| Step | Hyp | Ref
| Expression |
| 1 | | srgbinomlem.i |
. . 3
⊢ (𝜓 → (𝑁 ↑ (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
| 2 | 1 | oveq1d 7425 |
. 2
⊢ (𝜓 → ((𝑁 ↑ (𝐴 + 𝐵)) × 𝐵) = ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) × 𝐵)) |
| 3 | | srgbinom.s |
. . . 4
⊢ 𝑆 = (Base‘𝑅) |
| 4 | | eqid 2736 |
. . . 4
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 5 | | srgbinom.a |
. . . 4
⊢ + =
(+g‘𝑅) |
| 6 | | srgbinom.m |
. . . 4
⊢ × =
(.r‘𝑅) |
| 7 | | srgbinomlem.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ SRing) |
| 8 | | ovexd 7445 |
. . . 4
⊢ (𝜑 → (0...𝑁) ∈ V) |
| 9 | | srgbinomlem.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝑆) |
| 10 | | simpl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝜑) |
| 11 | | srgbinomlem.n |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 12 | | elfzelz 13546 |
. . . . . 6
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ) |
| 13 | | bccl 14345 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈ ℤ)
→ (𝑁C𝑘) ∈
ℕ0) |
| 14 | 11, 12, 13 | syl2an 596 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈
ℕ0) |
| 15 | | fznn0sub 13578 |
. . . . . 6
⊢ (𝑘 ∈ (0...𝑁) → (𝑁 − 𝑘) ∈
ℕ0) |
| 16 | 15 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝑁 − 𝑘) ∈
ℕ0) |
| 17 | | elfznn0 13642 |
. . . . . 6
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) |
| 18 | 17 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) |
| 19 | | srgbinom.t |
. . . . . 6
⊢ · =
(.g‘𝑅) |
| 20 | | srgbinom.g |
. . . . . 6
⊢ 𝐺 = (mulGrp‘𝑅) |
| 21 | | srgbinom.e |
. . . . . 6
⊢ ↑ =
(.g‘𝐺) |
| 22 | | srgbinomlem.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| 23 | | srgbinomlem.c |
. . . . . 6
⊢ (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴)) |
| 24 | 3, 6, 19, 5, 20, 21, 7, 22, 9, 23, 11 | srgbinomlem2 20192 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑁C𝑘) ∈ ℕ0 ∧ (𝑁 − 𝑘) ∈ ℕ0 ∧ 𝑘 ∈ ℕ0))
→ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ 𝑆) |
| 25 | 10, 14, 16, 18, 24 | syl13anc 1374 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ 𝑆) |
| 26 | | eqid 2736 |
. . . . 5
⊢ (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))) = (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))) |
| 27 | | fzfid 13996 |
. . . . 5
⊢ (𝜑 → (0...𝑁) ∈ Fin) |
| 28 | | ovexd 7445 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ V) |
| 29 | | fvexd 6896 |
. . . . 5
⊢ (𝜑 → (0g‘𝑅) ∈ V) |
| 30 | 26, 27, 28, 29 | fsuppmptdm 9393 |
. . . 4
⊢ (𝜑 → (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))) finSupp (0g‘𝑅)) |
| 31 | 3, 4, 5, 6, 7, 8, 9, 25, 30 | srgsummulcr 20188 |
. . 3
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ (((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) × 𝐵))) = ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) × 𝐵)) |
| 32 | | srgcmn 20154 |
. . . . . 6
⊢ (𝑅 ∈ SRing → 𝑅 ∈ CMnd) |
| 33 | 7, 32 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ CMnd) |
| 34 | | 1z 12627 |
. . . . . 6
⊢ 1 ∈
ℤ |
| 35 | 34 | a1i 11 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℤ) |
| 36 | | 0zd 12605 |
. . . . 5
⊢ (𝜑 → 0 ∈
ℤ) |
| 37 | 11 | nn0zd 12619 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 38 | 7 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑅 ∈ SRing) |
| 39 | 9 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐵 ∈ 𝑆) |
| 40 | 3, 6 | srgcl 20158 |
. . . . . 6
⊢ ((𝑅 ∈ SRing ∧ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) × 𝐵) ∈ 𝑆) |
| 41 | 38, 25, 39, 40 | syl3anc 1373 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) × 𝐵) ∈ 𝑆) |
| 42 | | oveq2 7418 |
. . . . . . 7
⊢ (𝑘 = (𝑗 − 1) → (𝑁C𝑘) = (𝑁C(𝑗 − 1))) |
| 43 | | oveq2 7418 |
. . . . . . . . 9
⊢ (𝑘 = (𝑗 − 1) → (𝑁 − 𝑘) = (𝑁 − (𝑗 − 1))) |
| 44 | 43 | oveq1d 7425 |
. . . . . . . 8
⊢ (𝑘 = (𝑗 − 1) → ((𝑁 − 𝑘) ↑ 𝐴) = ((𝑁 − (𝑗 − 1)) ↑ 𝐴)) |
| 45 | | oveq1 7417 |
. . . . . . . 8
⊢ (𝑘 = (𝑗 − 1) → (𝑘 ↑ 𝐵) = ((𝑗 − 1) ↑ 𝐵)) |
| 46 | 44, 45 | oveq12d 7428 |
. . . . . . 7
⊢ (𝑘 = (𝑗 − 1) → (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)) = (((𝑁 − (𝑗 − 1)) ↑ 𝐴) × ((𝑗 − 1) ↑ 𝐵))) |
| 47 | 42, 46 | oveq12d 7428 |
. . . . . 6
⊢ (𝑘 = (𝑗 − 1) → ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) = ((𝑁C(𝑗 − 1)) · (((𝑁 − (𝑗 − 1)) ↑ 𝐴) × ((𝑗 − 1) ↑ 𝐵)))) |
| 48 | 47 | oveq1d 7425 |
. . . . 5
⊢ (𝑘 = (𝑗 − 1) → (((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) × 𝐵) = (((𝑁C(𝑗 − 1)) · (((𝑁 − (𝑗 − 1)) ↑ 𝐴) × ((𝑗 − 1) ↑ 𝐵))) × 𝐵)) |
| 49 | 3, 4, 33, 35, 36, 37, 41, 48 | gsummptshft 19922 |
. . . 4
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ (((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) × 𝐵))) = (𝑅 Σg (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 − (𝑗 − 1)) ↑ 𝐴) × ((𝑗 − 1) ↑ 𝐵))) × 𝐵)))) |
| 50 | 11 | nn0cnd 12569 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 51 | 50 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → 𝑁 ∈ ℂ) |
| 52 | | elfzelz 13546 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) → 𝑗 ∈ ℤ) |
| 53 | 52 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → 𝑗 ∈ ℤ) |
| 54 | 53 | zcnd 12703 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → 𝑗 ∈ ℂ) |
| 55 | | 1cnd 11235 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → 1 ∈
ℂ) |
| 56 | 51, 54, 55 | subsub3d 11629 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (𝑁 − (𝑗 − 1)) = ((𝑁 + 1) − 𝑗)) |
| 57 | 56 | oveq1d 7425 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑁 − (𝑗 − 1)) ↑ 𝐴) = (((𝑁 + 1) − 𝑗) ↑ 𝐴)) |
| 58 | 57 | oveq1d 7425 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑁 − (𝑗 − 1)) ↑ 𝐴) × ((𝑗 − 1) ↑ 𝐵)) = ((((𝑁 + 1) − 𝑗) ↑ 𝐴) × ((𝑗 − 1) ↑ 𝐵))) |
| 59 | 58 | oveq2d 7426 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑁C(𝑗 − 1)) · (((𝑁 − (𝑗 − 1)) ↑ 𝐴) × ((𝑗 − 1) ↑ 𝐵))) = ((𝑁C(𝑗 − 1)) · ((((𝑁 + 1) − 𝑗) ↑ 𝐴) × ((𝑗 − 1) ↑ 𝐵)))) |
| 60 | 59 | oveq1d 7425 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑁C(𝑗 − 1)) · (((𝑁 − (𝑗 − 1)) ↑ 𝐴) × ((𝑗 − 1) ↑ 𝐵))) × 𝐵) = (((𝑁C(𝑗 − 1)) · ((((𝑁 + 1) − 𝑗) ↑ 𝐴) × ((𝑗 − 1) ↑ 𝐵))) × 𝐵)) |
| 61 | 7 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → 𝑅 ∈ SRing) |
| 62 | | peano2zm 12640 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℤ → (𝑗 − 1) ∈
ℤ) |
| 63 | 52, 62 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) → (𝑗 − 1) ∈
ℤ) |
| 64 | | bccl 14345 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ (𝑗 − 1) ∈
ℤ) → (𝑁C(𝑗 − 1)) ∈
ℕ0) |
| 65 | 11, 63, 64 | syl2an 596 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (𝑁C(𝑗 − 1)) ∈
ℕ0) |
| 66 | 20, 3 | mgpbas 20110 |
. . . . . . . . . . 11
⊢ 𝑆 = (Base‘𝐺) |
| 67 | 20 | srgmgp 20156 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ SRing → 𝐺 ∈ Mnd) |
| 68 | 7, 67 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 69 | 68 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → 𝐺 ∈ Mnd) |
| 70 | | 0p1e1 12367 |
. . . . . . . . . . . . . . 15
⊢ (0 + 1) =
1 |
| 71 | 70 | oveq1i 7420 |
. . . . . . . . . . . . . 14
⊢ ((0 +
1)...(𝑁 + 1)) = (1...(𝑁 + 1)) |
| 72 | 71 | eleq2i 2827 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) ↔ 𝑗 ∈ (1...(𝑁 + 1))) |
| 73 | | fznn0sub 13578 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (1...(𝑁 + 1)) → ((𝑁 + 1) − 𝑗) ∈
ℕ0) |
| 74 | 73 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑗 ∈ (1...(𝑁 + 1)) → ((𝑁 + 1) − 𝑗) ∈
ℕ0)) |
| 75 | 72, 74 | biimtrid 242 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) → ((𝑁 + 1) − 𝑗) ∈
ℕ0)) |
| 76 | 75 | imp 406 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑁 + 1) − 𝑗) ∈
ℕ0) |
| 77 | 22 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → 𝐴 ∈ 𝑆) |
| 78 | 66, 21, 69, 76, 77 | mulgnn0cld 19083 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑁 + 1) − 𝑗) ↑ 𝐴) ∈ 𝑆) |
| 79 | | elfznn 13575 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (1...(𝑁 + 1)) → 𝑗 ∈ ℕ) |
| 80 | | nnm1nn0 12547 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℕ → (𝑗 − 1) ∈
ℕ0) |
| 81 | 79, 80 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (1...(𝑁 + 1)) → (𝑗 − 1) ∈
ℕ0) |
| 82 | 72, 81 | sylbi 217 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) → (𝑗 − 1) ∈
ℕ0) |
| 83 | 82 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (𝑗 − 1) ∈
ℕ0) |
| 84 | 9 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → 𝐵 ∈ 𝑆) |
| 85 | 66, 21, 69, 83, 84 | mulgnn0cld 19083 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑗 − 1) ↑ 𝐵) ∈ 𝑆) |
| 86 | 3, 19, 6 | srgmulgass 20182 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ SRing ∧ ((𝑁C(𝑗 − 1)) ∈ ℕ0 ∧
(((𝑁 + 1) − 𝑗) ↑ 𝐴) ∈ 𝑆 ∧ ((𝑗 − 1) ↑ 𝐵) ∈ 𝑆)) → (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × ((𝑗 − 1) ↑ 𝐵)) = ((𝑁C(𝑗 − 1)) · ((((𝑁 + 1) − 𝑗) ↑ 𝐴) × ((𝑗 − 1) ↑ 𝐵)))) |
| 87 | 61, 65, 78, 85, 86 | syl13anc 1374 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × ((𝑗 − 1) ↑ 𝐵)) = ((𝑁C(𝑗 − 1)) · ((((𝑁 + 1) − 𝑗) ↑ 𝐴) × ((𝑗 − 1) ↑ 𝐵)))) |
| 88 | 87 | eqcomd 2742 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑁C(𝑗 − 1)) · ((((𝑁 + 1) − 𝑗) ↑ 𝐴) × ((𝑗 − 1) ↑ 𝐵))) = (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × ((𝑗 − 1) ↑ 𝐵))) |
| 89 | 88 | oveq1d 7425 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑁C(𝑗 − 1)) · ((((𝑁 + 1) − 𝑗) ↑ 𝐴) × ((𝑗 − 1) ↑ 𝐵))) × 𝐵) = ((((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × ((𝑗 − 1) ↑ 𝐵)) × 𝐵)) |
| 90 | | srgmnd 20155 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) |
| 91 | 7, 90 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ Mnd) |
| 92 | 91 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → 𝑅 ∈ Mnd) |
| 93 | 3, 19, 92, 65, 78 | mulgnn0cld 19083 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) ∈ 𝑆) |
| 94 | 3, 6 | srgass 20159 |
. . . . . . . . 9
⊢ ((𝑅 ∈ SRing ∧ (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) ∈ 𝑆 ∧ ((𝑗 − 1) ↑ 𝐵) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → ((((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × ((𝑗 − 1) ↑ 𝐵)) × 𝐵) = (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × (((𝑗 − 1) ↑ 𝐵) × 𝐵))) |
| 95 | 61, 93, 85, 84, 94 | syl13anc 1374 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → ((((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × ((𝑗 − 1) ↑ 𝐵)) × 𝐵) = (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × (((𝑗 − 1) ↑ 𝐵) × 𝐵))) |
| 96 | 20, 6 | mgpplusg 20109 |
. . . . . . . . . . . 12
⊢ × =
(+g‘𝐺) |
| 97 | 66, 21, 96 | mulgnn0p1 19073 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Mnd ∧ (𝑗 − 1) ∈
ℕ0 ∧ 𝐵
∈ 𝑆) → (((𝑗 − 1) + 1) ↑ 𝐵) = (((𝑗 − 1) ↑ 𝐵) × 𝐵)) |
| 98 | 97 | eqcomd 2742 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Mnd ∧ (𝑗 − 1) ∈
ℕ0 ∧ 𝐵
∈ 𝑆) → (((𝑗 − 1) ↑ 𝐵) × 𝐵) = (((𝑗 − 1) + 1) ↑ 𝐵)) |
| 99 | 69, 83, 84, 98 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑗 − 1) ↑ 𝐵) × 𝐵) = (((𝑗 − 1) + 1) ↑ 𝐵)) |
| 100 | 99 | oveq2d 7426 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × (((𝑗 − 1) ↑ 𝐵) × 𝐵)) = (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × (((𝑗 − 1) + 1) ↑ 𝐵))) |
| 101 | 52 | zcnd 12703 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) → 𝑗 ∈ ℂ) |
| 102 | | 1cnd 11235 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) → 1 ∈
ℂ) |
| 103 | 101, 102 | npcand 11603 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) → ((𝑗 − 1) + 1) = 𝑗) |
| 104 | 103 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑗 − 1) + 1) = 𝑗) |
| 105 | 104 | oveq1d 7425 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑗 − 1) + 1) ↑ 𝐵) = (𝑗 ↑ 𝐵)) |
| 106 | 105 | oveq2d 7426 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × (((𝑗 − 1) + 1) ↑ 𝐵)) = (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × (𝑗 ↑ 𝐵))) |
| 107 | 95, 100, 106 | 3eqtrd 2775 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → ((((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × ((𝑗 − 1) ↑ 𝐵)) × 𝐵) = (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × (𝑗 ↑ 𝐵))) |
| 108 | 60, 89, 107 | 3eqtrd 2775 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑁C(𝑗 − 1)) · (((𝑁 − (𝑗 − 1)) ↑ 𝐴) × ((𝑗 − 1) ↑ 𝐵))) × 𝐵) = (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × (𝑗 ↑ 𝐵))) |
| 109 | 108 | mpteq2dva 5219 |
. . . . 5
⊢ (𝜑 → (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 − (𝑗 − 1)) ↑ 𝐴) × ((𝑗 − 1) ↑ 𝐵))) × 𝐵)) = (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × (𝑗 ↑ 𝐵)))) |
| 110 | 109 | oveq2d 7426 |
. . . 4
⊢ (𝜑 → (𝑅 Σg (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 − (𝑗 − 1)) ↑ 𝐴) × ((𝑗 − 1) ↑ 𝐵))) × 𝐵))) = (𝑅 Σg (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × (𝑗 ↑ 𝐵))))) |
| 111 | 71 | mpteq1i 5216 |
. . . . . . 7
⊢ (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × (𝑗 ↑ 𝐵))) = (𝑗 ∈ (1...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × (𝑗 ↑ 𝐵))) |
| 112 | | oveq1 7417 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑘 → (𝑗 − 1) = (𝑘 − 1)) |
| 113 | 112 | oveq2d 7426 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑘 → (𝑁C(𝑗 − 1)) = (𝑁C(𝑘 − 1))) |
| 114 | | oveq2 7418 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑘 → ((𝑁 + 1) − 𝑗) = ((𝑁 + 1) − 𝑘)) |
| 115 | 114 | oveq1d 7425 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑘 → (((𝑁 + 1) − 𝑗) ↑ 𝐴) = (((𝑁 + 1) − 𝑘) ↑ 𝐴)) |
| 116 | 113, 115 | oveq12d 7428 |
. . . . . . . . 9
⊢ (𝑗 = 𝑘 → ((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) = ((𝑁C(𝑘 − 1)) · (((𝑁 + 1) − 𝑘) ↑ 𝐴))) |
| 117 | | oveq1 7417 |
. . . . . . . . 9
⊢ (𝑗 = 𝑘 → (𝑗 ↑ 𝐵) = (𝑘 ↑ 𝐵)) |
| 118 | 116, 117 | oveq12d 7428 |
. . . . . . . 8
⊢ (𝑗 = 𝑘 → (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × (𝑗 ↑ 𝐵)) = (((𝑁C(𝑘 − 1)) · (((𝑁 + 1) − 𝑘) ↑ 𝐴)) × (𝑘 ↑ 𝐵))) |
| 119 | 118 | cbvmptv 5230 |
. . . . . . 7
⊢ (𝑗 ∈ (1...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × (𝑗 ↑ 𝐵))) = (𝑘 ∈ (1...(𝑁 + 1)) ↦ (((𝑁C(𝑘 − 1)) · (((𝑁 + 1) − 𝑘) ↑ 𝐴)) × (𝑘 ↑ 𝐵))) |
| 120 | 111, 119 | eqtri 2759 |
. . . . . 6
⊢ (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × (𝑗 ↑ 𝐵))) = (𝑘 ∈ (1...(𝑁 + 1)) ↦ (((𝑁C(𝑘 − 1)) · (((𝑁 + 1) − 𝑘) ↑ 𝐴)) × (𝑘 ↑ 𝐵))) |
| 121 | 120 | oveq2i 7421 |
. . . . 5
⊢ (𝑅 Σg
(𝑗 ∈ ((0 + 1)...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × (𝑗 ↑ 𝐵)))) = (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ (((𝑁C(𝑘 − 1)) · (((𝑁 + 1) − 𝑘) ↑ 𝐴)) × (𝑘 ↑ 𝐵)))) |
| 122 | | fzfid 13996 |
. . . . . . . . 9
⊢ (𝜑 → (1...(𝑁 + 1)) ∈ Fin) |
| 123 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 𝜑) |
| 124 | | elfzelz 13546 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (1...(𝑁 + 1)) → 𝑘 ∈ ℤ) |
| 125 | | peano2zm 12640 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℤ → (𝑘 − 1) ∈
ℤ) |
| 126 | 124, 125 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (1...(𝑁 + 1)) → (𝑘 − 1) ∈ ℤ) |
| 127 | | bccl 14345 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ (𝑘 − 1) ∈
ℤ) → (𝑁C(𝑘 − 1)) ∈
ℕ0) |
| 128 | 11, 126, 127 | syl2an 596 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (𝑁C(𝑘 − 1)) ∈
ℕ0) |
| 129 | | fznn0sub 13578 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (1...(𝑁 + 1)) → ((𝑁 + 1) − 𝑘) ∈
ℕ0) |
| 130 | 129 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 + 1))) → ((𝑁 + 1) − 𝑘) ∈
ℕ0) |
| 131 | | elfznn 13575 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (1...(𝑁 + 1)) → 𝑘 ∈ ℕ) |
| 132 | 131 | nnnn0d 12567 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (1...(𝑁 + 1)) → 𝑘 ∈ ℕ0) |
| 133 | 132 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 𝑘 ∈ ℕ0) |
| 134 | 3, 6, 19, 5, 20, 21, 7, 22, 9, 23, 11 | srgbinomlem2 20192 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑁C(𝑘 − 1)) ∈ ℕ0 ∧
((𝑁 + 1) − 𝑘) ∈ ℕ0
∧ 𝑘 ∈
ℕ0)) → ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ 𝑆) |
| 135 | 123, 128,
130, 133, 134 | syl13anc 1374 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 + 1))) → ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ 𝑆) |
| 136 | 135 | ralrimiva 3133 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑘 ∈ (1...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ 𝑆) |
| 137 | 3, 33, 122, 136 | gsummptcl 19953 |
. . . . . . . 8
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) ∈ 𝑆) |
| 138 | 3, 5, 4 | mndlid 18737 |
. . . . . . . 8
⊢ ((𝑅 ∈ Mnd ∧ (𝑅 Σg
(𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) ∈ 𝑆) → ((0g‘𝑅) + (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) = (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
| 139 | 91, 137, 138 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 →
((0g‘𝑅)
+ (𝑅 Σg
(𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) = (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
| 140 | | 0nn0 12521 |
. . . . . . . . . . 11
⊢ 0 ∈
ℕ0 |
| 141 | 140 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ∈
ℕ0) |
| 142 | | id 22 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝜑) |
| 143 | | 0z 12604 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℤ |
| 144 | 143, 34 | pm3.2i 470 |
. . . . . . . . . . . . 13
⊢ (0 ∈
ℤ ∧ 1 ∈ ℤ) |
| 145 | | zsubcl 12639 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℤ ∧ 1 ∈ ℤ) → (0 − 1) ∈
ℤ) |
| 146 | 144, 145 | mp1i 13 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0 − 1) ∈
ℤ) |
| 147 | | bccl 14345 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ (0 − 1) ∈ ℤ) → (𝑁C(0 − 1)) ∈
ℕ0) |
| 148 | 11, 146, 147 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁C(0 − 1)) ∈
ℕ0) |
| 149 | | nn0cn 12516 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℂ) |
| 150 | | peano2cn 11412 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℂ → (𝑁 + 1) ∈
ℂ) |
| 151 | 149, 150 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℂ) |
| 152 | 151 | subid1d 11588 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 + 1) − 0)
= (𝑁 + 1)) |
| 153 | | peano2nn0 12546 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ0) |
| 154 | 152, 153 | eqeltrd 2835 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 + 1) − 0)
∈ ℕ0) |
| 155 | 11, 154 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑁 + 1) − 0) ∈
ℕ0) |
| 156 | 3, 6, 19, 5, 20, 21, 7, 22, 9, 23, 11 | srgbinomlem2 20192 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑁C(0 − 1)) ∈ ℕ0
∧ ((𝑁 + 1) − 0)
∈ ℕ0 ∧ 0 ∈ ℕ0)) → ((𝑁C(0 − 1)) ·
((((𝑁 + 1) − 0) ↑ 𝐴) × (0 ↑ 𝐵))) ∈ 𝑆) |
| 157 | 142, 148,
155, 141, 156 | syl13anc 1374 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑁C(0 − 1)) · ((((𝑁 + 1) − 0) ↑ 𝐴) × (0 ↑ 𝐵))) ∈ 𝑆) |
| 158 | | oveq1 7417 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 0 → (𝑘 − 1) = (0 − 1)) |
| 159 | 158 | oveq2d 7426 |
. . . . . . . . . . . 12
⊢ (𝑘 = 0 → (𝑁C(𝑘 − 1)) = (𝑁C(0 − 1))) |
| 160 | | oveq2 7418 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 0 → ((𝑁 + 1) − 𝑘) = ((𝑁 + 1) − 0)) |
| 161 | 160 | oveq1d 7425 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 0 → (((𝑁 + 1) − 𝑘) ↑ 𝐴) = (((𝑁 + 1) − 0) ↑ 𝐴)) |
| 162 | | oveq1 7417 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 0 → (𝑘 ↑ 𝐵) = (0 ↑ 𝐵)) |
| 163 | 161, 162 | oveq12d 7428 |
. . . . . . . . . . . 12
⊢ (𝑘 = 0 → ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)) = ((((𝑁 + 1) − 0) ↑ 𝐴) × (0 ↑ 𝐵))) |
| 164 | 159, 163 | oveq12d 7428 |
. . . . . . . . . . 11
⊢ (𝑘 = 0 → ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) = ((𝑁C(0 − 1)) · ((((𝑁 + 1) − 0) ↑ 𝐴) × (0 ↑ 𝐵)))) |
| 165 | 3, 164 | gsumsn 19940 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Mnd ∧ 0 ∈
ℕ0 ∧ ((𝑁C(0 − 1)) · ((((𝑁 + 1) − 0) ↑ 𝐴) × (0 ↑ 𝐵))) ∈ 𝑆) → (𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) = ((𝑁C(0 − 1)) · ((((𝑁 + 1) − 0) ↑ 𝐴) × (0 ↑ 𝐵)))) |
| 166 | 91, 141, 157, 165 | syl3anc 1373 |
. . . . . . . . 9
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) = ((𝑁C(0 − 1)) · ((((𝑁 + 1) − 0) ↑ 𝐴) × (0 ↑ 𝐵)))) |
| 167 | | 0lt1 11764 |
. . . . . . . . . . . . . . 15
⊢ 0 <
1 |
| 168 | 167 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 < 1) |
| 169 | 168, 70 | breqtrrdi 5166 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 < (0 +
1)) |
| 170 | | 0re 11242 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
ℝ |
| 171 | | 1re 11240 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℝ |
| 172 | 170, 171,
170 | 3pm3.2i 1340 |
. . . . . . . . . . . . . 14
⊢ (0 ∈
ℝ ∧ 1 ∈ ℝ ∧ 0 ∈ ℝ) |
| 173 | | ltsubadd 11712 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ∈ ℝ) → ((0
− 1) < 0 ↔ 0 < (0 + 1))) |
| 174 | 172, 173 | mp1i 13 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((0 − 1) < 0
↔ 0 < (0 + 1))) |
| 175 | 169, 174 | mpbird 257 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0 − 1) <
0) |
| 176 | 175 | orcd 873 |
. . . . . . . . . . 11
⊢ (𝜑 → ((0 − 1) < 0 ∨
𝑁 < (0 −
1))) |
| 177 | | bcval4 14330 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ (0 − 1) ∈ ℤ ∧ ((0 − 1) < 0 ∨ 𝑁 < (0 − 1))) →
(𝑁C(0 − 1)) =
0) |
| 178 | 11, 146, 176, 177 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁C(0 − 1)) = 0) |
| 179 | 178 | oveq1d 7425 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑁C(0 − 1)) · ((((𝑁 + 1) − 0) ↑ 𝐴) × (0 ↑ 𝐵))) = (0 · ((((𝑁 + 1) − 0) ↑ 𝐴) × (0 ↑ 𝐵)))) |
| 180 | 66, 21, 68, 155, 22 | mulgnn0cld 19083 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝑁 + 1) − 0) ↑ 𝐴) ∈ 𝑆) |
| 181 | 66, 21, 68, 141, 9 | mulgnn0cld 19083 |
. . . . . . . . . . 11
⊢ (𝜑 → (0 ↑ 𝐵) ∈ 𝑆) |
| 182 | 3, 6 | srgcl 20158 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ SRing ∧ (((𝑁 + 1) − 0) ↑ 𝐴) ∈ 𝑆 ∧ (0 ↑ 𝐵) ∈ 𝑆) → ((((𝑁 + 1) − 0) ↑ 𝐴) × (0 ↑ 𝐵)) ∈ 𝑆) |
| 183 | 7, 180, 181, 182 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (𝜑 → ((((𝑁 + 1) − 0) ↑ 𝐴) × (0 ↑ 𝐵)) ∈ 𝑆) |
| 184 | 3, 4, 19 | mulg0 19062 |
. . . . . . . . . 10
⊢
(((((𝑁 + 1) −
0) ↑
𝐴) × (0 ↑ 𝐵)) ∈ 𝑆 → (0 · ((((𝑁 + 1) − 0) ↑ 𝐴) × (0 ↑ 𝐵))) = (0g‘𝑅)) |
| 185 | 183, 184 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (0 · ((((𝑁 + 1) − 0) ↑ 𝐴) × (0 ↑ 𝐵))) = (0g‘𝑅)) |
| 186 | 166, 179,
185 | 3eqtrrd 2776 |
. . . . . . . 8
⊢ (𝜑 → (0g‘𝑅) = (𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
| 187 | 186 | oveq1d 7425 |
. . . . . . 7
⊢ (𝜑 →
((0g‘𝑅)
+ (𝑅 Σg
(𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) = ((𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) + (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))))) |
| 188 | 139, 187 | eqtr3d 2773 |
. . . . . 6
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) = ((𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) + (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))))) |
| 189 | 7 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 𝑅 ∈ SRing) |
| 190 | 68 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 𝐺 ∈ Mnd) |
| 191 | 22 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 𝐴 ∈ 𝑆) |
| 192 | 66, 21, 190, 130, 191 | mulgnn0cld 19083 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (((𝑁 + 1) − 𝑘) ↑ 𝐴) ∈ 𝑆) |
| 193 | 9 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 𝐵 ∈ 𝑆) |
| 194 | 66, 21, 190, 133, 193 | mulgnn0cld 19083 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (𝑘 ↑ 𝐵) ∈ 𝑆) |
| 195 | 3, 19, 6 | srgmulgass 20182 |
. . . . . . . . 9
⊢ ((𝑅 ∈ SRing ∧ ((𝑁C(𝑘 − 1)) ∈ ℕ0 ∧
(((𝑁 + 1) − 𝑘) ↑ 𝐴) ∈ 𝑆 ∧ (𝑘 ↑ 𝐵) ∈ 𝑆)) → (((𝑁C(𝑘 − 1)) · (((𝑁 + 1) − 𝑘) ↑ 𝐴)) × (𝑘 ↑ 𝐵)) = ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))) |
| 196 | 189, 128,
192, 194, 195 | syl13anc 1374 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (((𝑁C(𝑘 − 1)) · (((𝑁 + 1) − 𝑘) ↑ 𝐴)) × (𝑘 ↑ 𝐵)) = ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))) |
| 197 | 196 | mpteq2dva 5219 |
. . . . . . 7
⊢ (𝜑 → (𝑘 ∈ (1...(𝑁 + 1)) ↦ (((𝑁C(𝑘 − 1)) · (((𝑁 + 1) − 𝑘) ↑ 𝐴)) × (𝑘 ↑ 𝐵))) = (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) |
| 198 | 197 | oveq2d 7426 |
. . . . . 6
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ (((𝑁C(𝑘 − 1)) · (((𝑁 + 1) − 𝑘) ↑ 𝐴)) × (𝑘 ↑ 𝐵)))) = (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
| 199 | 11, 153 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 + 1) ∈
ℕ0) |
| 200 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → 𝜑) |
| 201 | | elfzelz 13546 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℤ) |
| 202 | 201, 125 | syl 17 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...(𝑁 + 1)) → (𝑘 − 1) ∈ ℤ) |
| 203 | 11, 202, 127 | syl2an 596 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C(𝑘 − 1)) ∈
ℕ0) |
| 204 | | fznn0sub 13578 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...(𝑁 + 1)) → ((𝑁 + 1) − 𝑘) ∈
ℕ0) |
| 205 | 204 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁 + 1) − 𝑘) ∈
ℕ0) |
| 206 | | elfznn0 13642 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℕ0) |
| 207 | 206 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → 𝑘 ∈ ℕ0) |
| 208 | 200, 203,
205, 207, 134 | syl13anc 1374 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ 𝑆) |
| 209 | 3, 5, 33, 199, 208 | gsummptfzsplitl 19919 |
. . . . . . 7
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) = ((𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) + (𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))))) |
| 210 | | snfi 9062 |
. . . . . . . . . 10
⊢ {0}
∈ Fin |
| 211 | 210 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → {0} ∈
Fin) |
| 212 | 164 | eleq1d 2820 |
. . . . . . . . . . . 12
⊢ (𝑘 = 0 → (((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ 𝑆 ↔ ((𝑁C(0 − 1)) · ((((𝑁 + 1) − 0) ↑ 𝐴) × (0 ↑ 𝐵))) ∈ 𝑆)) |
| 213 | 212 | ralsng 4656 |
. . . . . . . . . . 11
⊢ (0 ∈
ℕ0 → (∀𝑘 ∈ {0} ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ 𝑆 ↔ ((𝑁C(0 − 1)) · ((((𝑁 + 1) − 0) ↑ 𝐴) × (0 ↑ 𝐵))) ∈ 𝑆)) |
| 214 | 140, 213 | ax-mp 5 |
. . . . . . . . . 10
⊢
(∀𝑘 ∈
{0} ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ 𝑆 ↔ ((𝑁C(0 − 1)) · ((((𝑁 + 1) − 0) ↑ 𝐴) × (0 ↑ 𝐵))) ∈ 𝑆) |
| 215 | 157, 214 | sylibr 234 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑘 ∈ {0} ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ 𝑆) |
| 216 | 3, 33, 211, 215 | gsummptcl 19953 |
. . . . . . . 8
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) ∈ 𝑆) |
| 217 | 3, 5 | cmncom 19784 |
. . . . . . . 8
⊢ ((𝑅 ∈ CMnd ∧ (𝑅 Σg
(𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) ∈ 𝑆 ∧ (𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) ∈ 𝑆) → ((𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) + (𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) = ((𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) + (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))))) |
| 218 | 33, 137, 216, 217 | syl3anc 1373 |
. . . . . . 7
⊢ (𝜑 → ((𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) + (𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) = ((𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) + (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))))) |
| 219 | 209, 218 | eqtrd 2771 |
. . . . . 6
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) = ((𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) + (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))))) |
| 220 | 188, 198,
219 | 3eqtr4d 2781 |
. . . . 5
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ (((𝑁C(𝑘 − 1)) · (((𝑁 + 1) − 𝑘) ↑ 𝐴)) × (𝑘 ↑ 𝐵)))) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
| 221 | 121, 220 | eqtrid 2783 |
. . . 4
⊢ (𝜑 → (𝑅 Σg (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × (𝑗 ↑ 𝐵)))) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
| 222 | 49, 110, 221 | 3eqtrd 2775 |
. . 3
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ (((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) × 𝐵))) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
| 223 | 31, 222 | eqtr3d 2773 |
. 2
⊢ (𝜑 → ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) × 𝐵) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
| 224 | 2, 223 | sylan9eqr 2793 |
1
⊢ ((𝜑 ∧ 𝜓) → ((𝑁 ↑ (𝐴 + 𝐵)) × 𝐵) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |