MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgcom4 Structured version   Visualization version   GIF version

Theorem srgcom4 20166
Description: Restricted commutativity of the addition in semirings (without using the commutativity of the addition given per definition of a semiring). (Contributed by AV, 1-Feb-2025.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
srgcom4.b 𝐵 = (Base‘𝑅)
srgcom4.p + = (+g𝑅)
Assertion
Ref Expression
srgcom4 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + (𝑋 + 𝑌)) + 𝑌) = ((𝑋 + (𝑌 + 𝑋)) + 𝑌))

Proof of Theorem srgcom4
StepHypRef Expression
1 srgmnd 20142 . . . . . 6 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
213ad2ant1 1130 . . . . 5 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → 𝑅 ∈ Mnd)
3 simp2 1134 . . . . 5 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
4 simp3 1135 . . . . 5 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
5 srgcom4.b . . . . . 6 𝐵 = (Base‘𝑅)
6 srgcom4.p . . . . . 6 + = (+g𝑅)
75, 6mndass 18706 . . . . 5 ((𝑅 ∈ Mnd ∧ (𝑋𝐵𝑋𝐵𝑌𝐵)) → ((𝑋 + 𝑋) + 𝑌) = (𝑋 + (𝑋 + 𝑌)))
82, 3, 3, 4, 7syl13anc 1369 . . . 4 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑋) + 𝑌) = (𝑋 + (𝑋 + 𝑌)))
98eqcomd 2731 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + (𝑋 + 𝑌)) = ((𝑋 + 𝑋) + 𝑌))
109oveq1d 7434 . 2 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + (𝑋 + 𝑌)) + 𝑌) = (((𝑋 + 𝑋) + 𝑌) + 𝑌))
115, 6srgacl 20157 . . . 4 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑋𝐵) → (𝑋 + 𝑋) ∈ 𝐵)
123, 11syld3an3 1406 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑋) ∈ 𝐵)
135, 6mndass 18706 . . 3 ((𝑅 ∈ Mnd ∧ ((𝑋 + 𝑋) ∈ 𝐵𝑌𝐵𝑌𝐵)) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = ((𝑋 + 𝑋) + (𝑌 + 𝑌)))
142, 12, 4, 4, 13syl13anc 1369 . 2 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = ((𝑋 + 𝑋) + (𝑌 + 𝑌)))
155, 6srgcom4lem 20165 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑋) + (𝑌 + 𝑌)) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
165, 6srgacl 20157 . . . 4 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
175, 6mndass 18706 . . . 4 ((𝑅 ∈ Mnd ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 + 𝑌) ∈ 𝐵)) → ((𝑋 + 𝑌) + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + (𝑋 + 𝑌))))
182, 3, 4, 16, 17syl13anc 1369 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑌) + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + (𝑋 + 𝑌))))
195, 6mndass 18706 . . . . . . 7 ((𝑅 ∈ Mnd ∧ (𝑌𝐵𝑋𝐵𝑌𝐵)) → ((𝑌 + 𝑋) + 𝑌) = (𝑌 + (𝑋 + 𝑌)))
2019eqcomd 2731 . . . . . 6 ((𝑅 ∈ Mnd ∧ (𝑌𝐵𝑋𝐵𝑌𝐵)) → (𝑌 + (𝑋 + 𝑌)) = ((𝑌 + 𝑋) + 𝑌))
212, 4, 3, 4, 20syl13anc 1369 . . . . 5 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → (𝑌 + (𝑋 + 𝑌)) = ((𝑌 + 𝑋) + 𝑌))
2221oveq2d 7435 . . . 4 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + (𝑌 + (𝑋 + 𝑌))) = (𝑋 + ((𝑌 + 𝑋) + 𝑌)))
235, 6srgacl 20157 . . . . . 6 ((𝑅 ∈ SRing ∧ 𝑌𝐵𝑋𝐵) → (𝑌 + 𝑋) ∈ 𝐵)
24233com23 1123 . . . . 5 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → (𝑌 + 𝑋) ∈ 𝐵)
255, 6mndass 18706 . . . . . 6 ((𝑅 ∈ Mnd ∧ (𝑋𝐵 ∧ (𝑌 + 𝑋) ∈ 𝐵𝑌𝐵)) → ((𝑋 + (𝑌 + 𝑋)) + 𝑌) = (𝑋 + ((𝑌 + 𝑋) + 𝑌)))
2625eqcomd 2731 . . . . 5 ((𝑅 ∈ Mnd ∧ (𝑋𝐵 ∧ (𝑌 + 𝑋) ∈ 𝐵𝑌𝐵)) → (𝑋 + ((𝑌 + 𝑋) + 𝑌)) = ((𝑋 + (𝑌 + 𝑋)) + 𝑌))
272, 3, 24, 4, 26syl13anc 1369 . . . 4 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + ((𝑌 + 𝑋) + 𝑌)) = ((𝑋 + (𝑌 + 𝑋)) + 𝑌))
2822, 27eqtrd 2765 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + (𝑌 + (𝑋 + 𝑌))) = ((𝑋 + (𝑌 + 𝑋)) + 𝑌))
2915, 18, 283eqtrd 2769 . 2 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑋) + (𝑌 + 𝑌)) = ((𝑋 + (𝑌 + 𝑋)) + 𝑌))
3010, 14, 293eqtrd 2769 1 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + (𝑋 + 𝑌)) + 𝑌) = ((𝑋 + (𝑌 + 𝑋)) + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  cfv 6549  (class class class)co 7419  Basecbs 17183  +gcplusg 17236  Mndcmnd 18697  SRingcsrg 20138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-plusg 17249  df-0g 17426  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-cmn 19749  df-mgp 20087  df-ur 20134  df-srg 20139
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator