Proof of Theorem srgbinomlem3
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | srgbinomlem.i | . . . 4
⊢ (𝜓 → (𝑁 ↑ (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) | 
| 2 | 1 | adantl 481 | . . 3
⊢ ((𝜑 ∧ 𝜓) → (𝑁 ↑ (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) | 
| 3 | 2 | oveq1d 7447 | . 2
⊢ ((𝜑 ∧ 𝜓) → ((𝑁 ↑ (𝐴 + 𝐵)) × 𝐴) = ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) × 𝐴)) | 
| 4 |  | srgbinom.s | . . . . . 6
⊢ 𝑆 = (Base‘𝑅) | 
| 5 |  | srgbinom.a | . . . . . 6
⊢  + =
(+g‘𝑅) | 
| 6 |  | srgbinomlem.r | . . . . . . 7
⊢ (𝜑 → 𝑅 ∈ SRing) | 
| 7 |  | srgcmn 20187 | . . . . . . 7
⊢ (𝑅 ∈ SRing → 𝑅 ∈ CMnd) | 
| 8 | 6, 7 | syl 17 | . . . . . 6
⊢ (𝜑 → 𝑅 ∈ CMnd) | 
| 9 |  | srgbinomlem.n | . . . . . 6
⊢ (𝜑 → 𝑁 ∈
ℕ0) | 
| 10 |  | simpl 482 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → 𝜑) | 
| 11 |  | elfzelz 13565 | . . . . . . . 8
⊢ (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℤ) | 
| 12 |  | bccl 14362 | . . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈ ℤ)
→ (𝑁C𝑘) ∈
ℕ0) | 
| 13 | 9, 11, 12 | syl2an 596 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C𝑘) ∈
ℕ0) | 
| 14 |  | fznn0sub 13597 | . . . . . . . 8
⊢ (𝑘 ∈ (0...(𝑁 + 1)) → ((𝑁 + 1) − 𝑘) ∈
ℕ0) | 
| 15 | 14 | adantl 481 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁 + 1) − 𝑘) ∈
ℕ0) | 
| 16 |  | elfznn0 13661 | . . . . . . . 8
⊢ (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℕ0) | 
| 17 | 16 | adantl 481 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → 𝑘 ∈ ℕ0) | 
| 18 |  | srgbinom.m | . . . . . . . 8
⊢  × =
(.r‘𝑅) | 
| 19 |  | srgbinom.t | . . . . . . . 8
⊢  · =
(.g‘𝑅) | 
| 20 |  | srgbinom.g | . . . . . . . 8
⊢ 𝐺 = (mulGrp‘𝑅) | 
| 21 |  | srgbinom.e | . . . . . . . 8
⊢  ↑ =
(.g‘𝐺) | 
| 22 |  | srgbinomlem.a | . . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝑆) | 
| 23 |  | srgbinomlem.b | . . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ 𝑆) | 
| 24 |  | srgbinomlem.c | . . . . . . . 8
⊢ (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴)) | 
| 25 | 4, 18, 19, 5, 20, 21, 6, 22, 23, 24, 9 | srgbinomlem2 20225 | . . . . . . 7
⊢ ((𝜑 ∧ ((𝑁C𝑘) ∈ ℕ0 ∧ ((𝑁 + 1) − 𝑘) ∈ ℕ0 ∧ 𝑘 ∈ ℕ0))
→ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ 𝑆) | 
| 26 | 10, 13, 15, 17, 25 | syl13anc 1373 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ 𝑆) | 
| 27 | 4, 5, 8, 9, 26 | gsummptfzsplit 19951 | . . . . 5
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) = ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) + (𝑅 Σg (𝑘 ∈ {(𝑁 + 1)} ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))))) | 
| 28 |  | srgmnd 20188 | . . . . . . . . 9
⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) | 
| 29 | 6, 28 | syl 17 | . . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Mnd) | 
| 30 |  | ovexd 7467 | . . . . . . . 8
⊢ (𝜑 → (𝑁 + 1) ∈ V) | 
| 31 |  | id 22 | . . . . . . . . 9
⊢ (𝜑 → 𝜑) | 
| 32 | 9 | nn0zd 12641 | . . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℤ) | 
| 33 | 32 | peano2zd 12727 | . . . . . . . . . 10
⊢ (𝜑 → (𝑁 + 1) ∈ ℤ) | 
| 34 |  | bccl 14362 | . . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ (𝑁 + 1) ∈
ℤ) → (𝑁C(𝑁 + 1)) ∈
ℕ0) | 
| 35 | 9, 33, 34 | syl2anc 584 | . . . . . . . . 9
⊢ (𝜑 → (𝑁C(𝑁 + 1)) ∈
ℕ0) | 
| 36 | 9 | nn0cnd 12591 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈ ℂ) | 
| 37 |  | peano2cn 11434 | . . . . . . . . . . . 12
⊢ (𝑁 ∈ ℂ → (𝑁 + 1) ∈
ℂ) | 
| 38 | 36, 37 | syl 17 | . . . . . . . . . . 11
⊢ (𝜑 → (𝑁 + 1) ∈ ℂ) | 
| 39 | 38 | subidd 11609 | . . . . . . . . . 10
⊢ (𝜑 → ((𝑁 + 1) − (𝑁 + 1)) = 0) | 
| 40 |  | 0nn0 12543 | . . . . . . . . . 10
⊢ 0 ∈
ℕ0 | 
| 41 | 39, 40 | eqeltrdi 2848 | . . . . . . . . 9
⊢ (𝜑 → ((𝑁 + 1) − (𝑁 + 1)) ∈
ℕ0) | 
| 42 |  | peano2nn0 12568 | . . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ0) | 
| 43 | 9, 42 | syl 17 | . . . . . . . . 9
⊢ (𝜑 → (𝑁 + 1) ∈
ℕ0) | 
| 44 | 4, 18, 19, 5, 20, 21, 6, 22, 23, 24, 9 | srgbinomlem2 20225 | . . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑁C(𝑁 + 1)) ∈ ℕ0 ∧
((𝑁 + 1) − (𝑁 + 1)) ∈
ℕ0 ∧ (𝑁 + 1) ∈ ℕ0)) →
((𝑁C(𝑁 + 1)) · ((((𝑁 + 1) − (𝑁 + 1)) ↑ 𝐴) × ((𝑁 + 1) ↑ 𝐵))) ∈ 𝑆) | 
| 45 | 31, 35, 41, 43, 44 | syl13anc 1373 | . . . . . . . 8
⊢ (𝜑 → ((𝑁C(𝑁 + 1)) · ((((𝑁 + 1) − (𝑁 + 1)) ↑ 𝐴) × ((𝑁 + 1) ↑ 𝐵))) ∈ 𝑆) | 
| 46 |  | oveq2 7440 | . . . . . . . . . 10
⊢ (𝑘 = (𝑁 + 1) → (𝑁C𝑘) = (𝑁C(𝑁 + 1))) | 
| 47 |  | oveq2 7440 | . . . . . . . . . . . 12
⊢ (𝑘 = (𝑁 + 1) → ((𝑁 + 1) − 𝑘) = ((𝑁 + 1) − (𝑁 + 1))) | 
| 48 | 47 | oveq1d 7447 | . . . . . . . . . . 11
⊢ (𝑘 = (𝑁 + 1) → (((𝑁 + 1) − 𝑘) ↑ 𝐴) = (((𝑁 + 1) − (𝑁 + 1)) ↑ 𝐴)) | 
| 49 |  | oveq1 7439 | . . . . . . . . . . 11
⊢ (𝑘 = (𝑁 + 1) → (𝑘 ↑ 𝐵) = ((𝑁 + 1) ↑ 𝐵)) | 
| 50 | 48, 49 | oveq12d 7450 | . . . . . . . . . 10
⊢ (𝑘 = (𝑁 + 1) → ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)) = ((((𝑁 + 1) − (𝑁 + 1)) ↑ 𝐴) × ((𝑁 + 1) ↑ 𝐵))) | 
| 51 | 46, 50 | oveq12d 7450 | . . . . . . . . 9
⊢ (𝑘 = (𝑁 + 1) → ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) = ((𝑁C(𝑁 + 1)) · ((((𝑁 + 1) − (𝑁 + 1)) ↑ 𝐴) × ((𝑁 + 1) ↑ 𝐵)))) | 
| 52 | 4, 51 | gsumsn 19973 | . . . . . . . 8
⊢ ((𝑅 ∈ Mnd ∧ (𝑁 + 1) ∈ V ∧ ((𝑁C(𝑁 + 1)) · ((((𝑁 + 1) − (𝑁 + 1)) ↑ 𝐴) × ((𝑁 + 1) ↑ 𝐵))) ∈ 𝑆) → (𝑅 Σg (𝑘 ∈ {(𝑁 + 1)} ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) = ((𝑁C(𝑁 + 1)) · ((((𝑁 + 1) − (𝑁 + 1)) ↑ 𝐴) × ((𝑁 + 1) ↑ 𝐵)))) | 
| 53 | 29, 30, 45, 52 | syl3anc 1372 | . . . . . . 7
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ {(𝑁 + 1)} ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) = ((𝑁C(𝑁 + 1)) · ((((𝑁 + 1) − (𝑁 + 1)) ↑ 𝐴) × ((𝑁 + 1) ↑ 𝐵)))) | 
| 54 | 9 | nn0red 12590 | . . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℝ) | 
| 55 | 54 | ltp1d 12199 | . . . . . . . . . 10
⊢ (𝜑 → 𝑁 < (𝑁 + 1)) | 
| 56 | 55 | olcd 874 | . . . . . . . . 9
⊢ (𝜑 → ((𝑁 + 1) < 0 ∨ 𝑁 < (𝑁 + 1))) | 
| 57 |  | bcval4 14347 | . . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝑁 + 1) ∈
ℤ ∧ ((𝑁 + 1) <
0 ∨ 𝑁 < (𝑁 + 1))) → (𝑁C(𝑁 + 1)) = 0) | 
| 58 | 9, 33, 56, 57 | syl3anc 1372 | . . . . . . . 8
⊢ (𝜑 → (𝑁C(𝑁 + 1)) = 0) | 
| 59 | 58 | oveq1d 7447 | . . . . . . 7
⊢ (𝜑 → ((𝑁C(𝑁 + 1)) · ((((𝑁 + 1) − (𝑁 + 1)) ↑ 𝐴) × ((𝑁 + 1) ↑ 𝐵))) = (0 · ((((𝑁 + 1) − (𝑁 + 1)) ↑ 𝐴) × ((𝑁 + 1) ↑ 𝐵)))) | 
| 60 | 4, 18, 19, 5, 20, 21, 6, 22, 23, 24, 9 | srgbinomlem1 20224 | . . . . . . . . 9
⊢ ((𝜑 ∧ (((𝑁 + 1) − (𝑁 + 1)) ∈ ℕ0 ∧
(𝑁 + 1) ∈
ℕ0)) → ((((𝑁 + 1) − (𝑁 + 1)) ↑ 𝐴) × ((𝑁 + 1) ↑ 𝐵)) ∈ 𝑆) | 
| 61 | 31, 41, 43, 60 | syl12anc 836 | . . . . . . . 8
⊢ (𝜑 → ((((𝑁 + 1) − (𝑁 + 1)) ↑ 𝐴) × ((𝑁 + 1) ↑ 𝐵)) ∈ 𝑆) | 
| 62 |  | eqid 2736 | . . . . . . . . 9
⊢
(0g‘𝑅) = (0g‘𝑅) | 
| 63 | 4, 62, 19 | mulg0 19093 | . . . . . . . 8
⊢
(((((𝑁 + 1) −
(𝑁 + 1)) ↑ 𝐴) × ((𝑁 + 1) ↑ 𝐵)) ∈ 𝑆 → (0 · ((((𝑁 + 1) − (𝑁 + 1)) ↑ 𝐴) × ((𝑁 + 1) ↑ 𝐵))) = (0g‘𝑅)) | 
| 64 | 61, 63 | syl 17 | . . . . . . 7
⊢ (𝜑 → (0 · ((((𝑁 + 1) − (𝑁 + 1)) ↑ 𝐴) × ((𝑁 + 1) ↑ 𝐵))) = (0g‘𝑅)) | 
| 65 | 53, 59, 64 | 3eqtrd 2780 | . . . . . 6
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ {(𝑁 + 1)} ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) = (0g‘𝑅)) | 
| 66 | 65 | oveq2d 7448 | . . . . 5
⊢ (𝜑 → ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) + (𝑅 Σg (𝑘 ∈ {(𝑁 + 1)} ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) = ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) + (0g‘𝑅))) | 
| 67 |  | fzfid 14015 | . . . . . . 7
⊢ (𝜑 → (0...𝑁) ∈ Fin) | 
| 68 |  | simpl 482 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝜑) | 
| 69 |  | bccl2 14363 | . . . . . . . . . . 11
⊢ (𝑘 ∈ (0...𝑁) → (𝑁C𝑘) ∈ ℕ) | 
| 70 | 69 | nnnn0d 12589 | . . . . . . . . . 10
⊢ (𝑘 ∈ (0...𝑁) → (𝑁C𝑘) ∈
ℕ0) | 
| 71 | 70 | adantl 481 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈
ℕ0) | 
| 72 |  | fzelp1 13617 | . . . . . . . . . 10
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ (0...(𝑁 + 1))) | 
| 73 | 72, 15 | sylan2 593 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁 + 1) − 𝑘) ∈
ℕ0) | 
| 74 |  | elfznn0 13661 | . . . . . . . . . 10
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) | 
| 75 | 74 | adantl 481 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) | 
| 76 | 68, 71, 73, 75, 25 | syl13anc 1373 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ 𝑆) | 
| 77 | 76 | ralrimiva 3145 | . . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ 𝑆) | 
| 78 | 4, 8, 67, 77 | gsummptcl 19986 | . . . . . 6
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) ∈ 𝑆) | 
| 79 | 4, 5, 62 | mndrid 18769 | . . . . . 6
⊢ ((𝑅 ∈ Mnd ∧ (𝑅 Σg
(𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) ∈ 𝑆) → ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) + (0g‘𝑅)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) | 
| 80 | 29, 78, 79 | syl2anc 584 | . . . . 5
⊢ (𝜑 → ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) + (0g‘𝑅)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) | 
| 81 | 27, 66, 80 | 3eqtrd 2780 | . . . 4
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) | 
| 82 | 6 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑅 ∈ SRing) | 
| 83 | 22 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ 𝑆) | 
| 84 | 23 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐵 ∈ 𝑆) | 
| 85 | 24 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐴 × 𝐵) = (𝐵 × 𝐴)) | 
| 86 |  | fznn0sub 13597 | . . . . . . . . 9
⊢ (𝑘 ∈ (0...𝑁) → (𝑁 − 𝑘) ∈
ℕ0) | 
| 87 | 86 | adantl 481 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝑁 − 𝑘) ∈
ℕ0) | 
| 88 | 4, 18, 20, 21, 82, 83, 84, 75, 85, 87, 19, 71 | srgpcomppsc 20218 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) × 𝐴) = ((𝑁C𝑘) · ((((𝑁 − 𝑘) + 1) ↑ 𝐴) × (𝑘 ↑ 𝐵)))) | 
| 89 | 36 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑁 ∈ ℂ) | 
| 90 |  | 1cnd 11257 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 1 ∈ ℂ) | 
| 91 |  | elfzelz 13565 | . . . . . . . . . . . . 13
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ) | 
| 92 | 91 | zcnd 12725 | . . . . . . . . . . . 12
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℂ) | 
| 93 | 92 | adantl 481 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℂ) | 
| 94 | 89, 90, 93 | addsubd 11642 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁 + 1) − 𝑘) = ((𝑁 − 𝑘) + 1)) | 
| 95 | 94 | oveq1d 7447 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (((𝑁 + 1) − 𝑘) ↑ 𝐴) = (((𝑁 − 𝑘) + 1) ↑ 𝐴)) | 
| 96 | 95 | oveq1d 7447 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)) = ((((𝑁 − 𝑘) + 1) ↑ 𝐴) × (𝑘 ↑ 𝐵))) | 
| 97 | 96 | oveq2d 7448 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) = ((𝑁C𝑘) · ((((𝑁 − 𝑘) + 1) ↑ 𝐴) × (𝑘 ↑ 𝐵)))) | 
| 98 | 88, 97 | eqtr4d 2779 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) × 𝐴) = ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))) | 
| 99 | 98 | mpteq2dva 5241 | . . . . 5
⊢ (𝜑 → (𝑘 ∈ (0...𝑁) ↦ (((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) × 𝐴)) = (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) | 
| 100 | 99 | oveq2d 7448 | . . . 4
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ (((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) × 𝐴))) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) | 
| 101 |  | ovexd 7467 | . . . . 5
⊢ (𝜑 → (0...𝑁) ∈ V) | 
| 102 | 4, 18, 19, 5, 20, 21, 6, 22, 23, 24, 9 | srgbinomlem2 20225 | . . . . . 6
⊢ ((𝜑 ∧ ((𝑁C𝑘) ∈ ℕ0 ∧ (𝑁 − 𝑘) ∈ ℕ0 ∧ 𝑘 ∈ ℕ0))
→ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ 𝑆) | 
| 103 | 68, 71, 87, 75, 102 | syl13anc 1373 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ 𝑆) | 
| 104 |  | eqid 2736 | . . . . . 6
⊢ (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))) = (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))) | 
| 105 |  | ovexd 7467 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ V) | 
| 106 |  | fvexd 6920 | . . . . . 6
⊢ (𝜑 → (0g‘𝑅) ∈ V) | 
| 107 | 104, 67, 105, 106 | fsuppmptdm 9417 | . . . . 5
⊢ (𝜑 → (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))) finSupp (0g‘𝑅)) | 
| 108 | 4, 62, 5, 18, 6, 101, 22, 103, 107 | srgsummulcr 20221 | . . . 4
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ (((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) × 𝐴))) = ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) × 𝐴)) | 
| 109 | 81, 100, 108 | 3eqtr2rd 2783 | . . 3
⊢ (𝜑 → ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) × 𝐴) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) | 
| 110 | 109 | adantr 480 | . 2
⊢ ((𝜑 ∧ 𝜓) → ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) × 𝐴) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) | 
| 111 | 3, 110 | eqtrd 2776 | 1
⊢ ((𝜑 ∧ 𝜓) → ((𝑁 ↑ (𝐴 + 𝐵)) × 𝐴) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |