Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0tsms Structured version   Visualization version   GIF version

Theorem sge0tsms 43808
Description: Σ^ applied to a nonnegative function (its meaningful domain) is the same as the infinite group sum (that's always convergent, in this case). (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0tsms.g 𝐺 = (ℝ*𝑠s (0[,]+∞))
sge0tsms.x (𝜑𝑋𝑉)
sge0tsms.f (𝜑𝐹:𝑋⟶(0[,]+∞))
Assertion
Ref Expression
sge0tsms (𝜑 → (Σ^𝐹) ∈ (𝐺 tsums 𝐹))

Proof of Theorem sge0tsms
Dummy variables 𝑠 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < )
21a1i 11 . . 3 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ))
3 xrltso 12804 . . . . . 6 < Or ℝ*
43supex 9152 . . . . 5 sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ) ∈ V
54a1i 11 . . . 4 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ) ∈ V)
6 elsng 4572 . . . 4 (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ) ∈ V → (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ) ∈ {sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < )} ↔ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < )))
75, 6syl 17 . . 3 (𝜑 → (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ) ∈ {sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < )} ↔ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < )))
82, 7mpbird 256 . 2 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ) ∈ {sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < )})
9 sge0tsms.x . . . . . . 7 (𝜑𝑋𝑉)
109adantr 480 . . . . . 6 ((𝜑 ∧ +∞ ∈ ran 𝐹) → 𝑋𝑉)
11 sge0tsms.f . . . . . . 7 (𝜑𝐹:𝑋⟶(0[,]+∞))
1211adantr 480 . . . . . 6 ((𝜑 ∧ +∞ ∈ ran 𝐹) → 𝐹:𝑋⟶(0[,]+∞))
13 simpr 484 . . . . . 6 ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ ran 𝐹)
1410, 12, 13sge0pnfval 43801 . . . . 5 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (Σ^𝐹) = +∞)
1511ffnd 6585 . . . . . . . . 9 (𝜑𝐹 Fn 𝑋)
1615adantr 480 . . . . . . . 8 ((𝜑 ∧ +∞ ∈ ran 𝐹) → 𝐹 Fn 𝑋)
17 fvelrnb 6812 . . . . . . . 8 (𝐹 Fn 𝑋 → (+∞ ∈ ran 𝐹 ↔ ∃𝑦𝑋 (𝐹𝑦) = +∞))
1816, 17syl 17 . . . . . . 7 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (+∞ ∈ ran 𝐹 ↔ ∃𝑦𝑋 (𝐹𝑦) = +∞))
1913, 18mpbid 231 . . . . . 6 ((𝜑 ∧ +∞ ∈ ran 𝐹) → ∃𝑦𝑋 (𝐹𝑦) = +∞)
20 iccssxr 13091 . . . . . . . . . . . . . 14 (0[,]+∞) ⊆ ℝ*
21 sge0tsms.g . . . . . . . . . . . . . . 15 𝐺 = (ℝ*𝑠s (0[,]+∞))
22 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ∈ (𝒫 𝑋 ∩ Fin))
2311adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,]+∞))
24 elinel1 4125 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ∈ 𝒫 𝑋)
25 elpwi 4539 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
2624, 25syl 17 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥𝑋)
2726adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥𝑋)
28 fssres 6624 . . . . . . . . . . . . . . . 16 ((𝐹:𝑋⟶(0[,]+∞) ∧ 𝑥𝑋) → (𝐹𝑥):𝑥⟶(0[,]+∞))
2923, 27, 28syl2anc 583 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹𝑥):𝑥⟶(0[,]+∞))
30 elinel2 4126 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ∈ Fin)
3130adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ∈ Fin)
32 0red 10909 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 0 ∈ ℝ)
3329, 31, 32fdmfifsupp 9068 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹𝑥) finSupp 0)
3421, 22, 29, 33gsumge0cl 43799 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐺 Σg (𝐹𝑥)) ∈ (0[,]+∞))
3520, 34sselid 3915 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐺 Σg (𝐹𝑥)) ∈ ℝ*)
3635ralrimiva 3107 . . . . . . . . . . . 12 (𝜑 → ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(𝐺 Σg (𝐹𝑥)) ∈ ℝ*)
37363ad2ant1 1131 . . . . . . . . . . 11 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(𝐺 Σg (𝐹𝑥)) ∈ ℝ*)
38 eqid 2738 . . . . . . . . . . . 12 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))) = (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥)))
3938rnmptss 6978 . . . . . . . . . . 11 (∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(𝐺 Σg (𝐹𝑥)) ∈ ℝ* → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))) ⊆ ℝ*)
4037, 39syl 17 . . . . . . . . . 10 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))) ⊆ ℝ*)
41 snelpwi 5354 . . . . . . . . . . . . . 14 (𝑦𝑋 → {𝑦} ∈ 𝒫 𝑋)
42 snfi 8788 . . . . . . . . . . . . . . 15 {𝑦} ∈ Fin
4342a1i 11 . . . . . . . . . . . . . 14 (𝑦𝑋 → {𝑦} ∈ Fin)
4441, 43elind 4124 . . . . . . . . . . . . 13 (𝑦𝑋 → {𝑦} ∈ (𝒫 𝑋 ∩ Fin))
45443ad2ant2 1132 . . . . . . . . . . . 12 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → {𝑦} ∈ (𝒫 𝑋 ∩ Fin))
4611adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦𝑋) → 𝐹:𝑋⟶(0[,]+∞))
47 snssi 4738 . . . . . . . . . . . . . . . . . . 19 (𝑦𝑋 → {𝑦} ⊆ 𝑋)
4847adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦𝑋) → {𝑦} ⊆ 𝑋)
4946, 48fssresd 6625 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦𝑋) → (𝐹 ↾ {𝑦}):{𝑦}⟶(0[,]+∞))
5049feqmptd 6819 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝑋) → (𝐹 ↾ {𝑦}) = (𝑥 ∈ {𝑦} ↦ ((𝐹 ↾ {𝑦})‘𝑥)))
51 fvres 6775 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ {𝑦} → ((𝐹 ↾ {𝑦})‘𝑥) = (𝐹𝑥))
5251mpteq2ia 5173 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ {𝑦} ↦ ((𝐹 ↾ {𝑦})‘𝑥)) = (𝑥 ∈ {𝑦} ↦ (𝐹𝑥))
5352a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝑋) → (𝑥 ∈ {𝑦} ↦ ((𝐹 ↾ {𝑦})‘𝑥)) = (𝑥 ∈ {𝑦} ↦ (𝐹𝑥)))
5450, 53eqtrd 2778 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝑋) → (𝐹 ↾ {𝑦}) = (𝑥 ∈ {𝑦} ↦ (𝐹𝑥)))
5554oveq2d 7271 . . . . . . . . . . . . . 14 ((𝜑𝑦𝑋) → (𝐺 Σg (𝐹 ↾ {𝑦})) = (𝐺 Σg (𝑥 ∈ {𝑦} ↦ (𝐹𝑥))))
56553adant3 1130 . . . . . . . . . . . . 13 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → (𝐺 Σg (𝐹 ↾ {𝑦})) = (𝐺 Σg (𝑥 ∈ {𝑦} ↦ (𝐹𝑥))))
57 xrge0cmn 20552 . . . . . . . . . . . . . . . . 17 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
5821, 57eqeltri 2835 . . . . . . . . . . . . . . . 16 𝐺 ∈ CMnd
59 cmnmnd 19317 . . . . . . . . . . . . . . . 16 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
6058, 59ax-mp 5 . . . . . . . . . . . . . . 15 𝐺 ∈ Mnd
6160a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → 𝐺 ∈ Mnd)
62 simp2 1135 . . . . . . . . . . . . . 14 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → 𝑦𝑋)
6311ffvelrnda 6943 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝑋) → (𝐹𝑦) ∈ (0[,]+∞))
64633adant3 1130 . . . . . . . . . . . . . 14 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → (𝐹𝑦) ∈ (0[,]+∞))
65 df-ss 3900 . . . . . . . . . . . . . . . . . 18 ((0[,]+∞) ⊆ ℝ* ↔ ((0[,]+∞) ∩ ℝ*) = (0[,]+∞))
6620, 65mpbi 229 . . . . . . . . . . . . . . . . 17 ((0[,]+∞) ∩ ℝ*) = (0[,]+∞)
6766eqcomi 2747 . . . . . . . . . . . . . . . 16 (0[,]+∞) = ((0[,]+∞) ∩ ℝ*)
68 ovex 7288 . . . . . . . . . . . . . . . . 17 (0[,]+∞) ∈ V
69 xrsbas 20526 . . . . . . . . . . . . . . . . . 18 * = (Base‘ℝ*𝑠)
7021, 69ressbas 16873 . . . . . . . . . . . . . . . . 17 ((0[,]+∞) ∈ V → ((0[,]+∞) ∩ ℝ*) = (Base‘𝐺))
7168, 70ax-mp 5 . . . . . . . . . . . . . . . 16 ((0[,]+∞) ∩ ℝ*) = (Base‘𝐺)
7267, 71eqtri 2766 . . . . . . . . . . . . . . 15 (0[,]+∞) = (Base‘𝐺)
73 fveq2 6756 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
7472, 73gsumsn 19470 . . . . . . . . . . . . . 14 ((𝐺 ∈ Mnd ∧ 𝑦𝑋 ∧ (𝐹𝑦) ∈ (0[,]+∞)) → (𝐺 Σg (𝑥 ∈ {𝑦} ↦ (𝐹𝑥))) = (𝐹𝑦))
7561, 62, 64, 74syl3anc 1369 . . . . . . . . . . . . 13 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → (𝐺 Σg (𝑥 ∈ {𝑦} ↦ (𝐹𝑥))) = (𝐹𝑦))
76 simp3 1136 . . . . . . . . . . . . 13 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → (𝐹𝑦) = +∞)
7756, 75, 763eqtrrd 2783 . . . . . . . . . . . 12 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → +∞ = (𝐺 Σg (𝐹 ↾ {𝑦})))
78 reseq2 5875 . . . . . . . . . . . . . 14 (𝑥 = {𝑦} → (𝐹𝑥) = (𝐹 ↾ {𝑦}))
7978oveq2d 7271 . . . . . . . . . . . . 13 (𝑥 = {𝑦} → (𝐺 Σg (𝐹𝑥)) = (𝐺 Σg (𝐹 ↾ {𝑦})))
8079rspceeqv 3567 . . . . . . . . . . . 12 (({𝑦} ∈ (𝒫 𝑋 ∩ Fin) ∧ +∞ = (𝐺 Σg (𝐹 ↾ {𝑦}))) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)+∞ = (𝐺 Σg (𝐹𝑥)))
8145, 77, 80syl2anc 583 . . . . . . . . . . 11 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)+∞ = (𝐺 Σg (𝐹𝑥)))
82 pnfxr 10960 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
8382a1i 11 . . . . . . . . . . . 12 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → +∞ ∈ ℝ*)
8438elrnmpt 5854 . . . . . . . . . . . 12 (+∞ ∈ ℝ* → (+∞ ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)+∞ = (𝐺 Σg (𝐹𝑥))))
8583, 84syl 17 . . . . . . . . . . 11 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → (+∞ ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)+∞ = (𝐺 Σg (𝐹𝑥))))
8681, 85mpbird 256 . . . . . . . . . 10 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → +∞ ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))))
87 supxrpnf 12981 . . . . . . . . . 10 ((ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))) ⊆ ℝ* ∧ +∞ ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥)))) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ) = +∞)
8840, 86, 87syl2anc 583 . . . . . . . . 9 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ) = +∞)
89883exp 1117 . . . . . . . 8 (𝜑 → (𝑦𝑋 → ((𝐹𝑦) = +∞ → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ) = +∞)))
9089adantr 480 . . . . . . 7 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (𝑦𝑋 → ((𝐹𝑦) = +∞ → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ) = +∞)))
9190rexlimdv 3211 . . . . . 6 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (∃𝑦𝑋 (𝐹𝑦) = +∞ → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ) = +∞))
9219, 91mpd 15 . . . . 5 ((𝜑 ∧ +∞ ∈ ran 𝐹) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ) = +∞)
9314, 92eqtr4d 2781 . . . 4 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ))
949adantr 480 . . . . . 6 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → 𝑋𝑉)
9511adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → 𝐹:𝑋⟶(0[,]+∞))
96 simpr 484 . . . . . . 7 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → ¬ +∞ ∈ ran 𝐹)
9795, 96fge0iccico 43798 . . . . . 6 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → 𝐹:𝑋⟶(0[,)+∞))
9894, 97sge0reval 43800 . . . . 5 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
9923, 27feqresmpt 6820 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹𝑥) = (𝑦𝑥 ↦ (𝐹𝑦)))
10099adantlr 711 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹𝑥) = (𝑦𝑥 ↦ (𝐹𝑦)))
101100oveq2d 7271 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐺 Σg (𝐹𝑥)) = (𝐺 Σg (𝑦𝑥 ↦ (𝐹𝑦))))
10221fveq2i 6759 . . . . . . . . . . 11 (+g𝐺) = (+g‘(ℝ*𝑠s (0[,]+∞)))
103 eqid 2738 . . . . . . . . . . . . . 14 (ℝ*𝑠s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞))
104 xrsadd 20527 . . . . . . . . . . . . . 14 +𝑒 = (+g‘ℝ*𝑠)
105103, 104ressplusg 16926 . . . . . . . . . . . . 13 ((0[,]+∞) ∈ V → +𝑒 = (+g‘(ℝ*𝑠s (0[,]+∞))))
10668, 105ax-mp 5 . . . . . . . . . . . 12 +𝑒 = (+g‘(ℝ*𝑠s (0[,]+∞)))
107106eqcomi 2747 . . . . . . . . . . 11 (+g‘(ℝ*𝑠s (0[,]+∞))) = +𝑒
108102, 107eqtr2i 2767 . . . . . . . . . 10 +𝑒 = (+g𝐺)
10921oveq1i 7265 . . . . . . . . . . 11 (𝐺s (0[,)+∞)) = ((ℝ*𝑠s (0[,]+∞)) ↾s (0[,)+∞))
110 icossicc 13097 . . . . . . . . . . . . 13 (0[,)+∞) ⊆ (0[,]+∞)
11168, 110pm3.2i 470 . . . . . . . . . . . 12 ((0[,]+∞) ∈ V ∧ (0[,)+∞) ⊆ (0[,]+∞))
112 ressabs 16885 . . . . . . . . . . . 12 (((0[,]+∞) ∈ V ∧ (0[,)+∞) ⊆ (0[,]+∞)) → ((ℝ*𝑠s (0[,]+∞)) ↾s (0[,)+∞)) = (ℝ*𝑠s (0[,)+∞)))
113111, 112ax-mp 5 . . . . . . . . . . 11 ((ℝ*𝑠s (0[,]+∞)) ↾s (0[,)+∞)) = (ℝ*𝑠s (0[,)+∞))
114109, 113eqtr2i 2767 . . . . . . . . . 10 (ℝ*𝑠s (0[,)+∞)) = (𝐺s (0[,)+∞))
11558elexi 3441 . . . . . . . . . . 11 𝐺 ∈ V
116115a1i 11 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐺 ∈ V)
117 simpr 484 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ∈ (𝒫 𝑋 ∩ Fin))
118110a1i 11 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (0[,)+∞) ⊆ (0[,]+∞))
119 0xr 10953 . . . . . . . . . . . . 13 0 ∈ ℝ*
120119a1i 11 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → 0 ∈ ℝ*)
12182a1i 11 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → +∞ ∈ ℝ*)
12295ad2antrr 722 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → 𝐹:𝑋⟶(0[,]+∞))
12326sselda 3917 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦𝑥) → 𝑦𝑋)
124123adantll 710 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → 𝑦𝑋)
125122, 124ffvelrnd 6944 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ (0[,]+∞))
12620, 125sselid 3915 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ ℝ*)
127 iccgelb 13064 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐹𝑦) ∈ (0[,]+∞)) → 0 ≤ (𝐹𝑦))
128120, 121, 125, 127syl3anc 1369 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → 0 ≤ (𝐹𝑦))
129 id 22 . . . . . . . . . . . . . . . . . . . 20 ((𝐹𝑦) = +∞ → (𝐹𝑦) = +∞)
130129eqcomd 2744 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑦) = +∞ → +∞ = (𝐹𝑦))
131130adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) ∧ (𝐹𝑦) = +∞) → +∞ = (𝐹𝑦))
13211ffund 6588 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → Fun 𝐹)
133132ad2antrr 722 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → Fun 𝐹)
13422, 123sylan 579 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → 𝑦𝑋)
13511fdmd 6595 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → dom 𝐹 = 𝑋)
136135eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑋 = dom 𝐹)
137136ad2antrr 722 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → 𝑋 = dom 𝐹)
138134, 137eleqtrd 2841 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → 𝑦 ∈ dom 𝐹)
139 fvelrn 6936 . . . . . . . . . . . . . . . . . . . 20 ((Fun 𝐹𝑦 ∈ dom 𝐹) → (𝐹𝑦) ∈ ran 𝐹)
140133, 138, 139syl2anc 583 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ ran 𝐹)
141140adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) ∧ (𝐹𝑦) = +∞) → (𝐹𝑦) ∈ ran 𝐹)
142131, 141eqeltrd 2839 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) ∧ (𝐹𝑦) = +∞) → +∞ ∈ ran 𝐹)
143142adantl3r 746 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) ∧ (𝐹𝑦) = +∞) → +∞ ∈ ran 𝐹)
14496ad3antrrr 726 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) ∧ (𝐹𝑦) = +∞) → ¬ +∞ ∈ ran 𝐹)
145143, 144pm2.65da 813 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → ¬ (𝐹𝑦) = +∞)
146145neqned 2949 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ≠ +∞)
147 ge0xrre 42959 . . . . . . . . . . . . . 14 (((𝐹𝑦) ∈ (0[,]+∞) ∧ (𝐹𝑦) ≠ +∞) → (𝐹𝑦) ∈ ℝ)
148125, 146, 147syl2anc 583 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ ℝ)
149148ltpnfd 12786 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) < +∞)
150120, 121, 126, 128, 149elicod 13058 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ (0[,)+∞))
151 eqid 2738 . . . . . . . . . . 11 (𝑦𝑥 ↦ (𝐹𝑦)) = (𝑦𝑥 ↦ (𝐹𝑦))
152150, 151fmptd 6970 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝑦𝑥 ↦ (𝐹𝑦)):𝑥⟶(0[,)+∞))
153 0e0icopnf 13119 . . . . . . . . . . 11 0 ∈ (0[,)+∞)
154153a1i 11 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 0 ∈ (0[,)+∞))
155 eliccxr 13096 . . . . . . . . . . . 12 (𝑦 ∈ (0[,]+∞) → 𝑦 ∈ ℝ*)
156 xaddid2 12905 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* → (0 +𝑒 𝑦) = 𝑦)
157 xaddid1 12904 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* → (𝑦 +𝑒 0) = 𝑦)
158156, 157jca 511 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → ((0 +𝑒 𝑦) = 𝑦 ∧ (𝑦 +𝑒 0) = 𝑦))
159155, 158syl 17 . . . . . . . . . . 11 (𝑦 ∈ (0[,]+∞) → ((0 +𝑒 𝑦) = 𝑦 ∧ (𝑦 +𝑒 0) = 𝑦))
160159adantl 481 . . . . . . . . . 10 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦 ∈ (0[,]+∞)) → ((0 +𝑒 𝑦) = 𝑦 ∧ (𝑦 +𝑒 0) = 𝑦))
16172, 108, 114, 116, 117, 118, 152, 154, 160gsumress 18281 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐺 Σg (𝑦𝑥 ↦ (𝐹𝑦))) = ((ℝ*𝑠s (0[,)+∞)) Σg (𝑦𝑥 ↦ (𝐹𝑦))))
162 rege0subm 20566 . . . . . . . . . . . . 13 (0[,)+∞) ∈ (SubMnd‘ℂfld)
163162a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (0[,)+∞) ∈ (SubMnd‘ℂfld))
164 eqid 2738 . . . . . . . . . . . 12 (ℂflds (0[,)+∞)) = (ℂflds (0[,)+∞))
165117, 163, 152, 164gsumsubm 18388 . . . . . . . . . . 11 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (ℂfld Σg (𝑦𝑥 ↦ (𝐹𝑦))) = ((ℂflds (0[,)+∞)) Σg (𝑦𝑥 ↦ (𝐹𝑦))))
166 eqidd 2739 . . . . . . . . . . 11 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → ((ℂflds (0[,)+∞)) Σg (𝑦𝑥 ↦ (𝐹𝑦))) = ((ℂflds (0[,)+∞)) Σg (𝑦𝑥 ↦ (𝐹𝑦))))
167 vex 3426 . . . . . . . . . . . . . 14 𝑥 ∈ V
168167mptex 7081 . . . . . . . . . . . . 13 (𝑦𝑥 ↦ (𝐹𝑦)) ∈ V
169168a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝑦𝑥 ↦ (𝐹𝑦)) ∈ V)
170 ovexd 7290 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (ℂflds (0[,)+∞)) ∈ V)
171 ovexd 7290 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (ℝ*𝑠s (0[,)+∞)) ∈ V)
172 rge0ssre 13117 . . . . . . . . . . . . . . . . 17 (0[,)+∞) ⊆ ℝ
173 ax-resscn 10859 . . . . . . . . . . . . . . . . 17 ℝ ⊆ ℂ
174172, 173sstri 3926 . . . . . . . . . . . . . . . 16 (0[,)+∞) ⊆ ℂ
175 cnfldbas 20514 . . . . . . . . . . . . . . . . 17 ℂ = (Base‘ℂfld)
176164, 175ressbas2 16875 . . . . . . . . . . . . . . . 16 ((0[,)+∞) ⊆ ℂ → (0[,)+∞) = (Base‘(ℂflds (0[,)+∞))))
177174, 176ax-mp 5 . . . . . . . . . . . . . . 15 (0[,)+∞) = (Base‘(ℂflds (0[,)+∞)))
178177eqcomi 2747 . . . . . . . . . . . . . 14 (Base‘(ℂflds (0[,)+∞))) = (0[,)+∞)
179110, 20sstri 3926 . . . . . . . . . . . . . . 15 (0[,)+∞) ⊆ ℝ*
180 eqid 2738 . . . . . . . . . . . . . . . 16 (ℝ*𝑠s (0[,)+∞)) = (ℝ*𝑠s (0[,)+∞))
181180, 69ressbas2 16875 . . . . . . . . . . . . . . 15 ((0[,)+∞) ⊆ ℝ* → (0[,)+∞) = (Base‘(ℝ*𝑠s (0[,)+∞))))
182179, 181ax-mp 5 . . . . . . . . . . . . . 14 (0[,)+∞) = (Base‘(ℝ*𝑠s (0[,)+∞)))
183178, 182eqtri 2766 . . . . . . . . . . . . 13 (Base‘(ℂflds (0[,)+∞))) = (Base‘(ℝ*𝑠s (0[,)+∞)))
184183a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Base‘(ℂflds (0[,)+∞))) = (Base‘(ℝ*𝑠s (0[,)+∞))))
185 rge0srg 20581 . . . . . . . . . . . . . . 15 (ℂflds (0[,)+∞)) ∈ SRing
186185a1i 11 . . . . . . . . . . . . . 14 ((𝑠 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑡 ∈ (Base‘(ℂflds (0[,)+∞)))) → (ℂflds (0[,)+∞)) ∈ SRing)
187 simpl 482 . . . . . . . . . . . . . 14 ((𝑠 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑡 ∈ (Base‘(ℂflds (0[,)+∞)))) → 𝑠 ∈ (Base‘(ℂflds (0[,)+∞))))
188 simpr 484 . . . . . . . . . . . . . 14 ((𝑠 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑡 ∈ (Base‘(ℂflds (0[,)+∞)))) → 𝑡 ∈ (Base‘(ℂflds (0[,)+∞))))
189 eqid 2738 . . . . . . . . . . . . . . 15 (Base‘(ℂflds (0[,)+∞))) = (Base‘(ℂflds (0[,)+∞)))
190 eqid 2738 . . . . . . . . . . . . . . 15 (+g‘(ℂflds (0[,)+∞))) = (+g‘(ℂflds (0[,)+∞)))
191189, 190srgacl 19675 . . . . . . . . . . . . . 14 (((ℂflds (0[,)+∞)) ∈ SRing ∧ 𝑠 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑡 ∈ (Base‘(ℂflds (0[,)+∞)))) → (𝑠(+g‘(ℂflds (0[,)+∞)))𝑡) ∈ (Base‘(ℂflds (0[,)+∞))))
192186, 187, 188, 191syl3anc 1369 . . . . . . . . . . . . 13 ((𝑠 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑡 ∈ (Base‘(ℂflds (0[,)+∞)))) → (𝑠(+g‘(ℂflds (0[,)+∞)))𝑡) ∈ (Base‘(ℂflds (0[,)+∞))))
193192adantl 481 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ (𝑠 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑡 ∈ (Base‘(ℂflds (0[,)+∞))))) → (𝑠(+g‘(ℂflds (0[,)+∞)))𝑡) ∈ (Base‘(ℂflds (0[,)+∞))))
194172a1i 11 . . . . . . . . . . . . . . . 16 (𝑠 ∈ (Base‘(ℂflds (0[,)+∞))) → (0[,)+∞) ⊆ ℝ)
195 id 22 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ (Base‘(ℂflds (0[,)+∞))) → 𝑠 ∈ (Base‘(ℂflds (0[,)+∞))))
196195, 178eleqtrdi 2849 . . . . . . . . . . . . . . . 16 (𝑠 ∈ (Base‘(ℂflds (0[,)+∞))) → 𝑠 ∈ (0[,)+∞))
197194, 196sseldd 3918 . . . . . . . . . . . . . . 15 (𝑠 ∈ (Base‘(ℂflds (0[,)+∞))) → 𝑠 ∈ ℝ)
198197adantr 480 . . . . . . . . . . . . . 14 ((𝑠 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑡 ∈ (Base‘(ℂflds (0[,)+∞)))) → 𝑠 ∈ ℝ)
199172a1i 11 . . . . . . . . . . . . . . . 16 (𝑡 ∈ (Base‘(ℂflds (0[,)+∞))) → (0[,)+∞) ⊆ ℝ)
200 id 22 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ (Base‘(ℂflds (0[,)+∞))) → 𝑡 ∈ (Base‘(ℂflds (0[,)+∞))))
201200, 178eleqtrdi 2849 . . . . . . . . . . . . . . . 16 (𝑡 ∈ (Base‘(ℂflds (0[,)+∞))) → 𝑡 ∈ (0[,)+∞))
202199, 201sseldd 3918 . . . . . . . . . . . . . . 15 (𝑡 ∈ (Base‘(ℂflds (0[,)+∞))) → 𝑡 ∈ ℝ)
203202adantl 481 . . . . . . . . . . . . . 14 ((𝑠 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑡 ∈ (Base‘(ℂflds (0[,)+∞)))) → 𝑡 ∈ ℝ)
204 rexadd 12895 . . . . . . . . . . . . . . . 16 ((𝑠 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (𝑠 +𝑒 𝑡) = (𝑠 + 𝑡))
205204eqcomd 2744 . . . . . . . . . . . . . . 15 ((𝑠 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (𝑠 + 𝑡) = (𝑠 +𝑒 𝑡))
206162elexi 3441 . . . . . . . . . . . . . . . . . . . 20 (0[,)+∞) ∈ V
207 cnfldadd 20515 . . . . . . . . . . . . . . . . . . . . 21 + = (+g‘ℂfld)
208164, 207ressplusg 16926 . . . . . . . . . . . . . . . . . . . 20 ((0[,)+∞) ∈ V → + = (+g‘(ℂflds (0[,)+∞))))
209206, 208ax-mp 5 . . . . . . . . . . . . . . . . . . 19 + = (+g‘(ℂflds (0[,)+∞)))
210209, 207eqtr3i 2768 . . . . . . . . . . . . . . . . . 18 (+g‘(ℂflds (0[,)+∞))) = (+g‘ℂfld)
211210, 207eqtr4i 2769 . . . . . . . . . . . . . . . . 17 (+g‘(ℂflds (0[,)+∞))) = +
212211oveqi 7268 . . . . . . . . . . . . . . . 16 (𝑠(+g‘(ℂflds (0[,)+∞)))𝑡) = (𝑠 + 𝑡)
213212a1i 11 . . . . . . . . . . . . . . 15 ((𝑠 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (𝑠(+g‘(ℂflds (0[,)+∞)))𝑡) = (𝑠 + 𝑡))
214180, 104ressplusg 16926 . . . . . . . . . . . . . . . . . . 19 ((0[,)+∞) ∈ V → +𝑒 = (+g‘(ℝ*𝑠s (0[,)+∞))))
215206, 214ax-mp 5 . . . . . . . . . . . . . . . . . 18 +𝑒 = (+g‘(ℝ*𝑠s (0[,)+∞)))
216215eqcomi 2747 . . . . . . . . . . . . . . . . 17 (+g‘(ℝ*𝑠s (0[,)+∞))) = +𝑒
217216oveqi 7268 . . . . . . . . . . . . . . . 16 (𝑠(+g‘(ℝ*𝑠s (0[,)+∞)))𝑡) = (𝑠 +𝑒 𝑡)
218217a1i 11 . . . . . . . . . . . . . . 15 ((𝑠 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (𝑠(+g‘(ℝ*𝑠s (0[,)+∞)))𝑡) = (𝑠 +𝑒 𝑡))
219205, 213, 2183eqtr4d 2788 . . . . . . . . . . . . . 14 ((𝑠 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (𝑠(+g‘(ℂflds (0[,)+∞)))𝑡) = (𝑠(+g‘(ℝ*𝑠s (0[,)+∞)))𝑡))
220198, 203, 219syl2anc 583 . . . . . . . . . . . . 13 ((𝑠 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑡 ∈ (Base‘(ℂflds (0[,)+∞)))) → (𝑠(+g‘(ℂflds (0[,)+∞)))𝑡) = (𝑠(+g‘(ℝ*𝑠s (0[,)+∞)))𝑡))
221220adantl 481 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ (𝑠 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑡 ∈ (Base‘(ℂflds (0[,)+∞))))) → (𝑠(+g‘(ℂflds (0[,)+∞)))𝑡) = (𝑠(+g‘(ℝ*𝑠s (0[,)+∞)))𝑡))
222 funmpt 6456 . . . . . . . . . . . . 13 Fun (𝑦𝑥 ↦ (𝐹𝑦))
223222a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → Fun (𝑦𝑥 ↦ (𝐹𝑦)))
224150, 177eleqtrdi 2849 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ (Base‘(ℂflds (0[,)+∞))))
225224ralrimiva 3107 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → ∀𝑦𝑥 (𝐹𝑦) ∈ (Base‘(ℂflds (0[,)+∞))))
226151rnmptss 6978 . . . . . . . . . . . . 13 (∀𝑦𝑥 (𝐹𝑦) ∈ (Base‘(ℂflds (0[,)+∞))) → ran (𝑦𝑥 ↦ (𝐹𝑦)) ⊆ (Base‘(ℂflds (0[,)+∞))))
227225, 226syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → ran (𝑦𝑥 ↦ (𝐹𝑦)) ⊆ (Base‘(ℂflds (0[,)+∞))))
228169, 170, 171, 184, 193, 221, 223, 227gsumpropd2 18279 . . . . . . . . . . 11 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → ((ℂflds (0[,)+∞)) Σg (𝑦𝑥 ↦ (𝐹𝑦))) = ((ℝ*𝑠s (0[,)+∞)) Σg (𝑦𝑥 ↦ (𝐹𝑦))))
229165, 166, 2283eqtrd 2782 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (ℂfld Σg (𝑦𝑥 ↦ (𝐹𝑦))) = ((ℝ*𝑠s (0[,)+∞)) Σg (𝑦𝑥 ↦ (𝐹𝑦))))
23030adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ∈ Fin)
231148recnd 10934 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ ℂ)
232230, 231gsumfsum 20577 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (ℂfld Σg (𝑦𝑥 ↦ (𝐹𝑦))) = Σ𝑦𝑥 (𝐹𝑦))
233229, 232eqtr3d 2780 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → ((ℝ*𝑠s (0[,)+∞)) Σg (𝑦𝑥 ↦ (𝐹𝑦))) = Σ𝑦𝑥 (𝐹𝑦))
234101, 161, 2333eqtrrd 2783 . . . . . . . 8 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑦𝑥 (𝐹𝑦) = (𝐺 Σg (𝐹𝑥)))
235234mpteq2dva 5170 . . . . . . 7 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) = (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))))
236235rneqd 5836 . . . . . 6 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) = ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))))
237236supeq1d 9135 . . . . 5 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ))
23898, 237eqtrd 2778 . . . 4 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ))
23993, 238pm2.61dan 809 . . 3 (𝜑 → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ))
24021, 9, 11, 1xrge0tsms 23903 . . 3 (𝜑 → (𝐺 tsums 𝐹) = {sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < )})
241239, 240eleq12d 2833 . 2 (𝜑 → ((Σ^𝐹) ∈ (𝐺 tsums 𝐹) ↔ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ) ∈ {sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < )}))
2428, 241mpbird 256 1 (𝜑 → (Σ^𝐹) ∈ (𝐺 tsums 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  Vcvv 3422  cin 3882  wss 3883  𝒫 cpw 4530  {csn 4558   class class class wbr 5070  cmpt 5153  dom cdm 5580  ran crn 5581  cres 5582  Fun wfun 6412   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  Fincfn 8691  supcsup 9129  cc 10800  cr 10801  0cc0 10802   + caddc 10805  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941   +𝑒 cxad 12775  [,)cico 13010  [,]cicc 13011  Σcsu 15325  Basecbs 16840  s cress 16867  +gcplusg 16888   Σg cgsu 17068  *𝑠cxrs 17128  Mndcmnd 18300  SubMndcsubmnd 18344  CMndccmn 19301  SRingcsrg 19656  fldccnfld 20510   tsums ctsu 23185  Σ^csumge0 43790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xadd 12778  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-ordt 17129  df-xrs 17130  df-mre 17212  df-mrc 17213  df-acs 17215  df-ps 18199  df-tsr 18200  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-srg 19657  df-ring 19700  df-cring 19701  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-ntr 22079  df-nei 22157  df-cn 22286  df-haus 22374  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-tsms 23186  df-sumge0 43791
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator