| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > srgsummulcr | Structured version Visualization version GIF version | ||
| Description: A finite semiring sum multiplied by a constant, analogous to gsummulc1 20229. (Contributed by AV, 23-Aug-2019.) |
| Ref | Expression |
|---|---|
| srgsummulcr.b | ⊢ 𝐵 = (Base‘𝑅) |
| srgsummulcr.z | ⊢ 0 = (0g‘𝑅) |
| srgsummulcr.p | ⊢ + = (+g‘𝑅) |
| srgsummulcr.t | ⊢ · = (.r‘𝑅) |
| srgsummulcr.r | ⊢ (𝜑 → 𝑅 ∈ SRing) |
| srgsummulcr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| srgsummulcr.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| srgsummulcr.x | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) |
| srgsummulcr.n | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) |
| Ref | Expression |
|---|---|
| srgsummulcr | ⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ 𝐴 ↦ (𝑋 · 𝑌))) = ((𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) · 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgsummulcr.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | srgsummulcr.z | . 2 ⊢ 0 = (0g‘𝑅) | |
| 3 | srgsummulcr.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ SRing) | |
| 4 | srgcmn 20102 | . . 3 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ CMnd) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝑅 ∈ CMnd) |
| 6 | srgmnd 20103 | . . 3 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) | |
| 7 | 3, 6 | syl 17 | . 2 ⊢ (𝜑 → 𝑅 ∈ Mnd) |
| 8 | srgsummulcr.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 9 | srgsummulcr.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 10 | srgsummulcr.t | . . . 4 ⊢ · = (.r‘𝑅) | |
| 11 | 1, 10 | srgrmhm 20135 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ 𝑌 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑌)) ∈ (𝑅 MndHom 𝑅)) |
| 12 | 3, 9, 11 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑌)) ∈ (𝑅 MndHom 𝑅)) |
| 13 | srgsummulcr.x | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
| 14 | srgsummulcr.n | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) | |
| 15 | oveq1 7348 | . 2 ⊢ (𝑥 = 𝑋 → (𝑥 · 𝑌) = (𝑋 · 𝑌)) | |
| 16 | oveq1 7348 | . 2 ⊢ (𝑥 = (𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) → (𝑥 · 𝑌) = ((𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) · 𝑌)) | |
| 17 | 1, 2, 5, 7, 8, 12, 13, 14, 15, 16 | gsummhm2 19846 | 1 ⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ 𝐴 ↦ (𝑋 · 𝑌))) = ((𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) · 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5086 ↦ cmpt 5167 ‘cfv 6476 (class class class)co 7341 finSupp cfsupp 9240 Basecbs 17115 +gcplusg 17156 .rcmulr 17157 0gc0g 17338 Σg cgsu 17339 Mndcmnd 18637 MndHom cmhm 18684 CMndccmn 19687 SRingcsrg 20099 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-fzo 13550 df-seq 13904 df-hash 14233 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-plusg 17169 df-0g 17340 df-gsum 17341 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-cntz 19224 df-cmn 19689 df-mgp 20054 df-srg 20100 |
| This theorem is referenced by: srgbinomlem3 20141 srgbinomlem4 20142 |
| Copyright terms: Public domain | W3C validator |