| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > srgmgp | Structured version Visualization version GIF version | ||
| Description: A semiring is a monoid under multiplication. (Contributed by Thierry Arnoux, 21-Mar-2018.) |
| Ref | Expression |
|---|---|
| srgmgp.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
| Ref | Expression |
|---|---|
| srgmgp | ⊢ (𝑅 ∈ SRing → 𝐺 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | srgmgp.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
| 3 | eqid 2733 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 4 | eqid 2733 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 5 | eqid 2733 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 6 | 1, 2, 3, 4, 5 | issrg 20114 | . 2 ⊢ (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ 𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)(∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))) ∧ (((0g‘𝑅)(.r‘𝑅)𝑥) = (0g‘𝑅) ∧ (𝑥(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅))))) |
| 7 | 6 | simp2bi 1146 | 1 ⊢ (𝑅 ∈ SRing → 𝐺 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 +gcplusg 17168 .rcmulr 17169 0gc0g 17350 Mndcmnd 18650 CMndccmn 19700 mulGrpcmgp 20066 SRingcsrg 20112 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-ov 7358 df-srg 20113 |
| This theorem is referenced by: srgcl 20119 srgass 20120 srgideu 20121 srgidcl 20125 srgidmlem 20127 srg1zr 20141 srgpcomp 20144 srgpcompp 20145 srgpcomppsc 20146 srg1expzeq1 20151 srgbinomlem1 20152 srgbinomlem4 20155 srgbinomlem 20156 |
| Copyright terms: Public domain | W3C validator |