Proof of Theorem srgbinomlem3
| Step | Hyp | Ref
| Expression |
| 1 | | srgbinomlem.i |
. . . 4
⊢ (𝜓 → (𝑁 ↑ (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
| 2 | 1 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → (𝑁 ↑ (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
| 3 | 2 | oveq1d 7425 |
. 2
⊢ ((𝜑 ∧ 𝜓) → ((𝑁 ↑ (𝐴 + 𝐵)) × 𝐴) = ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) × 𝐴)) |
| 4 | | srgbinom.s |
. . . . . 6
⊢ 𝑆 = (Base‘𝑅) |
| 5 | | srgbinom.a |
. . . . . 6
⊢ + =
(+g‘𝑅) |
| 6 | | srgbinomlem.r |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ SRing) |
| 7 | | srgcmn 20154 |
. . . . . . 7
⊢ (𝑅 ∈ SRing → 𝑅 ∈ CMnd) |
| 8 | 6, 7 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ CMnd) |
| 9 | | srgbinomlem.n |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 10 | | simpl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → 𝜑) |
| 11 | | elfzelz 13546 |
. . . . . . . 8
⊢ (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℤ) |
| 12 | | bccl 14345 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈ ℤ)
→ (𝑁C𝑘) ∈
ℕ0) |
| 13 | 9, 11, 12 | syl2an 596 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C𝑘) ∈
ℕ0) |
| 14 | | fznn0sub 13578 |
. . . . . . . 8
⊢ (𝑘 ∈ (0...(𝑁 + 1)) → ((𝑁 + 1) − 𝑘) ∈
ℕ0) |
| 15 | 14 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁 + 1) − 𝑘) ∈
ℕ0) |
| 16 | | elfznn0 13642 |
. . . . . . . 8
⊢ (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℕ0) |
| 17 | 16 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → 𝑘 ∈ ℕ0) |
| 18 | | srgbinom.m |
. . . . . . . 8
⊢ × =
(.r‘𝑅) |
| 19 | | srgbinom.t |
. . . . . . . 8
⊢ · =
(.g‘𝑅) |
| 20 | | srgbinom.g |
. . . . . . . 8
⊢ 𝐺 = (mulGrp‘𝑅) |
| 21 | | srgbinom.e |
. . . . . . . 8
⊢ ↑ =
(.g‘𝐺) |
| 22 | | srgbinomlem.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| 23 | | srgbinomlem.b |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ 𝑆) |
| 24 | | srgbinomlem.c |
. . . . . . . 8
⊢ (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴)) |
| 25 | 4, 18, 19, 5, 20, 21, 6, 22, 23, 24, 9 | srgbinomlem2 20192 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑁C𝑘) ∈ ℕ0 ∧ ((𝑁 + 1) − 𝑘) ∈ ℕ0 ∧ 𝑘 ∈ ℕ0))
→ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ 𝑆) |
| 26 | 10, 13, 15, 17, 25 | syl13anc 1374 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ 𝑆) |
| 27 | 4, 5, 8, 9, 26 | gsummptfzsplit 19918 |
. . . . 5
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) = ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) + (𝑅 Σg (𝑘 ∈ {(𝑁 + 1)} ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))))) |
| 28 | | srgmnd 20155 |
. . . . . . . . 9
⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) |
| 29 | 6, 28 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Mnd) |
| 30 | | ovexd 7445 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 + 1) ∈ V) |
| 31 | | id 22 |
. . . . . . . . 9
⊢ (𝜑 → 𝜑) |
| 32 | 9 | nn0zd 12619 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 33 | 32 | peano2zd 12705 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁 + 1) ∈ ℤ) |
| 34 | | bccl 14345 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ (𝑁 + 1) ∈
