![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > srgcom4 | Structured version Visualization version GIF version |
Description: Restricted commutativity of the addition in semirings (without using the commutativity of the addition given per definition of a semiring). (Contributed by AV, 1-Feb-2025.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
srgcom4.b | ⊢ 𝐵 = (Base‘𝑅) |
srgcom4.p | ⊢ + = (+g‘𝑅) |
Ref | Expression |
---|---|
srgcom4 | ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + (𝑋 + 𝑌)) + 𝑌) = ((𝑋 + (𝑌 + 𝑋)) + 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srgmnd 20092 | . . . . . 6 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) | |
2 | 1 | 3ad2ant1 1130 | . . . . 5 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑅 ∈ Mnd) |
3 | simp2 1134 | . . . . 5 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
4 | simp3 1135 | . . . . 5 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
5 | srgcom4.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
6 | srgcom4.p | . . . . . 6 ⊢ + = (+g‘𝑅) | |
7 | 5, 6 | mndass 18673 | . . . . 5 ⊢ ((𝑅 ∈ Mnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 + 𝑋) + 𝑌) = (𝑋 + (𝑋 + 𝑌))) |
8 | 2, 3, 3, 4, 7 | syl13anc 1369 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑋) + 𝑌) = (𝑋 + (𝑋 + 𝑌))) |
9 | 8 | eqcomd 2732 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + (𝑋 + 𝑌)) = ((𝑋 + 𝑋) + 𝑌)) |
10 | 9 | oveq1d 7419 | . 2 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + (𝑋 + 𝑌)) + 𝑌) = (((𝑋 + 𝑋) + 𝑌) + 𝑌)) |
11 | 5, 6 | srgacl 20107 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑋 + 𝑋) ∈ 𝐵) |
12 | 3, 11 | syld3an3 1406 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑋) ∈ 𝐵) |
13 | 5, 6 | mndass 18673 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ ((𝑋 + 𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = ((𝑋 + 𝑋) + (𝑌 + 𝑌))) |
14 | 2, 12, 4, 4, 13 | syl13anc 1369 | . 2 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = ((𝑋 + 𝑋) + (𝑌 + 𝑌))) |
15 | 5, 6 | srgcom4lem 20115 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑋) + (𝑌 + 𝑌)) = ((𝑋 + 𝑌) + (𝑋 + 𝑌))) |
16 | 5, 6 | srgacl 20107 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
17 | 5, 6 | mndass 18673 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 + 𝑌) ∈ 𝐵)) → ((𝑋 + 𝑌) + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + (𝑋 + 𝑌)))) |
18 | 2, 3, 4, 16, 17 | syl13anc 1369 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑌) + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + (𝑋 + 𝑌)))) |
19 | 5, 6 | mndass 18673 | . . . . . . 7 ⊢ ((𝑅 ∈ Mnd ∧ (𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑌 + 𝑋) + 𝑌) = (𝑌 + (𝑋 + 𝑌))) |
20 | 19 | eqcomd 2732 | . . . . . 6 ⊢ ((𝑅 ∈ Mnd ∧ (𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑌 + (𝑋 + 𝑌)) = ((𝑌 + 𝑋) + 𝑌)) |
21 | 2, 4, 3, 4, 20 | syl13anc 1369 | . . . . 5 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 + (𝑋 + 𝑌)) = ((𝑌 + 𝑋) + 𝑌)) |
22 | 21 | oveq2d 7420 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + (𝑌 + (𝑋 + 𝑌))) = (𝑋 + ((𝑌 + 𝑋) + 𝑌))) |
23 | 5, 6 | srgacl 20107 | . . . . . 6 ⊢ ((𝑅 ∈ SRing ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌 + 𝑋) ∈ 𝐵) |
24 | 23 | 3com23 1123 | . . . . 5 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 + 𝑋) ∈ 𝐵) |
25 | 5, 6 | mndass 18673 | . . . . . 6 ⊢ ((𝑅 ∈ Mnd ∧ (𝑋 ∈ 𝐵 ∧ (𝑌 + 𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 + (𝑌 + 𝑋)) + 𝑌) = (𝑋 + ((𝑌 + 𝑋) + 𝑌))) |
26 | 25 | eqcomd 2732 | . . . . 5 ⊢ ((𝑅 ∈ Mnd ∧ (𝑋 ∈ 𝐵 ∧ (𝑌 + 𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 + ((𝑌 + 𝑋) + 𝑌)) = ((𝑋 + (𝑌 + 𝑋)) + 𝑌)) |
27 | 2, 3, 24, 4, 26 | syl13anc 1369 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + ((𝑌 + 𝑋) + 𝑌)) = ((𝑋 + (𝑌 + 𝑋)) + 𝑌)) |
28 | 22, 27 | eqtrd 2766 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + (𝑌 + (𝑋 + 𝑌))) = ((𝑋 + (𝑌 + 𝑋)) + 𝑌)) |
29 | 15, 18, 28 | 3eqtrd 2770 | . 2 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑋) + (𝑌 + 𝑌)) = ((𝑋 + (𝑌 + 𝑋)) + 𝑌)) |
30 | 10, 14, 29 | 3eqtrd 2770 | 1 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + (𝑋 + 𝑌)) + 𝑌) = ((𝑋 + (𝑌 + 𝑋)) + 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ‘cfv 6536 (class class class)co 7404 Basecbs 17150 +gcplusg 17203 Mndcmnd 18664 SRingcsrg 20088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-plusg 17216 df-0g 17393 df-mgm 18570 df-sgrp 18649 df-mnd 18665 df-cmn 19699 df-mgp 20037 df-ur 20084 df-srg 20089 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |