Proof of Theorem fiinfg
Step | Hyp | Ref
| Expression |
1 | | fiming 9257 |
. 2
⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑥𝑅𝑦)) |
2 | | equcom 2021 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
3 | | sotrieq2 5533 |
. . . . . . . . . . . . 13
⊢ ((𝑅 Or 𝐴 ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → (𝑦 = 𝑥 ↔ (¬ 𝑦𝑅𝑥 ∧ ¬ 𝑥𝑅𝑦))) |
4 | 3 | ancom2s 647 |
. . . . . . . . . . . 12
⊢ ((𝑅 Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑦 = 𝑥 ↔ (¬ 𝑦𝑅𝑥 ∧ ¬ 𝑥𝑅𝑦))) |
5 | 2, 4 | bitrid 282 |
. . . . . . . . . . 11
⊢ ((𝑅 Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 = 𝑦 ↔ (¬ 𝑦𝑅𝑥 ∧ ¬ 𝑥𝑅𝑦))) |
6 | 5 | simprbda 499 |
. . . . . . . . . 10
⊢ (((𝑅 Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 = 𝑦) → ¬ 𝑦𝑅𝑥) |
7 | 6 | ex 413 |
. . . . . . . . 9
⊢ ((𝑅 Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 = 𝑦 → ¬ 𝑦𝑅𝑥)) |
8 | 7 | anassrs 468 |
. . . . . . . 8
⊢ (((𝑅 Or 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (𝑥 = 𝑦 → ¬ 𝑦𝑅𝑥)) |
9 | 8 | a1dd 50 |
. . . . . . 7
⊢ (((𝑅 Or 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (𝑥 = 𝑦 → ((𝑥 ≠ 𝑦 → 𝑥𝑅𝑦) → ¬ 𝑦𝑅𝑥))) |
10 | | pm2.27 42 |
. . . . . . . 8
⊢ (𝑥 ≠ 𝑦 → ((𝑥 ≠ 𝑦 → 𝑥𝑅𝑦) → 𝑥𝑅𝑦)) |
11 | | soasym 5534 |
. . . . . . . . 9
⊢ ((𝑅 Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥𝑅𝑦 → ¬ 𝑦𝑅𝑥)) |
12 | 11 | anassrs 468 |
. . . . . . . 8
⊢ (((𝑅 Or 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (𝑥𝑅𝑦 → ¬ 𝑦𝑅𝑥)) |
13 | 10, 12 | syl9r 78 |
. . . . . . 7
⊢ (((𝑅 Or 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (𝑥 ≠ 𝑦 → ((𝑥 ≠ 𝑦 → 𝑥𝑅𝑦) → ¬ 𝑦𝑅𝑥))) |
14 | 9, 13 | pm2.61dne 3031 |
. . . . . 6
⊢ (((𝑅 Or 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ((𝑥 ≠ 𝑦 → 𝑥𝑅𝑦) → ¬ 𝑦𝑅𝑥)) |
15 | 14 | ralimdva 3108 |
. . . . 5
⊢ ((𝑅 Or 𝐴 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑥𝑅𝑦) → ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥)) |
16 | | breq1 5077 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → (𝑧𝑅𝑦 ↔ 𝑥𝑅𝑦)) |
17 | 16 | rspcev 3561 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦) → ∃𝑧 ∈ 𝐴 𝑧𝑅𝑦) |
18 | 17 | ex 413 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐴 → (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐴 𝑧𝑅𝑦)) |
19 | 18 | ralrimivw 3104 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐴 𝑧𝑅𝑦)) |
20 | 19 | adantl 482 |
. . . . 5
⊢ ((𝑅 Or 𝐴 ∧ 𝑥 ∈ 𝐴) → ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐴 𝑧𝑅𝑦)) |
21 | 15, 20 | jctird 527 |
. . . 4
⊢ ((𝑅 Or 𝐴 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑥𝑅𝑦) → (∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐴 𝑧𝑅𝑦)))) |
22 | 21 | reximdva 3203 |
. . 3
⊢ (𝑅 Or 𝐴 → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑥𝑅𝑦) → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐴 𝑧𝑅𝑦)))) |
23 | 22 | 3ad2ant1 1132 |
. 2
⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑥𝑅𝑦) → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐴 𝑧𝑅𝑦)))) |
24 | 1, 23 | mpd 15 |
1
⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐴 𝑧𝑅𝑦))) |