MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgbinomlem3 Structured version   Visualization version   GIF version

Theorem srgbinomlem3 20193
Description: Lemma 3 for srgbinomlem 20195. (Contributed by AV, 23-Aug-2019.) (Proof shortened by AV, 27-Oct-2019.)
Hypotheses
Ref Expression
srgbinom.s 𝑆 = (Base‘𝑅)
srgbinom.m × = (.r𝑅)
srgbinom.t · = (.g𝑅)
srgbinom.a + = (+g𝑅)
srgbinom.g 𝐺 = (mulGrp‘𝑅)
srgbinom.e = (.g𝐺)
srgbinomlem.r (𝜑𝑅 ∈ SRing)
srgbinomlem.a (𝜑𝐴𝑆)
srgbinomlem.b (𝜑𝐵𝑆)
srgbinomlem.c (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
srgbinomlem.n (𝜑𝑁 ∈ ℕ0)
srgbinomlem.i (𝜓 → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
Assertion
Ref Expression
srgbinomlem3 ((𝜑𝜓) → ((𝑁 (𝐴 + 𝐵)) × 𝐴) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑁   𝑅,𝑘   𝑆,𝑘   · ,𝑘   × ,𝑘   ,𝑘   𝜑,𝑘
Allowed substitution hints:   𝜓(𝑘)   + (𝑘)   𝐺(𝑘)

Proof of Theorem srgbinomlem3
StepHypRef Expression
1 srgbinomlem.i . . . 4 (𝜓 → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
21adantl 481 . . 3 ((𝜑𝜓) → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
32oveq1d 7425 . 2 ((𝜑𝜓) → ((𝑁 (𝐴 + 𝐵)) × 𝐴) = ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))) × 𝐴))
4 srgbinom.s . . . . . 6 𝑆 = (Base‘𝑅)
5 srgbinom.a . . . . . 6 + = (+g𝑅)
6 srgbinomlem.r . . . . . . 7 (𝜑𝑅 ∈ SRing)
7 srgcmn 20154 . . . . . . 7 (𝑅 ∈ SRing → 𝑅 ∈ CMnd)
86, 7syl 17 . . . . . 6 (𝜑𝑅 ∈ CMnd)
9 srgbinomlem.n . . . . . 6 (𝜑𝑁 ∈ ℕ0)
10 simpl 482 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝜑)
11 elfzelz 13546 . . . . . . . 8 (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℤ)
12 bccl 14345 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (𝑁C𝑘) ∈ ℕ0)
139, 11, 12syl2an 596 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C𝑘) ∈ ℕ0)
14 fznn0sub 13578 . . . . . . . 8 (𝑘 ∈ (0...(𝑁 + 1)) → ((𝑁 + 1) − 𝑘) ∈ ℕ0)
1514adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁 + 1) − 𝑘) ∈ ℕ0)
16 elfznn0 13642 . . . . . . . 8 (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℕ0)
1716adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑘 ∈ ℕ0)
18 srgbinom.m . . . . . . . 8 × = (.r𝑅)
19 srgbinom.t . . . . . . . 8 · = (.g𝑅)
20 srgbinom.g . . . . . . . 8 𝐺 = (mulGrp‘𝑅)
21 srgbinom.e . . . . . . . 8 = (.g𝐺)
22 srgbinomlem.a . . . . . . . 8 (𝜑𝐴𝑆)
23 srgbinomlem.b . . . . . . . 8 (𝜑𝐵𝑆)
24 srgbinomlem.c . . . . . . . 8 (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
254, 18, 19, 5, 20, 21, 6, 22, 23, 24, 9srgbinomlem2 20192 . . . . . . 7 ((𝜑 ∧ ((𝑁C𝑘) ∈ ℕ0 ∧ ((𝑁 + 1) − 𝑘) ∈ ℕ0𝑘 ∈ ℕ0)) → ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
2610, 13, 15, 17, 25syl13anc 1374 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
274, 5, 8, 9, 26gsummptfzsplit 19918 . . . . 5 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ {(𝑁 + 1)} ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
28 srgmnd 20155 . . . . . . . . 9 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
296, 28syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Mnd)
30 ovexd 7445 . . . . . . . 8 (𝜑 → (𝑁 + 1) ∈ V)
31 id 22 . . . . . . . . 9 (𝜑𝜑)
329nn0zd 12619 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
3332peano2zd 12705 . . . . . . . . . 10 (𝜑 → (𝑁 + 1) ∈ ℤ)
34 bccl 14345 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℤ) → (𝑁C(𝑁 + 1)) ∈ ℕ0)
359, 33, 34syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑁C(𝑁 + 1)) ∈ ℕ0)
369nn0cnd 12569 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
37 peano2cn 11412 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → (𝑁 + 1) ∈ ℂ)
3836, 37syl 17 . . . . . . . . . . 11 (𝜑 → (𝑁 + 1) ∈ ℂ)
3938subidd 11587 . . . . . . . . . 10 (𝜑 → ((𝑁 + 1) − (𝑁 + 1)) = 0)
40 0nn0 12521 . . . . . . . . . 10 0 ∈ ℕ0
4139, 40eqeltrdi 2843 . . . . . . . . 9 (𝜑 → ((𝑁 + 1) − (𝑁 + 1)) ∈ ℕ0)
42 peano2nn0 12546 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
439, 42syl 17 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ∈ ℕ0)
444, 18, 19, 5, 20, 21, 6, 22, 23, 24, 9srgbinomlem2 20192 . . . . . . . . 9 ((𝜑 ∧ ((𝑁C(𝑁 + 1)) ∈ ℕ0 ∧ ((𝑁 + 1) − (𝑁 + 1)) ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℕ0)) → ((𝑁C(𝑁 + 1)) · ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵))) ∈ 𝑆)
4531, 35, 41, 43, 44syl13anc 1374 . . . . . . . 8 (𝜑 → ((𝑁C(𝑁 + 1)) · ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵))) ∈ 𝑆)
46 oveq2 7418 . . . . . . . . . 10 (𝑘 = (𝑁 + 1) → (𝑁C𝑘) = (𝑁C(𝑁 + 1)))
47 oveq2 7418 . . . . . . . . . . . 12 (𝑘 = (𝑁 + 1) → ((𝑁 + 1) − 𝑘) = ((𝑁 + 1) − (𝑁 + 1)))
4847oveq1d 7425 . . . . . . . . . . 11 (𝑘 = (𝑁 + 1) → (((𝑁 + 1) − 𝑘) 𝐴) = (((𝑁 + 1) − (𝑁 + 1)) 𝐴))
49 oveq1 7417 . . . . . . . . . . 11 (𝑘 = (𝑁 + 1) → (𝑘 𝐵) = ((𝑁 + 1) 𝐵))
5048, 49oveq12d 7428 . . . . . . . . . 10 (𝑘 = (𝑁 + 1) → ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)) = ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵)))
5146, 50oveq12d 7428 . . . . . . . . 9 (𝑘 = (𝑁 + 1) → ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) = ((𝑁C(𝑁 + 1)) · ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵))))
524, 51gsumsn 19940 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ (𝑁 + 1) ∈ V ∧ ((𝑁C(𝑁 + 1)) · ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵))) ∈ 𝑆) → (𝑅 Σg (𝑘 ∈ {(𝑁 + 1)} ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = ((𝑁C(𝑁 + 1)) · ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵))))
5329, 30, 45, 52syl3anc 1373 . . . . . . 7 (𝜑 → (𝑅 Σg (𝑘 ∈ {(𝑁 + 1)} ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = ((𝑁C(𝑁 + 1)) · ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵))))
549nn0red 12568 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
5554ltp1d 12177 . . . . . . . . . 10 (𝜑𝑁 < (𝑁 + 1))
5655olcd 874 . . . . . . . . 9 (𝜑 → ((𝑁 + 1) < 0 ∨ 𝑁 < (𝑁 + 1)))
57 bcval4 14330 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℤ ∧ ((𝑁 + 1) < 0 ∨ 𝑁 < (𝑁 + 1))) → (𝑁C(𝑁 + 1)) = 0)
589, 33, 56, 57syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑁C(𝑁 + 1)) = 0)
5958oveq1d 7425 . . . . . . 7 (𝜑 → ((𝑁C(𝑁 + 1)) · ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵))) = (0 · ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵))))
604, 18, 19, 5, 20, 21, 6, 22, 23, 24, 9srgbinomlem1 20191 . . . . . . . . 9 ((𝜑 ∧ (((𝑁 + 1) − (𝑁 + 1)) ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℕ0)) → ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵)) ∈ 𝑆)
6131, 41, 43, 60syl12anc 836 . . . . . . . 8 (𝜑 → ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵)) ∈ 𝑆)
62 eqid 2736 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
634, 62, 19mulg0 19062 . . . . . . . 8 (((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵)) ∈ 𝑆 → (0 · ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵))) = (0g𝑅))
6461, 63syl 17 . . . . . . 7 (𝜑 → (0 · ((((𝑁 + 1) − (𝑁 + 1)) 𝐴) × ((𝑁 + 1) 𝐵))) = (0g𝑅))
6553, 59, 643eqtrd 2775 . . . . . 6 (𝜑 → (𝑅 Σg (𝑘 ∈ {(𝑁 + 1)} ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = (0g𝑅))
6665oveq2d 7426 . . . . 5 (𝜑 → ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ {(𝑁 + 1)} ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))) = ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (0g𝑅)))
67 fzfid 13996 . . . . . . 7 (𝜑 → (0...𝑁) ∈ Fin)
68 simpl 482 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → 𝜑)
69 bccl2 14346 . . . . . . . . . . 11 (𝑘 ∈ (0...𝑁) → (𝑁C𝑘) ∈ ℕ)
7069nnnn0d 12567 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → (𝑁C𝑘) ∈ ℕ0)
7170adantl 481 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℕ0)
72 fzelp1 13598 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ (0...(𝑁 + 1)))
7372, 15sylan2 593 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁 + 1) − 𝑘) ∈ ℕ0)
74 elfznn0 13642 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
7574adantl 481 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
7668, 71, 73, 75, 25syl13anc 1374 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
7776ralrimiva 3133 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
784, 8, 67, 77gsummptcl 19953 . . . . . 6 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) ∈ 𝑆)
794, 5, 62mndrid 18738 . . . . . 6 ((𝑅 ∈ Mnd ∧ (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) ∈ 𝑆) → ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (0g𝑅)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
