Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > issrgid | Structured version Visualization version GIF version |
Description: Properties showing that an element 𝐼 is the unity element of a semiring. (Contributed by NM, 7-Aug-2013.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
Ref | Expression |
---|---|
srgidm.b | ⊢ 𝐵 = (Base‘𝑅) |
srgidm.t | ⊢ · = (.r‘𝑅) |
srgidm.u | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
issrgid | ⊢ (𝑅 ∈ SRing → ((𝐼 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥)) ↔ 1 = 𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
2 | srgidm.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
3 | 1, 2 | mgpbas 19366 | . 2 ⊢ 𝐵 = (Base‘(mulGrp‘𝑅)) |
4 | srgidm.u | . . 3 ⊢ 1 = (1r‘𝑅) | |
5 | 1, 4 | ringidval 19374 | . 2 ⊢ 1 = (0g‘(mulGrp‘𝑅)) |
6 | srgidm.t | . . 3 ⊢ · = (.r‘𝑅) | |
7 | 1, 6 | mgpplusg 19364 | . 2 ⊢ · = (+g‘(mulGrp‘𝑅)) |
8 | 2, 6 | srgideu 19385 | . . 3 ⊢ (𝑅 ∈ SRing → ∃!𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥)) |
9 | reurex 3329 | . . 3 ⊢ (∃!𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥) → ∃𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥)) | |
10 | 8, 9 | syl 17 | . 2 ⊢ (𝑅 ∈ SRing → ∃𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑦 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑦) = 𝑥)) |
11 | 3, 5, 7, 10 | ismgmid 17993 | 1 ⊢ (𝑅 ∈ SRing → ((𝐼 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥)) ↔ 1 = 𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∀wral 3053 ∃wrex 3054 ∃!wreu 3055 ‘cfv 6339 (class class class)co 7172 Basecbs 16588 .rcmulr 16671 mulGrpcmgp 19360 1rcur 19372 SRingcsrg 19376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7481 ax-cnex 10673 ax-resscn 10674 ax-1cn 10675 ax-icn 10676 ax-addcl 10677 ax-addrcl 10678 ax-mulcl 10679 ax-mulrcl 10680 ax-mulcom 10681 ax-addass 10682 ax-mulass 10683 ax-distr 10684 ax-i2m1 10685 ax-1ne0 10686 ax-1rid 10687 ax-rnegex 10688 ax-rrecex 10689 ax-cnre 10690 ax-pre-lttri 10691 ax-pre-lttrn 10692 ax-pre-ltadd 10693 ax-pre-mulgt0 10694 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7129 df-ov 7175 df-oprab 7176 df-mpo 7177 df-om 7602 df-wrecs 7978 df-recs 8039 df-rdg 8077 df-er 8322 df-en 8558 df-dom 8559 df-sdom 8560 df-pnf 10757 df-mnf 10758 df-xr 10759 df-ltxr 10760 df-le 10761 df-sub 10952 df-neg 10953 df-nn 11719 df-2 11781 df-ndx 16591 df-slot 16592 df-base 16594 df-sets 16595 df-plusg 16683 df-0g 16820 df-mgm 17970 df-sgrp 18019 df-mnd 18030 df-mgp 19361 df-ur 19373 df-srg 19377 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |