MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgcom4 Structured version   Visualization version   GIF version

Theorem srgcom4 20116
Description: Restricted commutativity of the addition in semirings (without using the commutativity of the addition given per definition of a semiring). (Contributed by AV, 1-Feb-2025.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
srgcom4.b 𝐵 = (Base‘𝑅)
srgcom4.p + = (+g𝑅)
Assertion
Ref Expression
srgcom4 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + (𝑋 + 𝑌)) + 𝑌) = ((𝑋 + (𝑌 + 𝑋)) + 𝑌))

Proof of Theorem srgcom4
StepHypRef Expression
1 srgmnd 20092 . . . . . 6 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
213ad2ant1 1130 . . . . 5 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → 𝑅 ∈ Mnd)
3 simp2 1134 . . . . 5 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
4 simp3 1135 . . . . 5 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
5 srgcom4.b . . . . . 6 𝐵 = (Base‘𝑅)
6 srgcom4.p . . . . . 6 + = (+g𝑅)
75, 6mndass 18673 . . . . 5 ((𝑅 ∈ Mnd ∧ (𝑋𝐵𝑋𝐵𝑌𝐵)) → ((𝑋 + 𝑋) + 𝑌) = (𝑋 + (𝑋 + 𝑌)))
82, 3, 3, 4, 7syl13anc 1369 . . . 4 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑋) + 𝑌) = (𝑋 + (𝑋 + 𝑌)))
98eqcomd 2732 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + (𝑋 + 𝑌)) = ((𝑋 + 𝑋) + 𝑌))
109oveq1d 7419 . 2 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + (𝑋 + 𝑌)) + 𝑌) = (((𝑋 + 𝑋) + 𝑌) + 𝑌))
115, 6srgacl 20107 . . . 4 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑋𝐵) → (𝑋 + 𝑋) ∈ 𝐵)
123, 11syld3an3 1406 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑋) ∈ 𝐵)
135, 6mndass 18673 . . 3 ((𝑅 ∈ Mnd ∧ ((𝑋 + 𝑋) ∈ 𝐵𝑌𝐵𝑌𝐵)) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = ((𝑋 + 𝑋) + (𝑌 + 𝑌)))
142, 12, 4, 4, 13syl13anc 1369 . 2 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = ((𝑋 + 𝑋) + (𝑌 + 𝑌)))
155, 6srgcom4lem 20115 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑋) + (𝑌 + 𝑌)) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
165, 6srgacl 20107 . . . 4 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
175, 6mndass 18673 . . . 4 ((𝑅 ∈ Mnd ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝐵)) → ((𝑋 + 𝑌) + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + (𝑋 + 𝑌))))
182, 3, 4, 16, 17syl13anc 1369 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑌) + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + (𝑋 + 𝑌))))
195, 6mndass 18673 . . . . . . 7 ((𝑅 ∈ Mnd ∧ (𝑌𝐵𝑋𝐵𝑌𝐵)) → ((𝑌 + 𝑋) + 𝑌) = (𝑌 + (𝑋 + 𝑌)))
2019eqcomd 2732 . . . . . 6 ((𝑅 ∈ Mnd ∧ (𝑌𝐵𝑋𝐵𝑌𝐵)) → (𝑌 + (𝑋 + 𝑌)) = ((𝑌 + 𝑋) + 𝑌))
212, 4, 3, 4, 20syl13anc 1369 . . . . 5 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → (𝑌 + (𝑋 + 𝑌)) = ((𝑌 + 𝑋) + 𝑌))
2221oveq2d 7420 . . . 4 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + (𝑌 + (𝑋 + 𝑌))) = (𝑋 + ((𝑌 + 𝑋) + 𝑌)))
235, 6srgacl 20107 . . . . . 6 ((𝑅 ∈ SRing ∧ 𝑌𝐵𝑋𝐵) → (𝑌 + 𝑋) ∈ 𝐵)
24233com23 1123 . . . . 5 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → (𝑌 + 𝑋) ∈ 𝐵)
255, 6mndass 18673 . . . . . 6 ((𝑅 ∈ Mnd ∧ (𝑋𝐵 ∧ (𝑌 + 𝑋) ∈ 𝐵𝑌𝐵)) → ((𝑋 + (𝑌 + 𝑋)) + 𝑌) = (𝑋 + ((𝑌 + 𝑋) + 𝑌)))
2625eqcomd 2732 . . . . 5 ((𝑅 ∈ Mnd ∧ (𝑋𝐵 ∧ (𝑌 + 𝑋) ∈ 𝐵𝑌𝐵)) → (𝑋 + ((𝑌 + 𝑋) + 𝑌)) = ((𝑋 + (𝑌 + 𝑋)) + 𝑌))
272, 3, 24, 4, 26syl13anc 1369 . . . 4 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + ((𝑌 + 𝑋) + 𝑌)) = ((𝑋 + (𝑌 + 𝑋)) + 𝑌))
2822, 27eqtrd 2766 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + (𝑌 + (𝑋 + 𝑌))) = ((𝑋 + (𝑌 + 𝑋)) + 𝑌))
2915, 18, 283eqtrd 2770 . 2 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑋) + (𝑌 + 𝑌)) = ((𝑋 + (𝑌 + 𝑋)) + 𝑌))
3010, 14, 293eqtrd 2770 1 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + (𝑋 + 𝑌)) + 𝑌) = ((𝑋 + (𝑌 + 𝑋)) + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098  cfv 6536  (class class class)co 7404  Basecbs 17150  +gcplusg 17203  Mndcmnd 18664  SRingcsrg 20088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-2 12276  df-sets 17103  df-slot 17121  df-ndx 17133  df-base 17151  df-plusg 17216  df-0g 17393  df-mgm 18570  df-sgrp 18649  df-mnd 18665  df-cmn 19699  df-mgp 20037  df-ur 20084  df-srg 20089
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator