Proof of Theorem srgpcomppsc
Step | Hyp | Ref
| Expression |
1 | | srgpcomp.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ SRing) |
2 | | srgpcomppsc.c |
. . . . 5
⊢ (𝜑 → 𝐶 ∈
ℕ0) |
3 | | srgpcomp.g |
. . . . . . . 8
⊢ 𝐺 = (mulGrp‘𝑅) |
4 | 3 | srgmgp 19746 |
. . . . . . 7
⊢ (𝑅 ∈ SRing → 𝐺 ∈ Mnd) |
5 | 1, 4 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ Mnd) |
6 | | srgpcompp.n |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
7 | | srgpcomp.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑆) |
8 | | srgpcomp.s |
. . . . . . . 8
⊢ 𝑆 = (Base‘𝑅) |
9 | 3, 8 | mgpbas 19726 |
. . . . . . 7
⊢ 𝑆 = (Base‘𝐺) |
10 | | srgpcomp.e |
. . . . . . 7
⊢ ↑ =
(.g‘𝐺) |
11 | 9, 10 | mulgnn0cl 18720 |
. . . . . 6
⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝑆) → (𝑁 ↑ 𝐴) ∈ 𝑆) |
12 | 5, 6, 7, 11 | syl3anc 1370 |
. . . . 5
⊢ (𝜑 → (𝑁 ↑ 𝐴) ∈ 𝑆) |
13 | | srgpcomp.k |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
14 | | srgpcomp.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ 𝑆) |
15 | 9, 10 | mulgnn0cl 18720 |
. . . . . 6
⊢ ((𝐺 ∈ Mnd ∧ 𝐾 ∈ ℕ0
∧ 𝐵 ∈ 𝑆) → (𝐾 ↑ 𝐵) ∈ 𝑆) |
16 | 5, 13, 14, 15 | syl3anc 1370 |
. . . . 5
⊢ (𝜑 → (𝐾 ↑ 𝐵) ∈ 𝑆) |
17 | | srgpcomppsc.t |
. . . . . . 7
⊢ · =
(.g‘𝑅) |
18 | | srgpcomp.m |
. . . . . . 7
⊢ × =
(.r‘𝑅) |
19 | 8, 17, 18 | srgmulgass 19767 |
. . . . . 6
⊢ ((𝑅 ∈ SRing ∧ (𝐶 ∈ ℕ0
∧ (𝑁 ↑ 𝐴) ∈ 𝑆 ∧ (𝐾 ↑ 𝐵) ∈ 𝑆)) → ((𝐶 · (𝑁 ↑ 𝐴)) × (𝐾 ↑ 𝐵)) = (𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)))) |
20 | 19 | eqcomd 2744 |
. . . . 5
⊢ ((𝑅 ∈ SRing ∧ (𝐶 ∈ ℕ0
∧ (𝑁 ↑ 𝐴) ∈ 𝑆 ∧ (𝐾 ↑ 𝐵) ∈ 𝑆)) → (𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵))) = ((𝐶 · (𝑁 ↑ 𝐴)) × (𝐾 ↑ 𝐵))) |
21 | 1, 2, 12, 16, 20 | syl13anc 1371 |
. . . 4
⊢ (𝜑 → (𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵))) = ((𝐶 · (𝑁 ↑ 𝐴)) × (𝐾 ↑ 𝐵))) |
22 | 21 | oveq1d 7290 |
. . 3
⊢ (𝜑 → ((𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵))) × 𝐴) = (((𝐶 · (𝑁 ↑ 𝐴)) × (𝐾 ↑ 𝐵)) × 𝐴)) |
23 | | srgmnd 19745 |
. . . . . 6
⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) |
24 | 1, 23 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Mnd) |
25 | 8, 17 | mulgnn0cl 18720 |
. . . . 5
⊢ ((𝑅 ∈ Mnd ∧ 𝐶 ∈ ℕ0
∧ (𝑁 ↑ 𝐴) ∈ 𝑆) → (𝐶 · (𝑁 ↑ 𝐴)) ∈ 𝑆) |
26 | 24, 2, 12, 25 | syl3anc 1370 |
. . . 4
⊢ (𝜑 → (𝐶 · (𝑁 ↑ 𝐴)) ∈ 𝑆) |
27 | 8, 18 | srgass 19749 |
. . . 4
⊢ ((𝑅 ∈ SRing ∧ ((𝐶 · (𝑁 ↑ 𝐴)) ∈ 𝑆 ∧ (𝐾 ↑ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) → (((𝐶 · (𝑁 ↑ 𝐴)) × (𝐾 ↑ 𝐵)) × 𝐴) = ((𝐶 · (𝑁 ↑ 𝐴)) × ((𝐾 ↑ 𝐵) × 𝐴))) |
28 | 1, 26, 16, 7, 27 | syl13anc 1371 |
. . 3
⊢ (𝜑 → (((𝐶 · (𝑁 ↑ 𝐴)) × (𝐾 ↑ 𝐵)) × 𝐴) = ((𝐶 · (𝑁 ↑ 𝐴)) × ((𝐾 ↑ 𝐵) × 𝐴))) |
29 | 22, 28 | eqtrd 2778 |
. 2
⊢ (𝜑 → ((𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵))) × 𝐴) = ((𝐶 · (𝑁 ↑ 𝐴)) × ((𝐾 ↑ 𝐵) × 𝐴))) |
30 | 8, 18 | srgcl 19748 |
. . . . 5
⊢ ((𝑅 ∈ SRing ∧ (𝐾 ↑ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → ((𝐾 ↑ 𝐵) × 𝐴) ∈ 𝑆) |
31 | 1, 16, 7, 30 | syl3anc 1370 |
. . . 4
⊢ (𝜑 → ((𝐾 ↑ 𝐵) × 𝐴) ∈ 𝑆) |
32 | 8, 17, 18 | srgmulgass 19767 |
. . . 4
⊢ ((𝑅 ∈ SRing ∧ (𝐶 ∈ ℕ0
∧ (𝑁 ↑ 𝐴) ∈ 𝑆 ∧ ((𝐾 ↑ 𝐵) × 𝐴) ∈ 𝑆)) → ((𝐶 · (𝑁 ↑ 𝐴)) × ((𝐾 ↑ 𝐵) × 𝐴)) = (𝐶 · ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴)))) |
33 | 1, 2, 12, 31, 32 | syl13anc 1371 |
. . 3
⊢ (𝜑 → ((𝐶 · (𝑁 ↑ 𝐴)) × ((𝐾 ↑ 𝐵) × 𝐴)) = (𝐶 · ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴)))) |
34 | 8, 18 | srgass 19749 |
. . . . . 6
⊢ ((𝑅 ∈ SRing ∧ ((𝑁 ↑ 𝐴) ∈ 𝑆 ∧ (𝐾 ↑ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴))) |
35 | 1, 12, 16, 7, 34 | syl13anc 1371 |
. . . . 5
⊢ (𝜑 → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴))) |
36 | 35 | eqcomd 2744 |
. . . 4
⊢ (𝜑 → ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴)) = (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴)) |
37 | 36 | oveq2d 7291 |
. . 3
⊢ (𝜑 → (𝐶 · ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴))) = (𝐶 · (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴))) |
38 | 33, 37 | eqtrd 2778 |
. 2
⊢ (𝜑 → ((𝐶 · (𝑁 ↑ 𝐴)) × ((𝐾 ↑ 𝐵) × 𝐴)) = (𝐶 · (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴))) |
39 | | srgpcomp.c |
. . . 4
⊢ (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴)) |
40 | 8, 18, 3, 10, 1, 7,
14, 13, 39, 6 | srgpcompp 19769 |
. . 3
⊢ (𝜑 → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵))) |
41 | 40 | oveq2d 7291 |
. 2
⊢ (𝜑 → (𝐶 · (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴)) = (𝐶 · (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵)))) |
42 | 29, 38, 41 | 3eqtrd 2782 |
1
⊢ (𝜑 → ((𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵))) × 𝐴) = (𝐶 · (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵)))) |