MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgsummulcl Structured version   Visualization version   GIF version

Theorem sgsummulcl 19784
Description: A finite semiring sum multiplied by a constant, analogous to gsummulc2 19856. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srgsummulcr.b 𝐵 = (Base‘𝑅)
srgsummulcr.z 0 = (0g𝑅)
srgsummulcr.p + = (+g𝑅)
srgsummulcr.t · = (.r𝑅)
srgsummulcr.r (𝜑𝑅 ∈ SRing)
srgsummulcr.a (𝜑𝐴𝑉)
srgsummulcr.y (𝜑𝑌𝐵)
srgsummulcr.x ((𝜑𝑘𝐴) → 𝑋𝐵)
srgsummulcr.n (𝜑 → (𝑘𝐴𝑋) finSupp 0 )
Assertion
Ref Expression
sgsummulcl (𝜑 → (𝑅 Σg (𝑘𝐴 ↦ (𝑌 · 𝑋))) = (𝑌 · (𝑅 Σg (𝑘𝐴𝑋))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝜑,𝑘   · ,𝑘   𝑘,𝑌
Allowed substitution hints:   + (𝑘)   𝑅(𝑘)   𝑉(𝑘)   𝑋(𝑘)   0 (𝑘)

Proof of Theorem sgsummulcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 srgsummulcr.b . 2 𝐵 = (Base‘𝑅)
2 srgsummulcr.z . 2 0 = (0g𝑅)
3 srgsummulcr.r . . 3 (𝜑𝑅 ∈ SRing)
4 srgcmn 19754 . . 3 (𝑅 ∈ SRing → 𝑅 ∈ CMnd)
53, 4syl 17 . 2 (𝜑𝑅 ∈ CMnd)
6 srgmnd 19755 . . 3 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
73, 6syl 17 . 2 (𝜑𝑅 ∈ Mnd)
8 srgsummulcr.a . 2 (𝜑𝐴𝑉)
9 srgsummulcr.y . . 3 (𝜑𝑌𝐵)
10 srgsummulcr.t . . . 4 · = (.r𝑅)
111, 10srglmhm 19781 . . 3 ((𝑅 ∈ SRing ∧ 𝑌𝐵) → (𝑥𝐵 ↦ (𝑌 · 𝑥)) ∈ (𝑅 MndHom 𝑅))
123, 9, 11syl2anc 584 . 2 (𝜑 → (𝑥𝐵 ↦ (𝑌 · 𝑥)) ∈ (𝑅 MndHom 𝑅))
13 srgsummulcr.x . 2 ((𝜑𝑘𝐴) → 𝑋𝐵)
14 srgsummulcr.n . 2 (𝜑 → (𝑘𝐴𝑋) finSupp 0 )
15 oveq2 7275 . 2 (𝑥 = 𝑋 → (𝑌 · 𝑥) = (𝑌 · 𝑋))
16 oveq2 7275 . 2 (𝑥 = (𝑅 Σg (𝑘𝐴𝑋)) → (𝑌 · 𝑥) = (𝑌 · (𝑅 Σg (𝑘𝐴𝑋))))
171, 2, 5, 7, 8, 12, 13, 14, 15, 16gsummhm2 19550 1 (𝜑 → (𝑅 Σg (𝑘𝐴 ↦ (𝑌 · 𝑋))) = (𝑌 · (𝑅 Σg (𝑘𝐴𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106   class class class wbr 5073  cmpt 5156  cfv 6426  (class class class)co 7267   finSupp cfsupp 9115  Basecbs 16922  +gcplusg 16972  .rcmulr 16973  0gc0g 17160   Σg cgsu 17161  Mndcmnd 18395   MndHom cmhm 18438  CMndccmn 19396  SRingcsrg 19751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-cnex 10937  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-pre-mulgt0 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-se 5540  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-isom 6435  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-om 7703  df-1st 7820  df-2nd 7821  df-supp 7965  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-1o 8284  df-er 8485  df-map 8604  df-en 8721  df-dom 8722  df-sdom 8723  df-fin 8724  df-fsupp 9116  df-oi 9256  df-card 9707  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-sub 11217  df-neg 11218  df-nn 11984  df-2 12046  df-n0 12244  df-z 12330  df-uz 12593  df-fz 13250  df-fzo 13393  df-seq 13732  df-hash 14055  df-sets 16875  df-slot 16893  df-ndx 16905  df-base 16923  df-plusg 16985  df-0g 17162  df-gsum 17163  df-mgm 18336  df-sgrp 18385  df-mnd 18396  df-mhm 18440  df-cntz 18933  df-cmn 19398  df-mgp 19731  df-srg 19752
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator