MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgsummulcr Structured version   Visualization version   GIF version

Theorem srgsummulcr 20149
Description: A finite semiring sum multiplied by a constant, analogous to gsummulc1 20242. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srgsummulcr.b 𝐵 = (Base‘𝑅)
srgsummulcr.z 0 = (0g𝑅)
srgsummulcr.p + = (+g𝑅)
srgsummulcr.t · = (.r𝑅)
srgsummulcr.r (𝜑𝑅 ∈ SRing)
srgsummulcr.a (𝜑𝐴𝑉)
srgsummulcr.y (𝜑𝑌𝐵)
srgsummulcr.x ((𝜑𝑘𝐴) → 𝑋𝐵)
srgsummulcr.n (𝜑 → (𝑘𝐴𝑋) finSupp 0 )
Assertion
Ref Expression
srgsummulcr (𝜑 → (𝑅 Σg (𝑘𝐴 ↦ (𝑋 · 𝑌))) = ((𝑅 Σg (𝑘𝐴𝑋)) · 𝑌))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝜑,𝑘   · ,𝑘   𝑘,𝑌
Allowed substitution hints:   + (𝑘)   𝑅(𝑘)   𝑉(𝑘)   𝑋(𝑘)   0 (𝑘)

Proof of Theorem srgsummulcr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 srgsummulcr.b . 2 𝐵 = (Base‘𝑅)
2 srgsummulcr.z . 2 0 = (0g𝑅)
3 srgsummulcr.r . . 3 (𝜑𝑅 ∈ SRing)
4 srgcmn 20115 . . 3 (𝑅 ∈ SRing → 𝑅 ∈ CMnd)
53, 4syl 17 . 2 (𝜑𝑅 ∈ CMnd)
6 srgmnd 20116 . . 3 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
73, 6syl 17 . 2 (𝜑𝑅 ∈ Mnd)
8 srgsummulcr.a . 2 (𝜑𝐴𝑉)
9 srgsummulcr.y . . 3 (𝜑𝑌𝐵)
10 srgsummulcr.t . . . 4 · = (.r𝑅)
111, 10srgrmhm 20148 . . 3 ((𝑅 ∈ SRing ∧ 𝑌𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝑌)) ∈ (𝑅 MndHom 𝑅))
123, 9, 11syl2anc 584 . 2 (𝜑 → (𝑥𝐵 ↦ (𝑥 · 𝑌)) ∈ (𝑅 MndHom 𝑅))
13 srgsummulcr.x . 2 ((𝜑𝑘𝐴) → 𝑋𝐵)
14 srgsummulcr.n . 2 (𝜑 → (𝑘𝐴𝑋) finSupp 0 )
15 oveq1 7362 . 2 (𝑥 = 𝑋 → (𝑥 · 𝑌) = (𝑋 · 𝑌))
16 oveq1 7362 . 2 (𝑥 = (𝑅 Σg (𝑘𝐴𝑋)) → (𝑥 · 𝑌) = ((𝑅 Σg (𝑘𝐴𝑋)) · 𝑌))
171, 2, 5, 7, 8, 12, 13, 14, 15, 16gsummhm2 19859 1 (𝜑 → (𝑅 Σg (𝑘𝐴 ↦ (𝑋 · 𝑌))) = ((𝑅 Σg (𝑘𝐴𝑋)) · 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113   class class class wbr 5095  cmpt 5176  cfv 6489  (class class class)co 7355   finSupp cfsupp 9256  Basecbs 17127  +gcplusg 17168  .rcmulr 17169  0gc0g 17350   Σg cgsu 17351  Mndcmnd 18650   MndHom cmhm 18697  CMndccmn 19700  SRingcsrg 20112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-oi 9407  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-n0 12393  df-z 12480  df-uz 12743  df-fz 13415  df-fzo 13562  df-seq 13916  df-hash 14245  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-plusg 17181  df-0g 17352  df-gsum 17353  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-mhm 18699  df-cntz 19237  df-cmn 19702  df-mgp 20067  df-srg 20113
This theorem is referenced by:  srgbinomlem3  20154  srgbinomlem4  20155
  Copyright terms: Public domain W3C validator