MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgbinomlem3 Structured version   Visualization version   GIF version

Theorem srgbinomlem3 19693
Description: Lemma 3 for srgbinomlem 19695. (Contributed by AV, 23-Aug-2019.) (Proof shortened by AV, 27-Oct-2019.)
Hypotheses
Ref Expression
srgbinom.s 𝑆 = (Base‘𝑅)
srgbinom.m × = (.r𝑅)
srgbinom.t · = (.g𝑅)
srgbinom.a + = (+g𝑅)
srgbinom.g 𝐺 = (mulGrp‘𝑅)
srgbinom.e = (.g𝐺)
srgbinomlem.r (𝜑𝑅 ∈ SRing)
srgbinomlem.a (𝜑𝐴𝑆)
srgbinomlem.b (𝜑𝐵𝑆)
srgbinomlem.c (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
srgbinomlem.n (𝜑𝑁 ∈ ℕ0)
srgbinomlem.i (𝜓 → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
Assertion
Ref Expression
srgbinomlem3 ((𝜑𝜓) → ((𝑁 (𝐴 + 𝐵)) × 𝐴) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑁   𝑅,𝑘   𝑆,𝑘   · ,𝑘   × ,𝑘   ,𝑘   𝜑,𝑘
Allowed substitution hints:   𝜓(𝑘)   + (𝑘)   𝐺(𝑘)

Proof of Theorem srgbinomlem3
StepHypRef Expression
1 srgbinomlem.i . . . 4 (𝜓 → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
21adantl 481 . . 3 ((𝜑𝜓) → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
32oveq1d 7270 . 2 ((𝜑𝜓) → ((𝑁 (𝐴 + 𝐵)) × 𝐴) = ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))) × 𝐴))
4 srgbinom.s . . . . . 6 𝑆 = (Base‘𝑅)
5 srgbinom.a . . . . . 6 + = (+g𝑅)
6 srgbinomlem.r . . . . . . 7 (𝜑𝑅 ∈ SRing)
7 srgcmn 19659 . . . . . . 7 (𝑅 ∈ SRing → 𝑅 ∈ CMnd)
86, 7syl 17 . . . . . 6 (𝜑𝑅 ∈ CMnd)
9 srgbinomlem.n . . . . . 6 (𝜑𝑁 ∈ ℕ0)
10 simpl 482 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝜑)
11 elfzelz 13185 . . . . . . . 8 (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℤ)
12 bccl 13964 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (𝑁C𝑘) ∈ ℕ0)
139, 11, 12syl2an 595 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C𝑘) ∈ ℕ0)
14 fznn0sub 13217 . . . . . . . 8 (𝑘 ∈ (0...(𝑁 + 1)) → ((𝑁 + 1) − 𝑘) ∈ ℕ0)
1514adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁 + 1) − 𝑘) ∈ ℕ0)
16 elfznn0 13278 . . . . . . . 8 (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℕ0)
1716adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑘 ∈ ℕ0)
18 srgbinom.m . . . . . . . 8 × = (.r𝑅)
19 srgbinom.t . . . . . . . 8 · = (.g𝑅)
20 srgbinom.g . . . . . . . 8 𝐺 = (mulGrp‘𝑅)
21 srgbinom.e . . . . . . . 8 = (.g𝐺)
22 srgbinomlem.a . . . . . . . 8 (𝜑𝐴𝑆)
23 srgbinomlem.b . . . . . . . 8 (𝜑𝐵𝑆)
24 srgbinomlem.c . . . . . . . 8 (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
254, 18, 19, 5, 20, 21, 6, 22, 23, 24, 9srgbinomlem2 19692 . . . . . . 7 ((𝜑 ∧ ((𝑁C𝑘) ∈ ℕ0 ∧ ((𝑁 + 1) − 𝑘) ∈ ℕ0𝑘 ∈ ℕ0)) → ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
2610, 13, 15, 17, 25syl13anc 1370 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
274, 5, 8, 9, 26gsummptfzsplit 19448 . . . . 5 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ {(𝑁 + 1)} ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
28 srgmnd 19660 . . . . . . . . 9 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
296, 28syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Mnd)
30 ovexd 7290 . . . . . . . 8 (𝜑 → (𝑁 + 1) ∈ V)
31 id 22 . . . . . . . . 9 (𝜑𝜑)
329nn0zd 12353 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
3332peano2zd 12358 . . . . . . . . . 10 (𝜑 → (𝑁 + 1) ∈ ℤ)
34 bccl 13964 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℤ) → (𝑁C(𝑁 + 1)) ∈ ℕ0)
359, 33, 34syl2anc 583 . . . . . . . . 9 (𝜑 → (𝑁C(𝑁 + 1)) ∈ ℕ0)
369nn0cnd 12225 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
37 peano2cn 11077 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → (𝑁 + 1) ∈ ℂ)
3836, 37syl 17 . . . . . . . . . . 11 (𝜑 → (𝑁 + 1) ∈ ℂ)
3938subidd 11250 . . . . . . . . . 10 (𝜑 → ((𝑁 + 1) − (𝑁 + 1)) = 0)
40 0nn0 12178 . . . . . . . . . 10 0 ∈ ℕ0
4139, 40eqeltrdi 2847 . . . . . . . . 9 (𝜑 → ((𝑁 + 1) − (𝑁 + 1)) ∈ ℕ0)
42 peano2nn0 12203 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
439, 42syl 17 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ∈ ℕ0)
444, 18, 19, 5, 20, 21, 6, 22, 23, 24, 9srgbinomlem2 19692 . . . . . . . . 9 ((𝜑 ∧ ((𝑁C(𝑁 + 1)) ∈ ℕ0 ∧ ((𝑁 + 1) − (𝑁 + 1)) ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℕ0)) → ((𝑁C(𝑁 + 1)) · ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵))) ∈ 𝑆)
4531, 35, 41, 43, 44syl13anc 1370 . . . . . . . 8 (𝜑 → ((𝑁C(𝑁 + 1)) · ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵))) ∈ 𝑆)
46 oveq2 7263 . . . . . . . . . 10 (𝑘 = (𝑁 + 1) → (𝑁C𝑘) = (𝑁C(𝑁 + 1)))
47 oveq2 7263 . . . . . . . . . . . 12 (𝑘 = (𝑁 + 1) → ((𝑁 + 1) − 𝑘) = ((𝑁 + 1) − (𝑁 + 1)))
4847oveq1d 7270 . . . . . . . . . . 11 (𝑘 = (𝑁 + 1) → (((𝑁 + 1) − 𝑘) 𝐴) = (((𝑁 + 1) − (𝑁 + 1)) 𝐴))
49 oveq1 7262 . . . . . . . . . . 11 (𝑘 = (𝑁 + 1) → (𝑘 𝐵) = ((𝑁 + 1) 𝐵))
5048, 49oveq12d 7273 . . . . . . . . . 10 (𝑘 = (𝑁 + 1) → ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)) = ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵)))
5146, 50oveq12d 7273 . . . . . . . . 9 (𝑘 = (𝑁 + 1) → ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) = ((𝑁C(𝑁 + 1)) · ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵))))
524, 51gsumsn 19470 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ (𝑁 + 1) ∈ V ∧ ((𝑁C(𝑁 + 1)) · ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵))) ∈ 𝑆) → (𝑅 Σg (𝑘 ∈ {(𝑁 + 1)} ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = ((𝑁C(𝑁 + 1)) · ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵))))
5329, 30, 45, 52syl3anc 1369 . . . . . . 7 (𝜑 → (𝑅 Σg (𝑘 ∈ {(𝑁 + 1)} ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = ((𝑁C(𝑁 + 1)) · ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵))))
549nn0red 12224 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
5554ltp1d 11835 . . . . . . . . . 10 (𝜑𝑁 < (𝑁 + 1))
5655olcd 870 . . . . . . . . 9 (𝜑 → ((𝑁 + 1) < 0 ∨ 𝑁 < (𝑁 + 1)))
57 bcval4 13949 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℤ ∧ ((𝑁 + 1) < 0 ∨ 𝑁 < (𝑁 + 1))) → (𝑁C(𝑁 + 1)) = 0)
589, 33, 56, 57syl3anc 1369 . . . . . . . 8 (𝜑 → (𝑁C(𝑁 + 1)) = 0)
5958oveq1d 7270 . . . . . . 7 (𝜑 → ((𝑁C(𝑁 + 1)) · ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵))) = (0 · ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵))))
604, 18, 19, 5, 20, 21, 6, 22, 23, 24, 9srgbinomlem1 19691 . . . . . . . . 9 ((𝜑 ∧ (((𝑁 + 1) − (𝑁 + 1)) ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℕ0)) → ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵)) ∈ 𝑆)
6131, 41, 43, 60syl12anc 833 . . . . . . . 8 (𝜑 → ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵)) ∈ 𝑆)
62 eqid 2738 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
634, 62, 19mulg0 18622 . . . . . . . 8 (((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵)) ∈ 𝑆 → (0 · ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵))) = (0g𝑅))
6461, 63syl 17 . . . . . . 7 (𝜑 → (0 · ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵))) = (0g𝑅))
6553, 59, 643eqtrd 2782 . . . . . 6 (𝜑 → (𝑅 Σg (𝑘 ∈ {(𝑁 + 1)} ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = (0g𝑅))
6665oveq2d 7271 . . . . 5 (𝜑 → ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ {(𝑁 + 1)} ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))) = ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (0g𝑅)))
67 fzfid 13621 . . . . . . 7 (𝜑 → (0...𝑁) ∈ Fin)
68 simpl 482 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → 𝜑)
69 bccl2 13965 . . . . . . . . . . 11 (𝑘 ∈ (0...𝑁) → (𝑁C𝑘) ∈ ℕ)
7069nnnn0d 12223 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → (𝑁C𝑘) ∈ ℕ0)
7170adantl 481 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℕ0)
72 fzelp1 13237 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ (0...(𝑁 + 1)))
7372, 15sylan2 592 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁 + 1) − 𝑘) ∈ ℕ0)
74 elfznn0 13278 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
7574adantl 481 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
7668, 71, 73, 75, 25syl13anc 1370 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
7776ralrimiva 3107 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
784, 8, 67, 77gsummptcl 19483 . . . . . 6 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) ∈ 𝑆)
794, 5, 62mndrid 18321 . . . . . 6 ((𝑅 ∈ Mnd ∧ (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) ∈ 𝑆) → ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (0g𝑅)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
