![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > srgcom4 | Structured version Visualization version GIF version |
Description: Restricted commutativity of the addition in semirings (without using the commutativity of the addition given per definition of a semiring). (Contributed by AV, 1-Feb-2025.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
srgcom4.b | ⊢ 𝐵 = (Base‘𝑅) |
srgcom4.p | ⊢ + = (+g‘𝑅) |
Ref | Expression |
---|---|
srgcom4 | ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + (𝑋 + 𝑌)) + 𝑌) = ((𝑋 + (𝑌 + 𝑋)) + 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srgmnd 20137 | . . . . . 6 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) | |
2 | 1 | 3ad2ant1 1130 | . . . . 5 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑅 ∈ Mnd) |
3 | simp2 1134 | . . . . 5 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
4 | simp3 1135 | . . . . 5 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
5 | srgcom4.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
6 | srgcom4.p | . . . . . 6 ⊢ + = (+g‘𝑅) | |
7 | 5, 6 | mndass 18710 | . . . . 5 ⊢ ((𝑅 ∈ Mnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 + 𝑋) + 𝑌) = (𝑋 + (𝑋 + 𝑌))) |
8 | 2, 3, 3, 4, 7 | syl13anc 1369 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑋) + 𝑌) = (𝑋 + (𝑋 + 𝑌))) |
9 | 8 | eqcomd 2734 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + (𝑋 + 𝑌)) = ((𝑋 + 𝑋) + 𝑌)) |
10 | 9 | oveq1d 7441 | . 2 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + (𝑋 + 𝑌)) + 𝑌) = (((𝑋 + 𝑋) + 𝑌) + 𝑌)) |
11 | 5, 6 | srgacl 20152 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑋 + 𝑋) ∈ 𝐵) |
12 | 3, 11 | syld3an3 1406 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑋) ∈ 𝐵) |
13 | 5, 6 | mndass 18710 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ ((𝑋 + 𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = ((𝑋 + 𝑋) + (𝑌 + 𝑌))) |
14 | 2, 12, 4, 4, 13 | syl13anc 1369 | . 2 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = ((𝑋 + 𝑋) + (𝑌 + 𝑌))) |
15 | 5, 6 | srgcom4lem 20160 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑋) + (𝑌 + 𝑌)) = ((𝑋 + 𝑌) + (𝑋 + 𝑌))) |
16 | 5, 6 | srgacl 20152 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
17 | 5, 6 | mndass 18710 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 + 𝑌) ∈ 𝐵)) → ((𝑋 + 𝑌) + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + (𝑋 + 𝑌)))) |
18 | 2, 3, 4, 16, 17 | syl13anc 1369 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑌) + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + (𝑋 + 𝑌)))) |
19 | 5, 6 | mndass 18710 | . . . . . . 7 ⊢ ((𝑅 ∈ Mnd ∧ (𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑌 + 𝑋) + 𝑌) = (𝑌 + (𝑋 + 𝑌))) |
20 | 19 | eqcomd 2734 | . . . . . 6 ⊢ ((𝑅 ∈ Mnd ∧ (𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑌 + (𝑋 + 𝑌)) = ((𝑌 + 𝑋) + 𝑌)) |
21 | 2, 4, 3, 4, 20 | syl13anc 1369 | . . . . 5 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 + (𝑋 + 𝑌)) = ((𝑌 + 𝑋) + 𝑌)) |
22 | 21 | oveq2d 7442 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + (𝑌 + (𝑋 + 𝑌))) = (𝑋 + ((𝑌 + 𝑋) + 𝑌))) |
23 | 5, 6 | srgacl 20152 | . . . . . 6 ⊢ ((𝑅 ∈ SRing ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌 + 𝑋) ∈ 𝐵) |
24 | 23 | 3com23 1123 | . . . . 5 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 + 𝑋) ∈ 𝐵) |
25 | 5, 6 | mndass 18710 | . . . . . 6 ⊢ ((𝑅 ∈ Mnd ∧ (𝑋 ∈ 𝐵 ∧ (𝑌 + 𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 + (𝑌 + 𝑋)) + 𝑌) = (𝑋 + ((𝑌 + 𝑋) + 𝑌))) |
26 | 25 | eqcomd 2734 | . . . . 5 ⊢ ((𝑅 ∈ Mnd ∧ (𝑋 ∈ 𝐵 ∧ (𝑌 + 𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 + ((𝑌 + 𝑋) + 𝑌)) = ((𝑋 + (𝑌 + 𝑋)) + 𝑌)) |
27 | 2, 3, 24, 4, 26 | syl13anc 1369 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + ((𝑌 + 𝑋) + 𝑌)) = ((𝑋 + (𝑌 + 𝑋)) + 𝑌)) |
28 | 22, 27 | eqtrd 2768 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + (𝑌 + (𝑋 + 𝑌))) = ((𝑋 + (𝑌 + 𝑋)) + 𝑌)) |
29 | 15, 18, 28 | 3eqtrd 2772 | . 2 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑋) + (𝑌 + 𝑌)) = ((𝑋 + (𝑌 + 𝑋)) + 𝑌)) |
30 | 10, 14, 29 | 3eqtrd 2772 | 1 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + (𝑋 + 𝑌)) + 𝑌) = ((𝑋 + (𝑌 + 𝑋)) + 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ‘cfv 6553 (class class class)co 7426 Basecbs 17187 +gcplusg 17240 Mndcmnd 18701 SRingcsrg 20133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17188 df-plusg 17253 df-0g 17430 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-cmn 19744 df-mgp 20082 df-ur 20129 df-srg 20134 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |