MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgbinomlem4 Structured version   Visualization version   GIF version

Theorem srgbinomlem4 20138
Description: Lemma 4 for srgbinomlem 20139. (Contributed by AV, 24-Aug-2019.) (Proof shortened by AV, 19-Nov-2019.)
Hypotheses
Ref Expression
srgbinom.s 𝑆 = (Base‘𝑅)
srgbinom.m × = (.r𝑅)
srgbinom.t · = (.g𝑅)
srgbinom.a + = (+g𝑅)
srgbinom.g 𝐺 = (mulGrp‘𝑅)
srgbinom.e = (.g𝐺)
srgbinomlem.r (𝜑𝑅 ∈ SRing)
srgbinomlem.a (𝜑𝐴𝑆)
srgbinomlem.b (𝜑𝐵𝑆)
srgbinomlem.c (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
srgbinomlem.n (𝜑𝑁 ∈ ℕ0)
srgbinomlem.i (𝜓 → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
Assertion
Ref Expression
srgbinomlem4 ((𝜑𝜓) → ((𝑁 (𝐴 + 𝐵)) × 𝐵) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑁   𝑅,𝑘   𝑆,𝑘   · ,𝑘   × ,𝑘   ,𝑘   𝜑,𝑘
Allowed substitution hints:   𝜓(𝑘)   + (𝑘)   𝐺(𝑘)

Proof of Theorem srgbinomlem4
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 srgbinomlem.i . . 3 (𝜓 → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
21oveq1d 7402 . 2 (𝜓 → ((𝑁 (𝐴 + 𝐵)) × 𝐵) = ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))) × 𝐵))
3 srgbinom.s . . . 4 𝑆 = (Base‘𝑅)
4 eqid 2729 . . . 4 (0g𝑅) = (0g𝑅)
5 srgbinom.a . . . 4 + = (+g𝑅)
6 srgbinom.m . . . 4 × = (.r𝑅)
7 srgbinomlem.r . . . 4 (𝜑𝑅 ∈ SRing)
8 ovexd 7422 . . . 4 (𝜑 → (0...𝑁) ∈ V)
9 srgbinomlem.b . . . 4 (𝜑𝐵𝑆)
10 simpl 482 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → 𝜑)
11 srgbinomlem.n . . . . . 6 (𝜑𝑁 ∈ ℕ0)
12 elfzelz 13485 . . . . . 6 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ)
13 bccl 14287 . . . . . 6 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (𝑁C𝑘) ∈ ℕ0)
1411, 12, 13syl2an 596 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℕ0)
15 fznn0sub 13517 . . . . . 6 (𝑘 ∈ (0...𝑁) → (𝑁𝑘) ∈ ℕ0)
1615adantl 481 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑁𝑘) ∈ ℕ0)
17 elfznn0 13581 . . . . . 6 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
1817adantl 481 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
19 srgbinom.t . . . . . 6 · = (.g𝑅)
20 srgbinom.g . . . . . 6 𝐺 = (mulGrp‘𝑅)
21 srgbinom.e . . . . . 6 = (.g𝐺)
22 srgbinomlem.a . . . . . 6 (𝜑𝐴𝑆)
23 srgbinomlem.c . . . . . 6 (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
243, 6, 19, 5, 20, 21, 7, 22, 9, 23, 11srgbinomlem2 20136 . . . . 5 ((𝜑 ∧ ((𝑁C𝑘) ∈ ℕ0 ∧ (𝑁𝑘) ∈ ℕ0𝑘 ∈ ℕ0)) → ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
2510, 14, 16, 18, 24syl13anc 1374 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
26 eqid 2729 . . . . 5 (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵)))) = (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))
27 fzfid 13938 . . . . 5 (𝜑 → (0...𝑁) ∈ Fin)
28 ovexd 7422 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) ∈ V)
29 fvexd 6873 . . . . 5 (𝜑 → (0g𝑅) ∈ V)
3026, 27, 28, 29fsuppmptdm 9327 . . . 4 (𝜑 → (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵)))) finSupp (0g𝑅))
313, 4, 5, 6, 7, 8, 9, 25, 30srgsummulcr 20132 . . 3 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ (((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) × 𝐵))) = ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))) × 𝐵))
32 srgcmn 20098 . . . . . 6 (𝑅 ∈ SRing → 𝑅 ∈ CMnd)
337, 32syl 17 . . . . 5 (𝜑𝑅 ∈ CMnd)
34 1z 12563 . . . . . 6 1 ∈ ℤ
3534a1i 11 . . . . 5 (𝜑 → 1 ∈ ℤ)
36 0zd 12541 . . . . 5 (𝜑 → 0 ∈ ℤ)
3711nn0zd 12555 . . . . 5 (𝜑𝑁 ∈ ℤ)
387adantr 480 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑅 ∈ SRing)
399adantr 480 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐵𝑆)
403, 6srgcl 20102 . . . . . 6 ((𝑅 ∈ SRing ∧ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆𝐵𝑆) → (((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) × 𝐵) ∈ 𝑆)
4138, 25, 39, 40syl3anc 1373 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) × 𝐵) ∈ 𝑆)
42 oveq2 7395 . . . . . . 7 (𝑘 = (𝑗 − 1) → (𝑁C𝑘) = (𝑁C(𝑗 − 1)))
43 oveq2 7395 . . . . . . . . 9 (𝑘 = (𝑗 − 1) → (𝑁𝑘) = (𝑁 − (𝑗 − 1)))
4443oveq1d 7402 . . . . . . . 8 (𝑘 = (𝑗 − 1) → ((𝑁𝑘) 𝐴) = ((𝑁 − (𝑗 − 1)) 𝐴))
45 oveq1 7394 . . . . . . . 8 (𝑘 = (𝑗 − 1) → (𝑘 𝐵) = ((𝑗 − 1) 𝐵))
4644, 45oveq12d 7405 . . . . . . 7 (𝑘 = (𝑗 − 1) → (((𝑁𝑘) 𝐴) × (𝑘 𝐵)) = (((𝑁 − (𝑗 − 1)) 𝐴) × ((𝑗 − 1) 𝐵)))
4742, 46oveq12d 7405 . . . . . 6 (𝑘 = (𝑗 − 1) → ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) = ((𝑁C(𝑗 − 1)) · (((𝑁 − (𝑗 − 1)) 𝐴) × ((𝑗 − 1) 𝐵))))
4847oveq1d 7402 . . . . 5 (𝑘 = (𝑗 − 1) → (((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) × 𝐵) = (((𝑁C(𝑗 − 1)) · (((𝑁 − (𝑗 − 1)) 𝐴) × ((𝑗 − 1) 𝐵))) × 𝐵))
493, 4, 33, 35, 36, 37, 41, 48gsummptshft 19866 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ (((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) × 𝐵))) = (𝑅 Σg (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 − (𝑗 − 1)) 𝐴) × ((𝑗 − 1) 𝐵))) × 𝐵))))
5011nn0cnd 12505 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
5150adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → 𝑁 ∈ ℂ)
52 elfzelz 13485 . . . . . . . . . . . . . 14 (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) → 𝑗 ∈ ℤ)
5352adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → 𝑗 ∈ ℤ)
5453zcnd 12639 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → 𝑗 ∈ ℂ)
55 1cnd 11169 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → 1 ∈ ℂ)
5651, 54, 55subsub3d 11563 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (𝑁 − (𝑗 − 1)) = ((𝑁 + 1) − 𝑗))
5756oveq1d 7402 . . . . . . . . . 10 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑁 − (𝑗 − 1)) 𝐴) = (((𝑁 + 1) − 𝑗) 𝐴))
5857oveq1d 7402 . . . . . . . . 9 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑁 − (𝑗 − 1)) 𝐴) × ((𝑗 − 1) 𝐵)) = ((((𝑁 + 1) − 𝑗) 𝐴) × ((𝑗 − 1) 𝐵)))
5958oveq2d 7403 . . . . . . . 8 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑁C(𝑗 − 1)) · (((𝑁 − (𝑗 − 1)) 𝐴) × ((𝑗 − 1) 𝐵))) = ((𝑁C(𝑗 − 1)) · ((((𝑁 + 1) − 𝑗) 𝐴) × ((𝑗 − 1) 𝐵))))
6059oveq1d 7402 . . . . . . 7 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑁C(𝑗 − 1)) · (((𝑁 − (𝑗 − 1)) 𝐴) × ((𝑗 − 1) 𝐵))) × 𝐵) = (((𝑁C(𝑗 − 1)) · ((((𝑁 + 1) − 𝑗) 𝐴) × ((𝑗 − 1) 𝐵))) × 𝐵))
617adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → 𝑅 ∈ SRing)
62 peano2zm 12576 . . . . . . . . . . . 12 (𝑗 ∈ ℤ → (𝑗 − 1) ∈ ℤ)
6352, 62syl 17 . . . . . . . . . . 11 (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) → (𝑗 − 1) ∈ ℤ)
64 bccl 14287 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑗 − 1) ∈ ℤ) → (𝑁C(𝑗 − 1)) ∈ ℕ0)
6511, 63, 64syl2an 596 . . . . . . . . . 10 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (𝑁C(𝑗 − 1)) ∈ ℕ0)
6620, 3mgpbas 20054 . . . . . . . . . . 11 𝑆 = (Base‘𝐺)
6720srgmgp 20100 . . . . . . . . . . . . 13 (𝑅 ∈ SRing → 𝐺 ∈ Mnd)
687, 67syl 17 . . . . . . . . . . . 12 (𝜑𝐺 ∈ Mnd)
6968adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → 𝐺 ∈ Mnd)
70 0p1e1 12303 . . . . . . . . . . . . . . 15 (0 + 1) = 1
7170oveq1i 7397 . . . . . . . . . . . . . 14 ((0 + 1)...(𝑁 + 1)) = (1...(𝑁 + 1))
7271eleq2i 2820 . . . . . . . . . . . . 13 (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) ↔ 𝑗 ∈ (1...(𝑁 + 1)))
73 fznn0sub 13517 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...(𝑁 + 1)) → ((𝑁 + 1) − 𝑗) ∈ ℕ0)
7473a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑗 ∈ (1...(𝑁 + 1)) → ((𝑁 + 1) − 𝑗) ∈ ℕ0))
7572, 74biimtrid 242 . . . . . . . . . . . 12 (𝜑 → (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) → ((𝑁 + 1) − 𝑗) ∈ ℕ0))
7675imp 406 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑁 + 1) − 𝑗) ∈ ℕ0)
7722adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → 𝐴𝑆)
7866, 21, 69, 76, 77mulgnn0cld 19027 . . . . . . . . . 10 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑁 + 1) − 𝑗) 𝐴) ∈ 𝑆)
79 elfznn 13514 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...(𝑁 + 1)) → 𝑗 ∈ ℕ)
80 nnm1nn0 12483 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → (𝑗 − 1) ∈ ℕ0)
8179, 80syl 17 . . . . . . . . . . . . 13 (𝑗 ∈ (1...(𝑁 + 1)) → (𝑗 − 1) ∈ ℕ0)
8272, 81sylbi 217 . . . . . . . . . . . 12 (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) → (𝑗 − 1) ∈ ℕ0)
8382adantl 481 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (𝑗 − 1) ∈ ℕ0)
849adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → 𝐵𝑆)
8566, 21, 69, 83, 84mulgnn0cld 19027 . . . . . . . . . 10 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑗 − 1) 𝐵) ∈ 𝑆)
863, 19, 6srgmulgass 20126 . . . . . . . . . 10 ((𝑅 ∈ SRing ∧ ((𝑁C(𝑗 − 1)) ∈ ℕ0 ∧ (((𝑁 + 1) − 𝑗) 𝐴) ∈ 𝑆 ∧ ((𝑗 − 1) 𝐵) ∈ 𝑆)) → (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × ((𝑗 − 1) 𝐵)) = ((𝑁C(𝑗 − 1)) · ((((𝑁 + 1) − 𝑗) 𝐴) × ((𝑗 − 1) 𝐵))))
8761, 65, 78, 85, 86syl13anc 1374 . . . . . . . . 9 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × ((𝑗 − 1) 𝐵)) = ((𝑁C(𝑗 − 1)) · ((((𝑁 + 1) − 𝑗) 𝐴) × ((𝑗 − 1) 𝐵))))
8887eqcomd 2735 . . . . . . . 8 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑁C(𝑗 − 1)) · ((((𝑁 + 1) − 𝑗) 𝐴) × ((𝑗 − 1) 𝐵))) = (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × ((𝑗 − 1) 𝐵)))
8988oveq1d 7402 . . . . . . 7 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑁C(𝑗 − 1)) · ((((𝑁 + 1) − 𝑗) 𝐴) × ((𝑗 − 1) 𝐵))) × 𝐵) = ((((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × ((𝑗 − 1) 𝐵)) × 𝐵))
90 srgmnd 20099 . . . . . . . . . . . 12 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
917, 90syl 17 . . . . . . . . . . 11 (𝜑𝑅 ∈ Mnd)
9291adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → 𝑅 ∈ Mnd)
933, 19, 92, 65, 78mulgnn0cld 19027 . . . . . . . . 9 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) ∈ 𝑆)
943, 6srgass 20103 . . . . . . . . 9 ((𝑅 ∈ SRing ∧ (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) ∈ 𝑆 ∧ ((𝑗 − 1) 𝐵) ∈ 𝑆𝐵𝑆)) → ((((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × ((𝑗 − 1) 𝐵)) × 𝐵) = (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × (((𝑗 − 1) 𝐵) × 𝐵)))
9561, 93, 85, 84, 94syl13anc 1374 . . . . . . . 8 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → ((((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × ((𝑗 − 1) 𝐵)) × 𝐵) = (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × (((𝑗 − 1) 𝐵) × 𝐵)))
9620, 6mgpplusg 20053 . . . . . . . . . . . 12 × = (+g𝐺)
9766, 21, 96mulgnn0p1 19017 . . . . . . . . . . 11 ((𝐺 ∈ Mnd ∧ (𝑗 − 1) ∈ ℕ0𝐵𝑆) → (((𝑗 − 1) + 1) 𝐵) = (((𝑗 − 1) 𝐵) × 𝐵))
9897eqcomd 2735 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ (𝑗 − 1) ∈ ℕ0𝐵𝑆) → (((𝑗 − 1) 𝐵) × 𝐵) = (((𝑗 − 1) + 1) 𝐵))
9969, 83, 84, 98syl3anc 1373 . . . . . . . . 9 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑗 − 1) 𝐵) × 𝐵) = (((𝑗 − 1) + 1) 𝐵))
10099oveq2d 7403 . . . . . . . 8 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × (((𝑗 − 1) 𝐵) × 𝐵)) = (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × (((𝑗 − 1) + 1) 𝐵)))
10152zcnd 12639 . . . . . . . . . . . 12 (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) → 𝑗 ∈ ℂ)
102 1cnd 11169 . . . . . . . . . . . 12 (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) → 1 ∈ ℂ)
103101, 102npcand 11537 . . . . . . . . . . 11 (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) → ((𝑗 − 1) + 1) = 𝑗)
104103adantl 481 . . . . . . . . . 10 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑗 − 1) + 1) = 𝑗)
105104oveq1d 7402 . . . . . . . . 9 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑗 − 1) + 1) 𝐵) = (𝑗 𝐵))
106105oveq2d 7403 . . . . . . . 8 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × (((𝑗 − 1) + 1) 𝐵)) = (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × (𝑗 𝐵)))
10795, 100, 1063eqtrd 2768 . . . . . . 7 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → ((((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × ((𝑗 − 1) 𝐵)) × 𝐵) = (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × (𝑗 𝐵)))
10860, 89, 1073eqtrd 2768 . . . . . 6 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑁C(𝑗 − 1)) · (((𝑁 − (𝑗 − 1)) 𝐴) × ((𝑗 − 1) 𝐵))) × 𝐵) = (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × (𝑗 𝐵)))
109108mpteq2dva 5200 . . . . 5 (𝜑 → (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 − (𝑗 − 1)) 𝐴) × ((𝑗 − 1) 𝐵))) × 𝐵)) = (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × (𝑗 𝐵))))
110109oveq2d 7403 . . . 4 (𝜑 → (𝑅 Σg (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 − (𝑗 − 1)) 𝐴) × ((𝑗 − 1) 𝐵))) × 𝐵))) = (𝑅 Σg (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × (𝑗 𝐵)))))
11171mpteq1i 5198 . . . . . . 7 (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × (𝑗 𝐵))) = (𝑗 ∈ (1...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × (𝑗 𝐵)))
112 oveq1 7394 . . . . . . . . . . 11 (𝑗 = 𝑘 → (𝑗 − 1) = (𝑘 − 1))
113112oveq2d 7403 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝑁C(𝑗 − 1)) = (𝑁C(𝑘 − 1)))
114 oveq2 7395 . . . . . . . . . . 11 (𝑗 = 𝑘 → ((𝑁 + 1) − 𝑗) = ((𝑁 + 1) − 𝑘))
115114oveq1d 7402 . . . . . . . . . 10 (𝑗 = 𝑘 → (((𝑁 + 1) − 𝑗) 𝐴) = (((𝑁 + 1) − 𝑘) 𝐴))
116113, 115oveq12d 7405 . . . . . . . . 9 (𝑗 = 𝑘 → ((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) = ((𝑁C(𝑘 − 1)) · (((𝑁 + 1) − 𝑘) 𝐴)))
117 oveq1 7394 . . . . . . . . 9 (𝑗 = 𝑘 → (𝑗 𝐵) = (𝑘 𝐵))
118116, 117oveq12d 7405 . . . . . . . 8 (𝑗 = 𝑘 → (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × (𝑗 𝐵)) = (((𝑁C(𝑘 − 1)) · (((𝑁 + 1) − 𝑘) 𝐴)) × (𝑘 𝐵)))
119118cbvmptv 5211 . . . . . . 7 (𝑗 ∈ (1...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × (𝑗 𝐵))) = (𝑘 ∈ (1...(𝑁 + 1)) ↦ (((𝑁C(𝑘 − 1)) · (((𝑁 + 1) − 𝑘) 𝐴)) × (𝑘 𝐵)))
120111, 119eqtri 2752 . . . . . 6 (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × (𝑗 𝐵))) = (𝑘 ∈ (1...(𝑁 + 1)) ↦ (((𝑁C(𝑘 − 1)) · (((𝑁 + 1) − 𝑘) 𝐴)) × (𝑘 𝐵)))
121120oveq2i 7398 . . . . 5 (𝑅 Σg (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × (𝑗 𝐵)))) = (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ (((𝑁C(𝑘 − 1)) · (((𝑁 + 1) − 𝑘) 𝐴)) × (𝑘 𝐵))))
122 fzfid 13938 . . . . . . . . 9 (𝜑 → (1...(𝑁 + 1)) ∈ Fin)
123 simpl 482 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1...(𝑁 + 1))) → 𝜑)
124 elfzelz 13485 . . . . . . . . . . . . 13 (𝑘 ∈ (1...(𝑁 + 1)) → 𝑘 ∈ ℤ)
125 peano2zm 12576 . . . . . . . . . . . . 13 (𝑘 ∈ ℤ → (𝑘 − 1) ∈ ℤ)
126124, 125syl 17 . . . . . . . . . . . 12 (𝑘 ∈ (1...(𝑁 + 1)) → (𝑘 − 1) ∈ ℤ)
127 bccl 14287 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑘 − 1) ∈ ℤ) → (𝑁C(𝑘 − 1)) ∈ ℕ0)
12811, 126, 127syl2an 596 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1...(𝑁 + 1))) → (𝑁C(𝑘 − 1)) ∈ ℕ0)
129 fznn0sub 13517 . . . . . . . . . . . 12 (𝑘 ∈ (1...(𝑁 + 1)) → ((𝑁 + 1) − 𝑘) ∈ ℕ0)
130129adantl 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1...(𝑁 + 1))) → ((𝑁 + 1) − 𝑘) ∈ ℕ0)
131 elfznn 13514 . . . . . . . . . . . . 13 (𝑘 ∈ (1...(𝑁 + 1)) → 𝑘 ∈ ℕ)
132131nnnn0d 12503 . . . . . . . . . . . 12 (𝑘 ∈ (1...(𝑁 + 1)) → 𝑘 ∈ ℕ0)
133132adantl 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1...(𝑁 + 1))) → 𝑘 ∈ ℕ0)
1343, 6, 19, 5, 20, 21, 7, 22, 9, 23, 11srgbinomlem2 20136 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑁C(𝑘 − 1)) ∈ ℕ0 ∧ ((𝑁 + 1) − 𝑘) ∈ ℕ0𝑘 ∈ ℕ0)) → ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
135123, 128, 130, 133, 134syl13anc 1374 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...(𝑁 + 1))) → ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
136135ralrimiva 3125 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ (1...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
1373, 33, 122, 136gsummptcl 19897 . . . . . . . 8 (𝜑 → (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) ∈ 𝑆)
1383, 5, 4mndlid 18681 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) ∈ 𝑆) → ((0g𝑅) + (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))) = (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
13991, 137, 138syl2anc 584 . . . . . . 7 (𝜑 → ((0g𝑅) + (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))) = (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
140 0nn0 12457 . . . . . . . . . . 11 0 ∈ ℕ0
141140a1i 11 . . . . . . . . . 10 (𝜑 → 0 ∈ ℕ0)
142 id 22 . . . . . . . . . . 11 (𝜑𝜑)
143 0z 12540 . . . . . . . . . . . . . 14 0 ∈ ℤ
144143, 34pm3.2i 470 . . . . . . . . . . . . 13 (0 ∈ ℤ ∧ 1 ∈ ℤ)
145 zsubcl 12575 . . . . . . . . . . . . 13 ((0 ∈ ℤ ∧ 1 ∈ ℤ) → (0 − 1) ∈ ℤ)
146144, 145mp1i 13 . . . . . . . . . . . 12 (𝜑 → (0 − 1) ∈ ℤ)
147 bccl 14287 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (0 − 1) ∈ ℤ) → (𝑁C(0 − 1)) ∈ ℕ0)
14811, 146, 147syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑁C(0 − 1)) ∈ ℕ0)
149 nn0cn 12452 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
150 peano2cn 11346 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℂ → (𝑁 + 1) ∈ ℂ)
151149, 150syl 17 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
152151subid1d 11522 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 0) = (𝑁 + 1))
153 peano2nn0 12482 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
154152, 153eqeltrd 2828 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 0) ∈ ℕ0)
15511, 154syl 17 . . . . . . . . . . 11 (𝜑 → ((𝑁 + 1) − 0) ∈ ℕ0)
1563, 6, 19, 5, 20, 21, 7, 22, 9, 23, 11srgbinomlem2 20136 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑁C(0 − 1)) ∈ ℕ0 ∧ ((𝑁 + 1) − 0) ∈ ℕ0 ∧ 0 ∈ ℕ0)) → ((𝑁C(0 − 1)) · ((((𝑁 + 1) − 0) 𝐴) × (0 𝐵))) ∈ 𝑆)
157142, 148, 155, 141, 156syl13anc 1374 . . . . . . . . . 10 (𝜑 → ((𝑁C(0 − 1)) · ((((𝑁 + 1) − 0) 𝐴) × (0 𝐵))) ∈ 𝑆)
158 oveq1 7394 . . . . . . . . . . . . 13 (𝑘 = 0 → (𝑘 − 1) = (0 − 1))
159158oveq2d 7403 . . . . . . . . . . . 12 (𝑘 = 0 → (𝑁C(𝑘 − 1)) = (𝑁C(0 − 1)))
160 oveq2 7395 . . . . . . . . . . . . . 14 (𝑘 = 0 → ((𝑁 + 1) − 𝑘) = ((𝑁 + 1) − 0))
161160oveq1d 7402 . . . . . . . . . . . . 13 (𝑘 = 0 → (((𝑁 + 1) − 𝑘) 𝐴) = (((𝑁 + 1) − 0) 𝐴))
162 oveq1 7394 . . . . . . . . . . . . 13 (𝑘 = 0 → (𝑘 𝐵) = (0 𝐵))
163161, 162oveq12d 7405 . . . . . . . . . . . 12 (𝑘 = 0 → ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)) = ((((𝑁 + 1) − 0) 𝐴) × (0 𝐵)))
164159, 163oveq12d 7405 . . . . . . . . . . 11 (𝑘 = 0 → ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) = ((𝑁C(0 − 1)) · ((((𝑁 + 1) − 0) 𝐴) × (0 𝐵))))
1653, 164gsumsn 19884 . . . . . . . . . 10 ((𝑅 ∈ Mnd ∧ 0 ∈ ℕ0 ∧ ((𝑁C(0 − 1)) · ((((𝑁 + 1) − 0) 𝐴) × (0 𝐵))) ∈ 𝑆) → (𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = ((𝑁C(0 − 1)) · ((((𝑁 + 1) − 0) 𝐴) × (0 𝐵))))
16691, 141, 157, 165syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = ((𝑁C(0 − 1)) · ((((𝑁 + 1) − 0) 𝐴) × (0 𝐵))))
167 0lt1 11700 . . . . . . . . . . . . . . 15 0 < 1
168167a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 < 1)
169168, 70breqtrrdi 5149 . . . . . . . . . . . . 13 (𝜑 → 0 < (0 + 1))
170 0re 11176 . . . . . . . . . . . . . . 15 0 ∈ ℝ
171 1re 11174 . . . . . . . . . . . . . . 15 1 ∈ ℝ
172170, 171, 1703pm3.2i 1340 . . . . . . . . . . . . . 14 (0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ∈ ℝ)
173 ltsubadd 11648 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ∈ ℝ) → ((0 − 1) < 0 ↔ 0 < (0 + 1)))
174172, 173mp1i 13 . . . . . . . . . . . . 13 (𝜑 → ((0 − 1) < 0 ↔ 0 < (0 + 1)))
175169, 174mpbird 257 . . . . . . . . . . . 12 (𝜑 → (0 − 1) < 0)
176175orcd 873 . . . . . . . . . . 11 (𝜑 → ((0 − 1) < 0 ∨ 𝑁 < (0 − 1)))
177 bcval4 14272 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (0 − 1) ∈ ℤ ∧ ((0 − 1) < 0 ∨ 𝑁 < (0 − 1))) → (𝑁C(0 − 1)) = 0)
17811, 146, 176, 177syl3anc 1373 . . . . . . . . . 10 (𝜑 → (𝑁C(0 − 1)) = 0)
179178oveq1d 7402 . . . . . . . . 9 (𝜑 → ((𝑁C(0 − 1)) · ((((𝑁 + 1) − 0) 𝐴) × (0 𝐵))) = (0 · ((((𝑁 + 1) − 0) 𝐴) × (0 𝐵))))
18066, 21, 68, 155, 22mulgnn0cld 19027 . . . . . . . . . . 11 (𝜑 → (((𝑁 + 1) − 0) 𝐴) ∈ 𝑆)
18166, 21, 68, 141, 9mulgnn0cld 19027 . . . . . . . . . . 11 (𝜑 → (0 𝐵) ∈ 𝑆)
1823, 6srgcl 20102 . . . . . . . . . . 11 ((𝑅 ∈ SRing ∧ (((𝑁 + 1) − 0) 𝐴) ∈ 𝑆 ∧ (0 𝐵) ∈ 𝑆) → ((((𝑁 + 1) − 0) 𝐴) × (0 𝐵)) ∈ 𝑆)
1837, 180, 181, 182syl3anc 1373 . . . . . . . . . 10 (𝜑 → ((((𝑁 + 1) − 0) 𝐴) × (0 𝐵)) ∈ 𝑆)
1843, 4, 19mulg0 19006 . . . . . . . . . 10 (((((𝑁 + 1) − 0) 𝐴) × (0 𝐵)) ∈ 𝑆 → (0 · ((((𝑁 + 1) − 0) 𝐴) × (0 𝐵))) = (0g𝑅))
185183, 184syl 17 . . . . . . . . 9 (𝜑 → (0 · ((((𝑁 + 1) − 0) 𝐴) × (0 𝐵))) = (0g𝑅))
186166, 179, 1853eqtrrd 2769 . . . . . . . 8 (𝜑 → (0g𝑅) = (𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
187186oveq1d 7402 . . . . . . 7 (𝜑 → ((0g𝑅) + (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))) = ((𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
188139, 187eqtr3d 2766 . . . . . 6 (𝜑 → (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = ((𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
1897adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...(𝑁 + 1))) → 𝑅 ∈ SRing)
19068adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...(𝑁 + 1))) → 𝐺 ∈ Mnd)
19122adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...(𝑁 + 1))) → 𝐴𝑆)
19266, 21, 190, 130, 191mulgnn0cld 19027 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...(𝑁 + 1))) → (((𝑁 + 1) − 𝑘) 𝐴) ∈ 𝑆)
1939adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...(𝑁 + 1))) → 𝐵𝑆)
19466, 21, 190, 133, 193mulgnn0cld 19027 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...(𝑁 + 1))) → (𝑘 𝐵) ∈ 𝑆)
1953, 19, 6srgmulgass 20126 . . . . . . . . 9 ((𝑅 ∈ SRing ∧ ((𝑁C(𝑘 − 1)) ∈ ℕ0 ∧ (((𝑁 + 1) − 𝑘) 𝐴) ∈ 𝑆 ∧ (𝑘 𝐵) ∈ 𝑆)) → (((𝑁C(𝑘 − 1)) · (((𝑁 + 1) − 𝑘) 𝐴)) × (𝑘 𝐵)) = ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))
196189, 128, 192, 194, 195syl13anc 1374 . . . . . . . 8 ((𝜑𝑘 ∈ (1...(𝑁 + 1))) → (((𝑁C(𝑘 − 1)) · (((𝑁 + 1) − 𝑘) 𝐴)) × (𝑘 𝐵)) = ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))
197196mpteq2dva 5200 . . . . . . 7 (𝜑 → (𝑘 ∈ (1...(𝑁 + 1)) ↦ (((𝑁C(𝑘 − 1)) · (((𝑁 + 1) − 𝑘) 𝐴)) × (𝑘 𝐵))) = (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))
198197oveq2d 7403 . . . . . 6 (𝜑 → (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ (((𝑁C(𝑘 − 1)) · (((𝑁 + 1) − 𝑘) 𝐴)) × (𝑘 𝐵)))) = (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
19911, 153syl 17 . . . . . . . 8 (𝜑 → (𝑁 + 1) ∈ ℕ0)
200 simpl 482 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝜑)
201 elfzelz 13485 . . . . . . . . . . 11 (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℤ)
202201, 125syl 17 . . . . . . . . . 10 (𝑘 ∈ (0...(𝑁 + 1)) → (𝑘 − 1) ∈ ℤ)
20311, 202, 127syl2an 596 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C(𝑘 − 1)) ∈ ℕ0)
204 fznn0sub 13517 . . . . . . . . . 10 (𝑘 ∈ (0...(𝑁 + 1)) → ((𝑁 + 1) − 𝑘) ∈ ℕ0)
205204adantl 481 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁 + 1) − 𝑘) ∈ ℕ0)
206 elfznn0 13581 . . . . . . . . . 10 (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℕ0)
207206adantl 481 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑘 ∈ ℕ0)
208200, 203, 205, 207, 134syl13anc 1374 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
2093, 5, 33, 199, 208gsummptfzsplitl 19863 . . . . . . 7 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = ((𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
210 snfi 9014 . . . . . . . . . 10 {0} ∈ Fin
211210a1i 11 . . . . . . . . 9 (𝜑 → {0} ∈ Fin)
212164eleq1d 2813 . . . . . . . . . . . 12 (𝑘 = 0 → (((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆 ↔ ((𝑁C(0 − 1)) · ((((𝑁 + 1) − 0) 𝐴) × (0 𝐵))) ∈ 𝑆))
213212ralsng 4639 . . . . . . . . . . 11 (0 ∈ ℕ0 → (∀𝑘 ∈ {0} ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆 ↔ ((𝑁C(0 − 1)) · ((((𝑁 + 1) − 0) 𝐴) × (0 𝐵))) ∈ 𝑆))
214140, 213ax-mp 5 . . . . . . . . . 10 (∀𝑘 ∈ {0} ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆 ↔ ((𝑁C(0 − 1)) · ((((𝑁 + 1) − 0) 𝐴) × (0 𝐵))) ∈ 𝑆)
215157, 214sylibr 234 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ {0} ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
2163, 33, 211, 215gsummptcl 19897 . . . . . . . 8 (𝜑 → (𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) ∈ 𝑆)
2173, 5cmncom 19728 . . . . . . . 8 ((𝑅 ∈ CMnd ∧ (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) ∈ 𝑆 ∧ (𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) ∈ 𝑆) → ((𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))) = ((𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
21833, 137, 216, 217syl3anc 1373 . . . . . . 7 (𝜑 → ((𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))) = ((𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
219209, 218eqtrd 2764 . . . . . 6 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = ((𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
220188, 198, 2193eqtr4d 2774 . . . . 5 (𝜑 → (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ (((𝑁C(𝑘 − 1)) · (((𝑁 + 1) − 𝑘) 𝐴)) × (𝑘 𝐵)))) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
221121, 220eqtrid 2776 . . . 4 (𝜑 → (𝑅 Σg (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × (𝑗 𝐵)))) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
22249, 110, 2213eqtrd 2768 . . 3 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ (((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) × 𝐵))) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
22331, 222eqtr3d 2766 . 2 (𝜑 → ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))) × 𝐵) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
2242, 223sylan9eqr 2786 1 ((𝜑𝜓) → ((𝑁 (𝐴 + 𝐵)) × 𝐵) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  {csn 4589   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  Fincfn 8918  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   < clt 11208  cmin 11405  cn 12186  0cn0 12442  cz 12529  ...cfz 13468  Ccbc 14267  Basecbs 17179  +gcplusg 17220  .rcmulr 17221  0gc0g 17402   Σg cgsu 17403  Mndcmnd 18661  .gcmg 18999  CMndccmn 19710  mulGrpcmgp 20049  SRingcsrg 20095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-fac 14239  df-bc 14268  df-hash 14296  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-0g 17404  df-gsum 17405  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-mgp 20050  df-srg 20096
This theorem is referenced by:  srgbinomlem  20139
  Copyright terms: Public domain W3C validator