8029, 78, 79syl2anc 583 . . . . 5 (𝜑 → ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (0g𝑅)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
8127, 66, 803eqtrd 2782 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
826adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑅 ∈ SRing)
8322adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴𝑆)
8423adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐵𝑆)
8524adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐴 × 𝐵) = (𝐵 × 𝐴))
86 fznn0sub 13217 . . . . . . . . 9 (𝑘 ∈ (0...𝑁) → (𝑁𝑘) ∈ ℕ0)
8786adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑁𝑘) ∈ ℕ0)
884, 18, 20, 21, 82, 83, 84, 75, 85, 87, 19, 71srgpcomppsc 19685 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) × 𝐴) = ((𝑁C𝑘) · ((((𝑁𝑘) + 1) 𝐴) × (𝑘 𝐵))))
8936adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑁 ∈ ℂ)
90 1cnd 10901 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...𝑁)) → 1 ∈ ℂ)
91 elfzelz 13185 . . . . . . . . . . . . 13 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ)
9291zcnd 12356 . . . . . . . . . . . 12 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℂ)
9392adantl 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℂ)
9489, 90, 93addsubd 11283 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁 + 1) − 𝑘) = ((𝑁𝑘) + 1))
9594oveq1d 7270 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝑁 + 1) − 𝑘) 𝐴) = (((𝑁𝑘) + 1) 𝐴))
9695oveq1d 7270 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)) = ((((𝑁𝑘) + 1) 𝐴) × (𝑘 𝐵)))
9796oveq2d 7271 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) = ((𝑁C𝑘) · ((((𝑁𝑘) + 1) 𝐴) × (𝑘 𝐵))))
9888, 97eqtr4d 2781 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) × 𝐴) = ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))
9998mpteq2dva 5170 . . . . 5 (𝜑 → (𝑘 ∈ (0...𝑁) ↦ (((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) × 𝐴)) = (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))
10099oveq2d 7271 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ (((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) × 𝐴))) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
101 ovexd 7290 . . . . 5 (𝜑 → (0...𝑁) ∈ V)
1024, 18, 19, 5, 20, 21, 6, 22, 23, 24, 9srgbinomlem2 19692 . . . . . 6 ((𝜑 ∧ ((𝑁C𝑘) ∈ ℕ0 ∧ (𝑁𝑘) ∈ ℕ0𝑘 ∈ ℕ0)) → ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
10368, 71, 87, 75, 102syl13anc 1370 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
104 eqid 2738 . . . . . 6 (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵)))) = (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))
105 ovexd 7290 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) ∈ V)
106 fvexd 6771 . . . . . 6 (𝜑 → (0g𝑅) ∈ V)
107104, 67, 105, 106fsuppmptdm 9069 . . . . 5 (𝜑 → (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵)))) finSupp (0g𝑅))
1084, 62, 5, 18, 6, 101, 22, 103, 107srgsummulcr 19688 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ (((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) × 𝐴))) = ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))) × 𝐴))
10981, 100, 1083eqtr2rd 2785 . . 3 (𝜑 → ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))) × 𝐴) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
110109adantr 480 . 2 ((𝜑𝜓) → ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))) × 𝐴) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
1113, 110eqtrd 2778 1 ((𝜑𝜓) → ((𝑁 (𝐴 + 𝐵)) × 𝐴) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108  Vcvv 3422  {csn 4558   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   < clt 10940  cmin 11135  0cn0 12163  cz 12249  ...cfz 13168  Ccbc 13944  Basecbs 16840  +gcplusg 16888  .rcmulr 16889  0gc0g 17067   Σg cgsu 17068  Mndcmnd 18300  .gcmg 18615  CMndccmn 19301  mulGrpcmgp 19635  SRingcsrg 19656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-fac 13916  df-bc 13945  df-hash 13973  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-gsum 17070  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-mgp 19636  df-ur 19653  df-srg 19657
This theorem is referenced by:  srgbinomlem  19695
  Copyright terms: Public domain W3C validator