Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sgsummulcl | Structured version Visualization version GIF version |
Description: A finite semiring sum multiplied by a constant, analogous to gsummulc2 19736. (Contributed by AV, 23-Aug-2019.) |
Ref | Expression |
---|---|
srgsummulcr.b | ⊢ 𝐵 = (Base‘𝑅) |
srgsummulcr.z | ⊢ 0 = (0g‘𝑅) |
srgsummulcr.p | ⊢ + = (+g‘𝑅) |
srgsummulcr.t | ⊢ · = (.r‘𝑅) |
srgsummulcr.r | ⊢ (𝜑 → 𝑅 ∈ SRing) |
srgsummulcr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
srgsummulcr.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
srgsummulcr.x | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) |
srgsummulcr.n | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) |
Ref | Expression |
---|---|
sgsummulcl | ⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ 𝐴 ↦ (𝑌 · 𝑋))) = (𝑌 · (𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srgsummulcr.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
2 | srgsummulcr.z | . 2 ⊢ 0 = (0g‘𝑅) | |
3 | srgsummulcr.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ SRing) | |
4 | srgcmn 19634 | . . 3 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ CMnd) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝑅 ∈ CMnd) |
6 | srgmnd 19635 | . . 3 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) | |
7 | 3, 6 | syl 17 | . 2 ⊢ (𝜑 → 𝑅 ∈ Mnd) |
8 | srgsummulcr.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
9 | srgsummulcr.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
10 | srgsummulcr.t | . . . 4 ⊢ · = (.r‘𝑅) | |
11 | 1, 10 | srglmhm 19661 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ 𝑌 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑌 · 𝑥)) ∈ (𝑅 MndHom 𝑅)) |
12 | 3, 9, 11 | syl2anc 587 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (𝑌 · 𝑥)) ∈ (𝑅 MndHom 𝑅)) |
13 | srgsummulcr.x | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
14 | srgsummulcr.n | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) | |
15 | oveq2 7260 | . 2 ⊢ (𝑥 = 𝑋 → (𝑌 · 𝑥) = (𝑌 · 𝑋)) | |
16 | oveq2 7260 | . 2 ⊢ (𝑥 = (𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) → (𝑌 · 𝑥) = (𝑌 · (𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)))) | |
17 | 1, 2, 5, 7, 8, 12, 13, 14, 15, 16 | gsummhm2 19430 | 1 ⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ 𝐴 ↦ (𝑌 · 𝑋))) = (𝑌 · (𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2112 class class class wbr 5070 ↦ cmpt 5152 ‘cfv 6415 (class class class)co 7252 finSupp cfsupp 9033 Basecbs 16815 +gcplusg 16863 .rcmulr 16864 0gc0g 17042 Σg cgsu 17043 Mndcmnd 18275 MndHom cmhm 18318 CMndccmn 19276 SRingcsrg 19631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5203 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-cnex 10833 ax-resscn 10834 ax-1cn 10835 ax-icn 10836 ax-addcl 10837 ax-addrcl 10838 ax-mulcl 10839 ax-mulrcl 10840 ax-mulcom 10841 ax-addass 10842 ax-mulass 10843 ax-distr 10844 ax-i2m1 10845 ax-1ne0 10846 ax-1rid 10847 ax-rnegex 10848 ax-rrecex 10849 ax-cnre 10850 ax-pre-lttri 10851 ax-pre-lttrn 10852 ax-pre-ltadd 10853 ax-pre-mulgt0 10854 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-se 5535 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-isom 6424 df-riota 7209 df-ov 7255 df-oprab 7256 df-mpo 7257 df-om 7685 df-1st 7801 df-2nd 7802 df-supp 7946 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-1o 8244 df-er 8433 df-map 8552 df-en 8669 df-dom 8670 df-sdom 8671 df-fin 8672 df-fsupp 9034 df-oi 9174 df-card 9603 df-pnf 10917 df-mnf 10918 df-xr 10919 df-ltxr 10920 df-le 10921 df-sub 11112 df-neg 11113 df-nn 11879 df-2 11941 df-n0 12139 df-z 12225 df-uz 12487 df-fz 13144 df-fzo 13287 df-seq 13625 df-hash 13948 df-sets 16768 df-slot 16786 df-ndx 16798 df-base 16816 df-plusg 16876 df-0g 17044 df-gsum 17045 df-mgm 18216 df-sgrp 18265 df-mnd 18276 df-mhm 18320 df-cntz 18813 df-cmn 19278 df-mgp 19611 df-srg 19632 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |