MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgbinomlem3 Structured version   Visualization version   GIF version

Theorem srgbinomlem3 19778
Description: Lemma 3 for srgbinomlem 19780. (Contributed by AV, 23-Aug-2019.) (Proof shortened by AV, 27-Oct-2019.)
Hypotheses
Ref Expression
srgbinom.s 𝑆 = (Base‘𝑅)
srgbinom.m × = (.r𝑅)
srgbinom.t · = (.g𝑅)
srgbinom.a + = (+g𝑅)
srgbinom.g 𝐺 = (mulGrp‘𝑅)
srgbinom.e = (.g𝐺)
srgbinomlem.r (𝜑𝑅 ∈ SRing)
srgbinomlem.a (𝜑𝐴𝑆)
srgbinomlem.b (𝜑𝐵𝑆)
srgbinomlem.c (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
srgbinomlem.n (𝜑𝑁 ∈ ℕ0)
srgbinomlem.i (𝜓 → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
Assertion
Ref Expression
srgbinomlem3 ((𝜑𝜓) → ((𝑁 (𝐴 + 𝐵)) × 𝐴) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑁   𝑅,𝑘   𝑆,𝑘   · ,𝑘   × ,𝑘   ,𝑘   𝜑,𝑘
Allowed substitution hints:   𝜓(𝑘)   + (𝑘)   𝐺(𝑘)

Proof of Theorem srgbinomlem3
StepHypRef Expression
1 srgbinomlem.i . . . 4 (𝜓 → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
21adantl 482 . . 3 ((𝜑𝜓) → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
32oveq1d 7290 . 2 ((𝜑𝜓) → ((𝑁 (𝐴 + 𝐵)) × 𝐴) = ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))) × 𝐴))
4 srgbinom.s . . . . . 6 𝑆 = (Base‘𝑅)
5 srgbinom.a . . . . . 6 + = (+g𝑅)
6 srgbinomlem.r . . . . . . 7 (𝜑𝑅 ∈ SRing)
7 srgcmn 19744 . . . . . . 7 (𝑅 ∈ SRing → 𝑅 ∈ CMnd)
86, 7syl 17 . . . . . 6 (𝜑𝑅 ∈ CMnd)
9 srgbinomlem.n . . . . . 6 (𝜑𝑁 ∈ ℕ0)
10 simpl 483 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝜑)
11 elfzelz 13256 . . . . . . . 8 (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℤ)
12 bccl 14036 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (𝑁C𝑘) ∈ ℕ0)
139, 11, 12syl2an 596 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C𝑘) ∈ ℕ0)
14 fznn0sub 13288 . . . . . . . 8 (𝑘 ∈ (0...(𝑁 + 1)) → ((𝑁 + 1) − 𝑘) ∈ ℕ0)
1514adantl 482 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁 + 1) − 𝑘) ∈ ℕ0)
16 elfznn0 13349 . . . . . . . 8 (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℕ0)
1716adantl 482 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑘 ∈ ℕ0)
18 srgbinom.m . . . . . . . 8 × = (.r𝑅)
19 srgbinom.t . . . . . . . 8 · = (.g𝑅)
20 srgbinom.g . . . . . . . 8 𝐺 = (mulGrp‘𝑅)
21 srgbinom.e . . . . . . . 8 = (.g𝐺)
22 srgbinomlem.a . . . . . . . 8 (𝜑𝐴𝑆)
23 srgbinomlem.b . . . . . . . 8 (𝜑𝐵𝑆)
24 srgbinomlem.c . . . . . . . 8 (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
254, 18, 19, 5, 20, 21, 6, 22, 23, 24, 9srgbinomlem2 19777 . . . . . . 7 ((𝜑 ∧ ((𝑁C𝑘) ∈ ℕ0 ∧ ((𝑁 + 1) − 𝑘) ∈ ℕ0𝑘 ∈ ℕ0)) → ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
2610, 13, 15, 17, 25syl13anc 1371 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
274, 5, 8, 9, 26gsummptfzsplit 19533 . . . . 5 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ {(𝑁 + 1)} ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
28 srgmnd 19745 . . . . . . . . 9 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
296, 28syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Mnd)
30 ovexd 7310 . . . . . . . 8 (𝜑 → (𝑁 + 1) ∈ V)
31 id 22 . . . . . . . . 9 (𝜑𝜑)
329nn0zd 12424 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
3332peano2zd 12429 . . . . . . . . . 10 (𝜑 → (𝑁 + 1) ∈ ℤ)
34 bccl 14036 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℤ) → (𝑁C(𝑁 + 1)) ∈ ℕ0)
359, 33, 34syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑁C(𝑁 + 1)) ∈ ℕ0)
369nn0cnd 12295 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
37 peano2cn 11147 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → (𝑁 + 1) ∈ ℂ)
3836, 37syl 17 . . . . . . . . . . 11 (𝜑 → (𝑁 + 1) ∈ ℂ)
3938subidd 11320 . . . . . . . . . 10 (𝜑 → ((𝑁 + 1) − (𝑁 + 1)) = 0)
40 0nn0 12248 . . . . . . . . . 10 0 ∈ ℕ0
4139, 40eqeltrdi 2847 . . . . . . . . 9 (𝜑 → ((𝑁 + 1) − (𝑁 + 1)) ∈ ℕ0)
42 peano2nn0 12273 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
439, 42syl 17 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ∈ ℕ0)
444, 18, 19, 5, 20, 21, 6, 22, 23, 24, 9srgbinomlem2 19777 . . . . . . . . 9 ((𝜑 ∧ ((𝑁C(𝑁 + 1)) ∈ ℕ0 ∧ ((𝑁 + 1) − (𝑁 + 1)) ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℕ0)) → ((𝑁C(𝑁 + 1)) · ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵))) ∈ 𝑆)
4531, 35, 41, 43, 44syl13anc 1371 . . . . . . . 8 (𝜑 → ((𝑁C(𝑁 + 1)) · ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵))) ∈ 𝑆)
46 oveq2 7283 . . . . . . . . . 10 (𝑘 = (𝑁 + 1) → (𝑁C𝑘) = (𝑁C(𝑁 + 1)))
47 oveq2 7283 . . . . . . . . . . . 12 (𝑘 = (𝑁 + 1) → ((𝑁 + 1) − 𝑘) = ((𝑁 + 1) − (𝑁 + 1)))
4847oveq1d 7290 . . . . . . . . . . 11 (𝑘 = (𝑁 + 1) → (((𝑁 + 1) − 𝑘) 𝐴) = (((𝑁 + 1) − (𝑁 + 1)) 𝐴))
49 oveq1 7282 . . . . . . . . . . 11 (𝑘 = (𝑁 + 1) → (𝑘 𝐵) = ((𝑁 + 1) 𝐵))
5048, 49oveq12d 7293 . . . . . . . . . 10 (𝑘 = (𝑁 + 1) → ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)) = ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵)))
5146, 50oveq12d 7293 . . . . . . . . 9 (𝑘 = (𝑁 + 1) → ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) = ((𝑁C(𝑁 + 1)) · ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵))))
524, 51gsumsn 19555 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ (𝑁 + 1) ∈ V ∧ ((𝑁C(𝑁 + 1)) · ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵))) ∈ 𝑆) → (𝑅 Σg (𝑘 ∈ {(𝑁 + 1)} ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = ((𝑁C(𝑁 + 1)) · ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵))))
5329, 30, 45, 52syl3anc 1370 . . . . . . 7 (𝜑 → (𝑅 Σg (𝑘 ∈ {(𝑁 + 1)} ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = ((𝑁C(𝑁 + 1)) · ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵))))
549nn0red 12294 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
5554ltp1d 11905 . . . . . . . . . 10 (𝜑𝑁 < (𝑁 + 1))
5655olcd 871 . . . . . . . . 9 (𝜑 → ((𝑁 + 1) < 0 ∨ 𝑁 < (𝑁 + 1)))
57 bcval4 14021 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℤ ∧ ((𝑁 + 1) < 0 ∨ 𝑁 < (𝑁 + 1))) → (𝑁C(𝑁 + 1)) = 0)
589, 33, 56, 57syl3anc 1370 . . . . . . . 8 (𝜑 → (𝑁C(𝑁 + 1)) = 0)
5958oveq1d 7290 . . . . . . 7 (𝜑 → ((𝑁C(𝑁 + 1)) · ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵))) = (0 · ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵))))
604, 18, 19, 5, 20, 21, 6, 22, 23, 24, 9srgbinomlem1 19776 . . . . . . . . 9 ((𝜑 ∧ (((𝑁 + 1) − (𝑁 + 1)) ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℕ0)) → ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵)) ∈ 𝑆)
6131, 41, 43, 60syl12anc 834 . . . . . . . 8 (𝜑 → ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵)) ∈ 𝑆)
62 eqid 2738 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
634, 62, 19mulg0 18707 . . . . . . . 8 (((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵)) ∈ 𝑆 → (0 · ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵))) = (0g𝑅))
6461, 63syl 17 . . . . . . 7 (𝜑 → (0 · ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵))) = (0g𝑅))
6553, 59, 643eqtrd 2782 . . . . . 6 (𝜑 → (𝑅 Σg (𝑘 ∈ {(𝑁 + 1)} ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = (0g𝑅))
6665oveq2d 7291 . . . . 5 (𝜑 → ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ {(𝑁 + 1)} ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))) = ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (0g𝑅)))
67 fzfid 13693 . . . . . . 7 (𝜑 → (0...𝑁) ∈ Fin)
68 simpl 483 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → 𝜑)
69 bccl2 14037 . . . . . . . . . . 11 (𝑘 ∈ (0...𝑁) → (𝑁C𝑘) ∈ ℕ)
7069nnnn0d 12293 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → (𝑁C𝑘) ∈ ℕ0)
7170adantl 482 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℕ0)
72 fzelp1 13308 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ (0...(𝑁 + 1)))
7372, 15sylan2 593 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁 + 1) − 𝑘) ∈ ℕ0)
74 elfznn0 13349 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
7574adantl 482 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
7668, 71, 73, 75, 25syl13anc 1371 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
7776ralrimiva 3103 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
784, 8, 67, 77gsummptcl 19568 . . . . . 6 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) ∈ 𝑆)
794, 5, 62mndrid 18406 . . . . . 6 ((𝑅 ∈ Mnd ∧ (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) ∈ 𝑆) → ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (0g𝑅)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
8029, 78, 79syl2anc 584 . . . . 5 (𝜑 → ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (0g𝑅)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
8127, 66, 803eqtrd 2782 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
826adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑅 ∈ SRing)
8322adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴𝑆)
8423adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐵𝑆)
8524adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐴 × 𝐵) = (𝐵 × 𝐴))
86 fznn0sub 13288 . . . . . . . . 9 (𝑘 ∈ (0...𝑁) → (𝑁𝑘) ∈ ℕ0)
8786adantl 482 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑁𝑘) ∈ ℕ0)
884, 18, 20, 21, 82, 83, 84, 75, 85, 87, 19, 71srgpcomppsc 19770 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) × 𝐴) = ((𝑁C𝑘) · ((((𝑁𝑘) + 1) 𝐴) × (𝑘 𝐵))))
8936adantr 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑁 ∈ ℂ)
90 1cnd 10970 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...𝑁)) → 1 ∈ ℂ)
91 elfzelz 13256 . . . . . . . . . . . . 13 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ)
9291zcnd 12427 . . . . . . . . . . . 12 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℂ)
9392adantl 482 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℂ)
9489, 90, 93addsubd 11353 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁 + 1) − 𝑘) = ((𝑁𝑘) + 1))
9594oveq1d 7290 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝑁 + 1) − 𝑘) 𝐴) = (((𝑁𝑘) + 1) 𝐴))
9695oveq1d 7290 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)) = ((((𝑁𝑘) + 1) 𝐴) × (𝑘 𝐵)))
9796oveq2d 7291 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) = ((𝑁C𝑘) · ((((𝑁𝑘) + 1) 𝐴) × (𝑘 𝐵))))
9888, 97eqtr4d 2781 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) × 𝐴) = ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))
9998mpteq2dva 5174 . . . . 5 (𝜑 → (𝑘 ∈ (0...𝑁) ↦ (((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) × 𝐴)) = (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))
10099oveq2d 7291 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ (((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) × 𝐴))) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
101 ovexd 7310 . . . . 5 (𝜑 → (0...𝑁) ∈ V)
1024, 18, 19, 5, 20, 21, 6, 22, 23, 24, 9srgbinomlem2 19777 . . . . . 6 ((𝜑 ∧ ((𝑁C𝑘) ∈ ℕ0 ∧ (𝑁𝑘) ∈ ℕ0𝑘 ∈ ℕ0)) → ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
10368, 71, 87, 75, 102syl13anc 1371 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
104 eqid 2738 . . . . . 6 (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵)))) = (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))
105 ovexd 7310 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) ∈ V)
106 fvexd 6789 . . . . . 6 (𝜑 → (0g𝑅) ∈ V)
107104, 67, 105, 106fsuppmptdm 9139 . . . . 5 (𝜑 → (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵)))) finSupp (0g𝑅))
1084, 62, 5, 18, 6, 101, 22, 103, 107srgsummulcr 19773 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ (((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) × 𝐴))) = ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))) × 𝐴))
10981, 100, 1083eqtr2rd 2785 . . 3 (𝜑 → ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))) × 𝐴) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
110109adantr 481 . 2 ((𝜑𝜓) → ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))) × 𝐴) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
1113, 110eqtrd 2778 1 ((𝜑𝜓) → ((𝑁 (𝐴 + 𝐵)) × 𝐴) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844   = wceq 1539  wcel 2106  Vcvv 3432  {csn 4561   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cmin 11205  0cn0 12233  cz 12319  ...cfz 13239  Ccbc 14016  Basecbs 16912  +gcplusg 16962  .rcmulr 16963  0gc0g 17150   Σg cgsu 17151  Mndcmnd 18385  .gcmg 18700  CMndccmn 19386  mulGrpcmgp 19720  SRingcsrg 19741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-fac 13988  df-bc 14017  df-hash 14045  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-0g 17152  df-gsum 17153  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-mgp 19721  df-ur 19738  df-srg 19742
This theorem is referenced by:  srgbinomlem  19780
  Copyright terms: Public domain W3C validator