ℤ) → (𝑁C(𝑁 + 1)) ∈
ℕ0) |
| 35 | 9, 33, 34 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁C(𝑁 + 1)) ∈
ℕ0) |
| 36 | 9 | nn0cnd 12569 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 37 | | peano2cn 11412 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℂ → (𝑁 + 1) ∈
ℂ) |
| 38 | 36, 37 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁 + 1) ∈ ℂ) |
| 39 | 38 | subidd 11587 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑁 + 1) − (𝑁 + 1)) = 0) |
| 40 | | 0nn0 12521 |
. . . . . . . . . 10
⊢ 0 ∈
ℕ0 |
| 41 | 39, 40 | eqeltrdi 2843 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑁 + 1) − (𝑁 + 1)) ∈
ℕ0) |
| 42 | | peano2nn0 12546 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ0) |
| 43 | 9, 42 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁 + 1) ∈
ℕ0) |
| 44 | 4, 18, 19, 5, 20, 21, 6, 22, 23, 24, 9 | srgbinomlem2 20192 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑁C(𝑁 + 1)) ∈ ℕ0 ∧
((𝑁 + 1) − (𝑁 + 1)) ∈
ℕ0 ∧ (𝑁 + 1) ∈ ℕ0)) →
((𝑁C(𝑁 + 1)) · ((((𝑁 + 1) − (𝑁 + 1)) ↑ 𝐴) × ((𝑁 + 1) ↑ 𝐵))) ∈ 𝑆) |
| 45 | 31, 35, 41, 43, 44 | syl13anc 1374 |
. . . . . . . 8
⊢ (𝜑 → ((𝑁C(𝑁 + 1)) · ((((𝑁 + 1) − (𝑁 + 1)) ↑ 𝐴) × ((𝑁 + 1) ↑ 𝐵))) ∈ 𝑆) |
| 46 | | oveq2 7418 |
. . . . . . . . . 10
⊢ (𝑘 = (𝑁 + 1) → (𝑁C𝑘) = (𝑁C(𝑁 + 1))) |
| 47 | | oveq2 7418 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑁 + 1) → ((𝑁 + 1) − 𝑘) = ((𝑁 + 1) − (𝑁 + 1))) |
| 48 | 47 | oveq1d 7425 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑁 + 1) → (((𝑁 + 1) − 𝑘) ↑ 𝐴) = (((𝑁 + 1) − (𝑁 + 1)) ↑ 𝐴)) |
| 49 | | oveq1 7417 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑁 + 1) → (𝑘 ↑ 𝐵) = ((𝑁 + 1) ↑ 𝐵)) |
| 50 | 48, 49 | oveq12d 7428 |
. . . . . . . . . 10
⊢ (𝑘 = (𝑁 + 1) → ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)) = ((((𝑁 + 1) − (𝑁 + 1)) ↑ 𝐴) × ((𝑁 + 1) ↑ 𝐵))) |
| 51 | 46, 50 | oveq12d 7428 |
. . . . . . . . 9
⊢ (𝑘 = (𝑁 + 1) → ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) = ((𝑁C(𝑁 + 1)) · ((((𝑁 + 1) − (𝑁 + 1)) ↑ 𝐴) × ((𝑁 + 1) ↑ 𝐵)))) |
| 52 | 4, 51 | gsumsn 19940 |
. . . . . . . 8
⊢ ((𝑅 ∈ Mnd ∧ (𝑁 + 1) ∈ V ∧ ((𝑁C(𝑁 + 1)) · ((((𝑁 + 1) − (𝑁 + 1)) ↑ 𝐴) × ((𝑁 + 1) ↑ 𝐵))) ∈ 𝑆) → (𝑅 Σg (𝑘 ∈ {(𝑁 + 1)} ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) = ((𝑁C(𝑁 + 1)) · ((((𝑁 + 1) − (𝑁 + 1)) ↑ 𝐴) × ((𝑁 + 1) ↑ 𝐵)))) |
| 53 | 29, 30, 45, 52 | syl3anc 1373 |
. . . . . . 7
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ {(𝑁 + 1)} ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) = ((𝑁C(𝑁 + 1)) · ((((𝑁 + 1) − (𝑁 + 1)) ↑ 𝐴) × ((𝑁 + 1) ↑ 𝐵)))) |
| 54 | 9 | nn0red 12568 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 55 | 54 | ltp1d 12177 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 < (𝑁 + 1)) |
| 56 | 55 | olcd 874 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑁 + 1) < 0 ∨ 𝑁 < (𝑁 + 1))) |
| 57 | | bcval4 14330 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝑁 + 1) ∈
ℤ ∧ ((𝑁 + 1) <
0 ∨ 𝑁 < (𝑁 + 1))) → (𝑁C(𝑁 + 1)) = 0) |
| 58 | 9, 33, 56, 57 | syl3anc 1373 |
. . . . . . . 8
⊢ (𝜑 → (𝑁C(𝑁 + 1)) = 0) |
| 59 | 58 | oveq1d 7425 |
. . . . . . 7
⊢ (𝜑 → ((𝑁C(𝑁 + 1)) · ((((𝑁 + 1) − (𝑁 + 1)) ↑ 𝐴) × ((𝑁 + 1) ↑ 𝐵))) = (0 · ((((𝑁 + 1) − (𝑁 + 1)) ↑ 𝐴) × ((𝑁 + 1) ↑ 𝐵)))) |
| 60 | 4, 18, 19, 5, 20, 21, 6, 22, 23, 24, 9 | srgbinomlem1 20191 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (((𝑁 + 1) − (𝑁 + 1)) ∈ ℕ0 ∧
(𝑁 + 1) ∈
ℕ0)) → ((((𝑁 + 1) − (𝑁 + 1)) ↑ 𝐴) × ((𝑁 + 1) ↑ 𝐵)) ∈ 𝑆) |
| 61 | 31, 41, 43, 60 | syl12anc 836 |
. . . . . . . 8
⊢ (𝜑 → ((((𝑁 + 1) − (𝑁 + 1)) ↑ 𝐴) × ((𝑁 + 1) ↑ 𝐵)) ∈ 𝑆) |
| 62 | | eqid 2736 |
. . . . . . . . 9
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 63 | 4, 62, 19 | mulg0 19062 |
. . . . . . . 8
⊢
(((((𝑁 + 1) −
(𝑁 + 1)) ↑ 𝐴) × ((𝑁 + 1) ↑ 𝐵)) ∈ 𝑆 → (0 · ((((𝑁 + 1) − (𝑁 + 1)) ↑ 𝐴) × ((𝑁 + 1) ↑ 𝐵))) = (0g‘𝑅)) |
| 64 | 61, 63 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (0 · ((((𝑁 + 1) − (𝑁 + 1)) ↑ 𝐴) × ((𝑁 + 1) ↑ 𝐵))) = (0g‘𝑅)) |
| 65 | 53, 59, 64 | 3eqtrd 2775 |
. . . . . 6
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ {(𝑁 + 1)} ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) = (0g‘𝑅)) |
| 66 | 65 | oveq2d 7426 |
. . . . 5
⊢ (𝜑 → ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) + (𝑅 Σg (𝑘 ∈ {(𝑁 + 1)} ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) = ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) + (0g‘𝑅))) |
| 67 | | fzfid 13996 |
. . . . . . 7
⊢ (𝜑 → (0...𝑁) ∈ Fin) |
| 68 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝜑) |
| 69 | | bccl2 14346 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0...𝑁) → (𝑁C𝑘) ∈ ℕ) |
| 70 | 69 | nnnn0d 12567 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...𝑁) → (𝑁C𝑘) ∈
ℕ0) |
| 71 | 70 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈
ℕ0) |
| 72 | | fzelp1 13598 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ (0...(𝑁 + 1))) |
| 73 | 72, 15 | sylan2 593 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁 + 1) − 𝑘) ∈
ℕ0) |
| 74 | | elfznn0 13642 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) |
| 75 | 74 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) |
| 76 | 68, 71, 73, 75, 25 | syl13anc 1374 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ 𝑆) |
| 77 | 76 | ralrimiva 3133 |
. . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ 𝑆) |
| 78 | 4, 8, 67, 77 | gsummptcl 19953 |
. . . . . 6
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) ∈ 𝑆) |
| 79 | 4, 5, 62 | mndrid 18738 |
. . . . . 6
⊢ ((𝑅 ∈ Mnd ∧ (𝑅 Σg
(𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) ∈ 𝑆) → ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) + (0g‘𝑅)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
| 80 | 29, 78, 79 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) + (0g‘𝑅)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
| 81 | 27, 66, 80 | 3eqtrd 2775 |
. . . 4
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
| 82 | 6 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑅 ∈ SRing) |
| 83 | 22 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ 𝑆) |
| 84 | 23 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐵 ∈ 𝑆) |
| 85 | 24 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐴 × 𝐵) = (𝐵 × 𝐴)) |
| 86 | | fznn0sub 13578 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0...𝑁) → (𝑁 − 𝑘) ∈
ℕ0) |
| 87 | 86 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝑁 − 𝑘) ∈
ℕ0) |
| 88 | 4, 18, 20, 21, 82, 83, 84, 75, 85, 87, 19, 71 | srgpcomppsc 20185 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) × 𝐴) = ((𝑁C𝑘) · ((((𝑁 − 𝑘) + 1) ↑ 𝐴) × (𝑘 ↑ 𝐵)))) |
| 89 | 36 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑁 ∈ ℂ) |
| 90 | | 1cnd 11235 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 1 ∈ ℂ) |
| 91 | | elfzelz 13546 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ) |
| 92 | 91 | zcnd 12703 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℂ) |
| 93 | 92 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℂ) |
| 94 | 89, 90, 93 | addsubd 11620 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁 + 1) − 𝑘) = ((𝑁 − 𝑘) + 1)) |
| 95 | 94 | oveq1d 7425 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (((𝑁 + 1) − 𝑘) ↑ 𝐴) = (((𝑁 − 𝑘) + 1) ↑ 𝐴)) |
| 96 | 95 | oveq1d 7425 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)) = ((((𝑁 − 𝑘) + 1) ↑ 𝐴) × (𝑘 ↑ 𝐵))) |
| 97 | 96 | oveq2d 7426 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) = ((𝑁C𝑘) · ((((𝑁 − 𝑘) + 1) ↑ 𝐴) × (𝑘 ↑ 𝐵)))) |
| 98 | 88, 97 | eqtr4d 2774 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) × 𝐴) = ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))) |
| 99 | 98 | mpteq2dva 5219 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ (0...𝑁) ↦ (((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) × 𝐴)) = (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) |
| 100 | 99 | oveq2d 7426 |
. . . 4
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ (((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) × 𝐴))) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
| 101 | | ovexd 7445 |
. . . . 5
⊢ (𝜑 → (0...𝑁) ∈ V) |
| 102 | 4, 18, 19, 5, 20, 21, 6, 22, 23, 24, 9 | srgbinomlem2 20192 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑁C𝑘) ∈ ℕ0 ∧ (𝑁 − 𝑘) ∈ ℕ0 ∧ 𝑘 ∈ ℕ0))
→ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ 𝑆) |
| 103 | 68, 71, 87, 75, 102 | syl13anc 1374 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ 𝑆) |
| 104 | | eqid 2736 |
. . . . . 6
⊢ (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))) = (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))) |
| 105 | | ovexd 7445 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ V) |
| 106 | | fvexd 6896 |
. . . . . 6
⊢ (𝜑 → (0g‘𝑅) ∈ V) |
| 107 | 104, 67, 105, 106 | fsuppmptdm 9393 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))) finSupp (0g‘𝑅)) |
| 108 | 4, 62, 5, 18, 6, 101, 22, 103, 107 | srgsummulcr 20188 |
. . . 4
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ (((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) × 𝐴))) = ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) × 𝐴)) |
| 109 | 81, 100, 108 | 3eqtr2rd 2778 |
. . 3
⊢ (𝜑 → ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) × 𝐴) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
| 110 | 109 | adantr 480 |
. 2
⊢ ((𝜑 ∧ 𝜓) → ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) × 𝐴) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
| 111 | 3, 110 | eqtrd 2771 |
1
⊢ ((𝜑 ∧ 𝜓) → ((𝑁 ↑ (𝐴 + 𝐵)) × 𝐴) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |