MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgmgp Structured version   Visualization version   GIF version

Theorem srgmgp 20104
Description: A semiring is a monoid under multiplication. (Contributed by Thierry Arnoux, 21-Mar-2018.)
Hypothesis
Ref Expression
srgmgp.g 𝐺 = (mulGrp‘𝑅)
Assertion
Ref Expression
srgmgp (𝑅 ∈ SRing → 𝐺 ∈ Mnd)

Proof of Theorem srgmgp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 srgmgp.g . . 3 𝐺 = (mulGrp‘𝑅)
3 eqid 2731 . . 3 (+g𝑅) = (+g𝑅)
4 eqid 2731 . . 3 (.r𝑅) = (.r𝑅)
5 eqid 2731 . . 3 (0g𝑅) = (0g𝑅)
61, 2, 3, 4, 5issrg 20101 . 2 (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ 𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)(∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r𝑅)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑅)𝑦)(+g𝑅)(𝑥(.r𝑅)𝑧)) ∧ ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧))) ∧ (((0g𝑅)(.r𝑅)𝑥) = (0g𝑅) ∧ (𝑥(.r𝑅)(0g𝑅)) = (0g𝑅)))))
76simp2bi 1146 1 (𝑅 ∈ SRing → 𝐺 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  cfv 6476  (class class class)co 7341  Basecbs 17115  +gcplusg 17156  .rcmulr 17157  0gc0g 17338  Mndcmnd 18637  CMndccmn 19687  mulGrpcmgp 20053  SRingcsrg 20099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-iota 6432  df-fv 6484  df-ov 7344  df-srg 20100
This theorem is referenced by:  srgcl  20106  srgass  20107  srgideu  20108  srgidcl  20112  srgidmlem  20114  srg1zr  20128  srgpcomp  20131  srgpcompp  20132  srgpcomppsc  20133  srg1expzeq1  20138  srgbinomlem1  20139  srgbinomlem4  20142  srgbinomlem  20143
  Copyright terms: Public domain W3C validator