MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgbinomlem3 Structured version   Visualization version   GIF version

Theorem srgbinomlem3 18896
Description: Lemma 3 for srgbinomlem 18898. (Contributed by AV, 23-Aug-2019.) (Proof shortened by AV, 27-Oct-2019.)
Hypotheses
Ref Expression
srgbinom.s 𝑆 = (Base‘𝑅)
srgbinom.m × = (.r𝑅)
srgbinom.t · = (.g𝑅)
srgbinom.a + = (+g𝑅)
srgbinom.g 𝐺 = (mulGrp‘𝑅)
srgbinom.e = (.g𝐺)
srgbinomlem.r (𝜑𝑅 ∈ SRing)
srgbinomlem.a (𝜑𝐴𝑆)
srgbinomlem.b (𝜑𝐵𝑆)
srgbinomlem.c (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
srgbinomlem.n (𝜑𝑁 ∈ ℕ0)
srgbinomlem.i (𝜓 → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
Assertion
Ref Expression
srgbinomlem3 ((𝜑𝜓) → ((𝑁 (𝐴 + 𝐵)) × 𝐴) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑁   𝑅,𝑘   𝑆,𝑘   · ,𝑘   × ,𝑘   ,𝑘   𝜑,𝑘
Allowed substitution hints:   𝜓(𝑘)   + (𝑘)   𝐺(𝑘)

Proof of Theorem srgbinomlem3
StepHypRef Expression
1 srgbinomlem.i . . . 4 (𝜓 → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
21adantl 475 . . 3 ((𝜑𝜓) → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
32oveq1d 6920 . 2 ((𝜑𝜓) → ((𝑁 (𝐴 + 𝐵)) × 𝐴) = ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))) × 𝐴))
4 srgbinom.s . . . . . 6 𝑆 = (Base‘𝑅)
5 srgbinom.a . . . . . 6 + = (+g𝑅)
6 srgbinomlem.r . . . . . . 7 (𝜑𝑅 ∈ SRing)
7 srgcmn 18862 . . . . . . 7 (𝑅 ∈ SRing → 𝑅 ∈ CMnd)
86, 7syl 17 . . . . . 6 (𝜑𝑅 ∈ CMnd)
9 srgbinomlem.n . . . . . 6 (𝜑𝑁 ∈ ℕ0)
10 simpl 476 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝜑)
11 elfzelz 12635 . . . . . . . 8 (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℤ)
12 bccl 13402 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (𝑁C𝑘) ∈ ℕ0)
139, 11, 12syl2an 589 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C𝑘) ∈ ℕ0)
14 fznn0sub 12666 . . . . . . . 8 (𝑘 ∈ (0...(𝑁 + 1)) → ((𝑁 + 1) − 𝑘) ∈ ℕ0)
1514adantl 475 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁 + 1) − 𝑘) ∈ ℕ0)
16 elfznn0 12727 . . . . . . . 8 (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℕ0)
1716adantl 475 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑘 ∈ ℕ0)
18 srgbinom.m . . . . . . . 8 × = (.r𝑅)
19 srgbinom.t . . . . . . . 8 · = (.g𝑅)
20 srgbinom.g . . . . . . . 8 𝐺 = (mulGrp‘𝑅)
21 srgbinom.e . . . . . . . 8 = (.g𝐺)
22 srgbinomlem.a . . . . . . . 8 (𝜑𝐴𝑆)
23 srgbinomlem.b . . . . . . . 8 (𝜑𝐵𝑆)
24 srgbinomlem.c . . . . . . . 8 (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
254, 18, 19, 5, 20, 21, 6, 22, 23, 24, 9srgbinomlem2 18895 . . . . . . 7 ((𝜑 ∧ ((𝑁C𝑘) ∈ ℕ0 ∧ ((𝑁 + 1) − 𝑘) ∈ ℕ0𝑘 ∈ ℕ0)) → ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
2610, 13, 15, 17, 25syl13anc 1495 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
274, 5, 8, 9, 26gsummptfzsplit 18685 . . . . 5 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ {(𝑁 + 1)} ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
28 srgmnd 18863 . . . . . . . . 9 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
296, 28syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Mnd)
30 ovexd 6939 . . . . . . . 8 (𝜑 → (𝑁 + 1) ∈ V)
31 id 22 . . . . . . . . 9 (𝜑𝜑)
329nn0zd 11808 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
3332peano2zd 11813 . . . . . . . . . 10 (𝜑 → (𝑁 + 1) ∈ ℤ)
34 bccl 13402 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℤ) → (𝑁C(𝑁 + 1)) ∈ ℕ0)
359, 33, 34syl2anc 579 . . . . . . . . 9 (𝜑 → (𝑁C(𝑁 + 1)) ∈ ℕ0)
369nn0cnd 11680 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
37 peano2cn 10527 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → (𝑁 + 1) ∈ ℂ)
3836, 37syl 17 . . . . . . . . . . 11 (𝜑 → (𝑁 + 1) ∈ ℂ)
3938subidd 10701 . . . . . . . . . 10 (𝜑 → ((𝑁 + 1) − (𝑁 + 1)) = 0)
40 0nn0 11635 . . . . . . . . . 10 0 ∈ ℕ0
4139, 40syl6eqel 2914 . . . . . . . . 9 (𝜑 → ((𝑁 + 1) − (𝑁 + 1)) ∈ ℕ0)
42 peano2nn0 11660 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
439, 42syl 17 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ∈ ℕ0)
444, 18, 19, 5, 20, 21, 6, 22, 23, 24, 9srgbinomlem2 18895 . . . . . . . . 9 ((𝜑 ∧ ((𝑁C(𝑁 + 1)) ∈ ℕ0 ∧ ((𝑁 + 1) − (𝑁 + 1)) ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℕ0)) → ((𝑁C(𝑁 + 1)) · ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵))) ∈ 𝑆)
4531, 35, 41, 43, 44syl13anc 1495 . . . . . . . 8 (𝜑 → ((𝑁C(𝑁 + 1)) · ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵))) ∈ 𝑆)
46 oveq2 6913 . . . . . . . . . 10 (𝑘 = (𝑁 + 1) → (𝑁C𝑘) = (𝑁C(𝑁 + 1)))
47 oveq2 6913 . . . . . . . . . . . 12 (𝑘 = (𝑁 + 1) → ((𝑁 + 1) − 𝑘) = ((𝑁 + 1) − (𝑁 + 1)))
4847oveq1d 6920 . . . . . . . . . . 11 (𝑘 = (𝑁 + 1) → (((𝑁 + 1) − 𝑘) 𝐴) = (((𝑁 + 1) − (𝑁 + 1)) 𝐴))
49 oveq1 6912 . . . . . . . . . . 11 (𝑘 = (𝑁 + 1) → (𝑘 𝐵) = ((𝑁 + 1) 𝐵))
5048, 49oveq12d 6923 . . . . . . . . . 10 (𝑘 = (𝑁 + 1) → ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)) = ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵)))
5146, 50oveq12d 6923 . . . . . . . . 9 (𝑘 = (𝑁 + 1) → ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) = ((𝑁C(𝑁 + 1)) · ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵))))
524, 51gsumsn 18707 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ (𝑁 + 1) ∈ V ∧ ((𝑁C(𝑁 + 1)) · ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵))) ∈ 𝑆) → (𝑅 Σg (𝑘 ∈ {(𝑁 + 1)} ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = ((𝑁C(𝑁 + 1)) · ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵))))
5329, 30, 45, 52syl3anc 1494 . . . . . . 7 (𝜑 → (𝑅 Σg (𝑘 ∈ {(𝑁 + 1)} ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = ((𝑁C(𝑁 + 1)) · ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵))))
549nn0red 11679 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
5554ltp1d 11284 . . . . . . . . . 10 (𝜑𝑁 < (𝑁 + 1))
5655olcd 905 . . . . . . . . 9 (𝜑 → ((𝑁 + 1) < 0 ∨ 𝑁 < (𝑁 + 1)))
57 bcval4 13387 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℤ ∧ ((𝑁 + 1) < 0 ∨ 𝑁 < (𝑁 + 1))) → (𝑁C(𝑁 + 1)) = 0)
589, 33, 56, 57syl3anc 1494 . . . . . . . 8 (𝜑 → (𝑁C(𝑁 + 1)) = 0)
5958oveq1d 6920 . . . . . . 7 (𝜑 → ((𝑁C(𝑁 + 1)) · ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵))) = (0 · ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵))))
604, 18, 19, 5, 20, 21, 6, 22, 23, 24, 9srgbinomlem1 18894 . . . . . . . . 9 ((𝜑 ∧ (((𝑁 + 1) − (𝑁 + 1)) ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℕ0)) → ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵)) ∈ 𝑆)
6131, 41, 43, 60syl12anc 870 . . . . . . . 8 (𝜑 → ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵)) ∈ 𝑆)
62 eqid 2825 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
634, 62, 19mulg0 17900 . . . . . . . 8 (((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵)) ∈ 𝑆 → (0 · ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵))) = (0g𝑅))
6461, 63syl 17 . . . . . . 7 (𝜑 → (0 · ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵))) = (0g𝑅))
6553, 59, 643eqtrd 2865 . . . . . 6 (𝜑 → (𝑅 Σg (𝑘 ∈ {(𝑁 + 1)} ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = (0g𝑅))
6665oveq2d 6921 . . . . 5 (𝜑 → ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ {(𝑁 + 1)} ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))) = ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (0g𝑅)))
67 fzfid 13067 . . . . . . 7 (𝜑 → (0...𝑁) ∈ Fin)
68 simpl 476 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → 𝜑)
69 bccl2 13403 . . . . . . . . . . 11 (𝑘 ∈ (0...𝑁) → (𝑁C𝑘) ∈ ℕ)
7069nnnn0d 11678 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → (𝑁C𝑘) ∈ ℕ0)
7170adantl 475 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℕ0)
72 fzelp1 12686 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ (0...(𝑁 + 1)))
7372, 15sylan2 586 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁 + 1) − 𝑘) ∈ ℕ0)
74 elfznn0 12727 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
7574adantl 475 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
7668, 71, 73, 75, 25syl13anc 1495 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
7776ralrimiva 3175 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
784, 8, 67, 77gsummptcl 18719 . . . . . 6 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) ∈ 𝑆)
794, 5, 62mndrid 17665 . . . . . 6 ((𝑅 ∈ Mnd ∧ (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) ∈ 𝑆) → ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (0g𝑅)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
8029, 78, 79syl2anc 579 . . . . 5 (𝜑 → ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (0g𝑅)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
8127, 66, 803eqtrd 2865 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
826adantr 474 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑅 ∈ SRing)
8322adantr 474 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴𝑆)
8423adantr 474 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐵𝑆)
8524adantr 474 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐴 × 𝐵) = (𝐵 × 𝐴))
86 fznn0sub 12666 . . . . . . . . 9 (𝑘 ∈ (0...𝑁) → (𝑁𝑘) ∈ ℕ0)
8786adantl 475 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑁𝑘) ∈ ℕ0)
884, 18, 20, 21, 82, 83, 84, 75, 85, 87, 19, 71srgpcomppsc 18888 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) × 𝐴) = ((𝑁C𝑘) · ((((𝑁𝑘) + 1) 𝐴) × (𝑘 𝐵))))
8936adantr 474 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑁 ∈ ℂ)
90 1cnd 10351 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...𝑁)) → 1 ∈ ℂ)
91 elfzelz 12635 . . . . . . . . . . . . 13 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ)
9291zcnd 11811 . . . . . . . . . . . 12 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℂ)
9392adantl 475 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℂ)
9489, 90, 93addsubd 10734 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁 + 1) − 𝑘) = ((𝑁𝑘) + 1))
9594oveq1d 6920 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝑁 + 1) − 𝑘) 𝐴) = (((𝑁𝑘) + 1) 𝐴))
9695oveq1d 6920 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)) = ((((𝑁𝑘) + 1) 𝐴) × (𝑘 𝐵)))
9796oveq2d 6921 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) = ((𝑁C𝑘) · ((((𝑁𝑘) + 1) 𝐴) × (𝑘 𝐵))))
9888, 97eqtr4d 2864 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) × 𝐴) = ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))
9998mpteq2dva 4967 . . . . 5 (𝜑 → (𝑘 ∈ (0...𝑁) ↦ (((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) × 𝐴)) = (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))
10099oveq2d 6921 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ (((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) × 𝐴))) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
101 ovexd 6939 . . . . 5 (𝜑 → (0...𝑁) ∈ V)
1024, 18, 19, 5, 20, 21, 6, 22, 23, 24, 9srgbinomlem2 18895 . . . . . 6 ((𝜑 ∧ ((𝑁C𝑘) ∈ ℕ0 ∧ (𝑁𝑘) ∈ ℕ0𝑘 ∈ ℕ0)) → ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
10368, 71, 87, 75, 102syl13anc 1495 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
104 eqid 2825 . . . . . 6 (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵)))) = (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))
105 ovexd 6939 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) ∈ V)
106 fvexd 6448 . . . . . 6 (𝜑 → (0g𝑅) ∈ V)
107104, 67, 105, 106fsuppmptdm 8555 . . . . 5 (𝜑 → (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵)))) finSupp (0g𝑅))
1084, 62, 5, 18, 6, 101, 22, 103, 107srgsummulcr 18891 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ (((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) × 𝐴))) = ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))) × 𝐴))
10981, 100, 1083eqtr2rd 2868 . . 3 (𝜑 → ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))) × 𝐴) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
110109adantr 474 . 2 ((𝜑𝜓) → ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))) × 𝐴) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
1113, 110eqtrd 2861 1 ((𝜑𝜓) → ((𝑁 (𝐴 + 𝐵)) × 𝐴) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wo 878   = wceq 1656  wcel 2164  Vcvv 3414  {csn 4397   class class class wbr 4873  cmpt 4952  cfv 6123  (class class class)co 6905  cc 10250  0cc0 10252  1c1 10253   + caddc 10255   < clt 10391  cmin 10585  0cn0 11618  cz 11704  ...cfz 12619  Ccbc 13382  Basecbs 16222  +gcplusg 16305  .rcmulr 16306  0gc0g 16453   Σg cgsu 16454  Mndcmnd 17647  .gcmg 17894  CMndccmn 18546  mulGrpcmgp 18843  SRingcsrg 18859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-iin 4743  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-of 7157  df-om 7327  df-1st 7428  df-2nd 7429  df-supp 7560  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-map 8124  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-fsupp 8545  df-oi 8684  df-card 9078  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-n0 11619  df-z 11705  df-uz 11969  df-rp 12113  df-fz 12620  df-fzo 12761  df-seq 13096  df-fac 13354  df-bc 13383  df-hash 13411  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-0g 16455  df-gsum 16456  df-mre 16599  df-mrc 16600  df-acs 16602  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-mhm 17688  df-submnd 17689  df-mulg 17895  df-cntz 18100  df-cmn 18548  df-mgp 18844  df-ur 18856  df-srg 18860
This theorem is referenced by:  srgbinomlem  18898
  Copyright terms: Public domain W3C validator