥))
1310, 12syl9r 78 . . . . . . 7 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝑥𝑦 → ((𝑥𝑦𝑥𝑅𝑦) → ¬ 𝑦𝑅𝑥)))
149, 13pm2.61dne 3033 . . . . . 6 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝐴) → ((𝑥𝑦𝑥𝑅𝑦) → ¬ 𝑦𝑅𝑥))
1514ralimdva 3105 . . . . 5 ((𝑅 Or 𝐴𝑥𝐴) → (∀𝑦𝐴 (𝑥𝑦𝑥𝑅𝑦) → ∀𝑦𝐴 ¬ 𝑦𝑅𝑥))
16 breq1 5082 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑧𝑅𝑦𝑥𝑅𝑦))
1716rspcev 3561 . . . . . . . 8 ((𝑥𝐴𝑥𝑅𝑦) → ∃𝑧𝐴 𝑧𝑅𝑦)
1817ex 413 . . . . . . 7 (𝑥𝐴 → (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))
1918ralrimivw 3111 . . . . . 6 (𝑥𝐴 → ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))
2019adantl 482 . . . . 5 ((𝑅 Or 𝐴𝑥𝐴) → ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))
2115, 20jctird 527 . . . 4 ((𝑅 Or 𝐴𝑥𝐴) → (∀𝑦𝐴 (𝑥𝑦𝑥𝑅𝑦) → (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))))
2221reximdva 3205 . . 3 (𝑅 Or 𝐴 → (∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥𝑅𝑦) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))))
23223ad2ant1 1132 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥𝑅𝑦) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))))
241, 23mpd 15 1 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086  wcel 2110  wne 2945  wral 3066  wrex 3067  c0 4262   class class class wbr 5079   Or wor 5503  Fincfn 8716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356  ax-un 7582
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-om 7707  df-en 8717  df-fin 8720
This theorem is referenced by:  fiinf2g  9237
  Copyright terms: Public domain W3C validator