MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiinfg Structured version   Visualization version   GIF version

Theorem fiinfg 8954
Description: Lemma showing existence and closure of infimum of a finite set. (Contributed by AV, 6-Oct-2020.)
Assertion
Ref Expression
fiinfg ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦)))
Distinct variable groups:   𝑥,𝑅,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧

Proof of Theorem fiinfg
StepHypRef Expression
1 fiming 8953 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥𝑅𝑦))
2 equcom 2026 . . . . . . . . . . . 12 (𝑥 = 𝑦𝑦 = 𝑥)
3 sotrieq2 5490 . . . . . . . . . . . . 13 ((𝑅 Or 𝐴 ∧ (𝑦𝐴𝑥𝐴)) → (𝑦 = 𝑥 ↔ (¬ 𝑦𝑅𝑥 ∧ ¬ 𝑥𝑅𝑦)))
43ancom2s 649 . . . . . . . . . . . 12 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑦 = 𝑥 ↔ (¬ 𝑦𝑅𝑥 ∧ ¬ 𝑥𝑅𝑦)))
52, 4syl5bb 286 . . . . . . . . . . 11 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 = 𝑦 ↔ (¬ 𝑦𝑅𝑥 ∧ ¬ 𝑥𝑅𝑦)))
65simprbda 502 . . . . . . . . . 10 (((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑥 = 𝑦) → ¬ 𝑦𝑅𝑥)
76ex 416 . . . . . . . . 9 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 = 𝑦 → ¬ 𝑦𝑅𝑥))
87anassrs 471 . . . . . . . 8 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝑥 = 𝑦 → ¬ 𝑦𝑅𝑥))
98a1dd 50 . . . . . . 7 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝑥 = 𝑦 → ((𝑥𝑦𝑥𝑅𝑦) → ¬ 𝑦𝑅𝑥)))
10 pm2.27 42 . . . . . . . 8 (𝑥𝑦 → ((𝑥𝑦𝑥𝑅𝑦) → 𝑥𝑅𝑦))
11 soasym 5491 . . . . . . . . 9 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑅𝑦 → ¬ 𝑦𝑅𝑥))
1211anassrs 471 . . . . . . . 8 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝑥𝑅𝑦 → ¬ 𝑦𝑅𝑥))
1310, 12syl9r 78 . . . . . . 7 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝑥𝑦 → ((𝑥𝑦𝑥𝑅𝑦) → ¬ 𝑦𝑅𝑥)))
149, 13pm2.61dne 3100 . . . . . 6 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝐴) → ((𝑥𝑦𝑥𝑅𝑦) → ¬ 𝑦𝑅𝑥))
1514ralimdva 3172 . . . . 5 ((𝑅 Or 𝐴𝑥𝐴) → (∀𝑦𝐴 (𝑥𝑦𝑥𝑅𝑦) → ∀𝑦𝐴 ¬ 𝑦𝑅𝑥))
16 breq1 5055 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑧𝑅𝑦𝑥𝑅𝑦))
1716rspcev 3609 . . . . . . . 8 ((𝑥𝐴𝑥𝑅𝑦) → ∃𝑧𝐴 𝑧𝑅𝑦)
1817ex 416 . . . . . . 7 (𝑥𝐴 → (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))
1918ralrimivw 3178 . . . . . 6 (𝑥𝐴 → ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))
2019adantl 485 . . . . 5 ((𝑅 Or 𝐴𝑥𝐴) → ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))
2115, 20jctird 530 . . . 4 ((𝑅 Or 𝐴𝑥𝐴) → (∀𝑦𝐴 (𝑥𝑦𝑥𝑅𝑦) → (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))))
2221reximdva 3267 . . 3 (𝑅 Or 𝐴 → (∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥𝑅𝑦) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))))
23223ad2ant1 1130 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥𝑅𝑦) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦))))
241, 23mpd 15 1 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐴 𝑧𝑅𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084  wcel 2115  wne 3014  wral 3133  wrex 3134  c0 4275   class class class wbr 5052   Or wor 5460  Fincfn 8499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-tp 4554  df-op 4556  df-uni 4825  df-br 5053  df-opab 5115  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-om 7571  df-1o 8092  df-er 8279  df-en 8500  df-fin 8503
This theorem is referenced by:  fiinf2g  8955
  Copyright terms: Public domain W3C validator