8029, 78, 79syl2anc 584 . . . . 5 (𝜑 → ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (0g𝑅)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
8127, 66, 803eqtrd 2775 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
826adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑅 ∈ SRing)
8322adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴𝑆)
8423adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐵𝑆)
8524adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐴 × 𝐵) = (𝐵 × 𝐴))
86 fznn0sub 13578 . . . . . . . . 9 (𝑘 ∈ (0...𝑁) → (𝑁𝑘) ∈ ℕ0)
8786adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑁𝑘) ∈ ℕ0)
884, 18, 20, 21, 82, 83, 84, 75, 85, 87, 19, 71srgpcomppsc 20185 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) × 𝐴) = ((𝑁C𝑘) · ((((𝑁𝑘) + 1) 𝐴) × (𝑘 𝐵))))
8936adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑁 ∈ ℂ)
90 1cnd 11235 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...𝑁)) → 1 ∈ ℂ)
91 elfzelz 13546 . . . . . . . . . . . . 13 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ)
9291zcnd 12703 . . . . . . . . . . . 12 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℂ)
9392adantl 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℂ)
9489, 90, 93addsubd 11620 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁 + 1) − 𝑘) = ((𝑁𝑘) + 1))
9594oveq1d 7425 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝑁 + 1) − 𝑘) 𝐴) = (((𝑁𝑘) + 1) 𝐴))
9695oveq1d 7425 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)) = ((((𝑁𝑘) + 1) 𝐴) × (𝑘 𝐵)))
9796oveq2d 7426 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) = ((𝑁C𝑘) · ((((𝑁𝑘) + 1) 𝐴) × (𝑘 𝐵))))
9888, 97eqtr4d 2774 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) × 𝐴) = ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))
9998mpteq2dva 5219 . . . . 5 (𝜑 → (𝑘 ∈ (0...𝑁) ↦ (((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) × 𝐴)) = (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))
10099oveq2d 7426 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ (((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) × 𝐴))) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
101 ovexd 7445 . . . . 5 (𝜑 → (0...𝑁) ∈ V)
1024, 18, 19, 5, 20, 21, 6, 22, 23, 24, 9srgbinomlem2 20192 . . . . . 6 ((𝜑 ∧ ((𝑁C𝑘) ∈ ℕ0 ∧ (𝑁𝑘) ∈ ℕ0𝑘 ∈ ℕ0)) → ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
10368, 71, 87, 75, 102syl13anc 1374 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
104 eqid 2736 . . . . . 6 (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵)))) = (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))
105 ovexd 7445 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) ∈ V)
106 fvexd 6896 . . . . . 6 (𝜑 → (0g𝑅) ∈ V)
107104, 67, 105, 106fsuppmptdm 9393 . . . . 5 (𝜑 → (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵)))) finSupp (0g𝑅))
1084, 62, 5, 18, 6, 101, 22, 103, 107srgsummulcr 20188 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ (((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) × 𝐴))) = ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))) × 𝐴))
10981, 100, 1083eqtr2rd 2778 . . 3 (𝜑 → ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))) × 𝐴) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
110109adantr 480 . 2 ((𝜑𝜓) → ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))) × 𝐴) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
1113, 110eqtrd 2771 1 ((𝜑𝜓) → ((𝑁 (𝐴 + 𝐵)) × 𝐴) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  Vcvv 3464  {csn 4606   class class class wbr 5124  cmpt 5206  cfv 6536  (class class class)co 7410  cc 11132  0cc0 11134  1c1 11135   + caddc 11137   < clt 11274  cmin 11471  0cn0 12506  cz 12593  ...cfz 13529  Ccbc 14325  Basecbs 17233  +gcplusg 17276  .rcmulr 17277  0gc0g 17458   Σg cgsu 17459  Mndcmnd 18717  .gcmg 19055  CMndccmn 19766  mulGrpcmgp 20105  SRingcsrg 20151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-seq 14025  df-fac 14297  df-bc 14326  df-hash 14354  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-0g 17460  df-gsum 17461  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-mgp 20106  df-ur 20147  df-srg 20152
This theorem is referenced by:  srgbinomlem  20195
  Copyright terms: Public domain W3C validator