![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > srgpcomppsc | Structured version Visualization version GIF version |
Description: If two elements of a semiring commute, they also commute if the elements are raised to a higher power and a scalar multiplication is involved. (Contributed by AV, 23-Aug-2019.) |
Ref | Expression |
---|---|
srgpcomp.s | ⊢ 𝑆 = (Base‘𝑅) |
srgpcomp.m | ⊢ × = (.r‘𝑅) |
srgpcomp.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
srgpcomp.e | ⊢ ↑ = (.g‘𝐺) |
srgpcomp.r | ⊢ (𝜑 → 𝑅 ∈ SRing) |
srgpcomp.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
srgpcomp.b | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
srgpcomp.k | ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
srgpcomp.c | ⊢ (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴)) |
srgpcompp.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
srgpcomppsc.t | ⊢ · = (.g‘𝑅) |
srgpcomppsc.c | ⊢ (𝜑 → 𝐶 ∈ ℕ0) |
Ref | Expression |
---|---|
srgpcomppsc | ⊢ (𝜑 → ((𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵))) × 𝐴) = (𝐶 · (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srgpcomp.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ SRing) | |
2 | srgpcomppsc.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℕ0) | |
3 | srgpcomp.g | . . . . . . 7 ⊢ 𝐺 = (mulGrp‘𝑅) | |
4 | srgpcomp.s | . . . . . . 7 ⊢ 𝑆 = (Base‘𝑅) | |
5 | 3, 4 | mgpbas 19902 | . . . . . 6 ⊢ 𝑆 = (Base‘𝐺) |
6 | srgpcomp.e | . . . . . 6 ⊢ ↑ = (.g‘𝐺) | |
7 | 3 | srgmgp 19922 | . . . . . . 7 ⊢ (𝑅 ∈ SRing → 𝐺 ∈ Mnd) |
8 | 1, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
9 | srgpcompp.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
10 | srgpcomp.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
11 | 5, 6, 8, 9, 10 | mulgnn0cld 18897 | . . . . 5 ⊢ (𝜑 → (𝑁 ↑ 𝐴) ∈ 𝑆) |
12 | srgpcomp.k | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℕ0) | |
13 | srgpcomp.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
14 | 5, 6, 8, 12, 13 | mulgnn0cld 18897 | . . . . 5 ⊢ (𝜑 → (𝐾 ↑ 𝐵) ∈ 𝑆) |
15 | srgpcomppsc.t | . . . . . . 7 ⊢ · = (.g‘𝑅) | |
16 | srgpcomp.m | . . . . . . 7 ⊢ × = (.r‘𝑅) | |
17 | 4, 15, 16 | srgmulgass 19948 | . . . . . 6 ⊢ ((𝑅 ∈ SRing ∧ (𝐶 ∈ ℕ0 ∧ (𝑁 ↑ 𝐴) ∈ 𝑆 ∧ (𝐾 ↑ 𝐵) ∈ 𝑆)) → ((𝐶 · (𝑁 ↑ 𝐴)) × (𝐾 ↑ 𝐵)) = (𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)))) |
18 | 17 | eqcomd 2742 | . . . . 5 ⊢ ((𝑅 ∈ SRing ∧ (𝐶 ∈ ℕ0 ∧ (𝑁 ↑ 𝐴) ∈ 𝑆 ∧ (𝐾 ↑ 𝐵) ∈ 𝑆)) → (𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵))) = ((𝐶 · (𝑁 ↑ 𝐴)) × (𝐾 ↑ 𝐵))) |
19 | 1, 2, 11, 14, 18 | syl13anc 1372 | . . . 4 ⊢ (𝜑 → (𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵))) = ((𝐶 · (𝑁 ↑ 𝐴)) × (𝐾 ↑ 𝐵))) |
20 | 19 | oveq1d 7372 | . . 3 ⊢ (𝜑 → ((𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵))) × 𝐴) = (((𝐶 · (𝑁 ↑ 𝐴)) × (𝐾 ↑ 𝐵)) × 𝐴)) |
21 | srgmnd 19921 | . . . . . 6 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) | |
22 | 1, 21 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Mnd) |
23 | 4, 15, 22, 2, 11 | mulgnn0cld 18897 | . . . 4 ⊢ (𝜑 → (𝐶 · (𝑁 ↑ 𝐴)) ∈ 𝑆) |
24 | 4, 16 | srgass 19925 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ ((𝐶 · (𝑁 ↑ 𝐴)) ∈ 𝑆 ∧ (𝐾 ↑ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) → (((𝐶 · (𝑁 ↑ 𝐴)) × (𝐾 ↑ 𝐵)) × 𝐴) = ((𝐶 · (𝑁 ↑ 𝐴)) × ((𝐾 ↑ 𝐵) × 𝐴))) |
25 | 1, 23, 14, 10, 24 | syl13anc 1372 | . . 3 ⊢ (𝜑 → (((𝐶 · (𝑁 ↑ 𝐴)) × (𝐾 ↑ 𝐵)) × 𝐴) = ((𝐶 · (𝑁 ↑ 𝐴)) × ((𝐾 ↑ 𝐵) × 𝐴))) |
26 | 20, 25 | eqtrd 2776 | . 2 ⊢ (𝜑 → ((𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵))) × 𝐴) = ((𝐶 · (𝑁 ↑ 𝐴)) × ((𝐾 ↑ 𝐵) × 𝐴))) |
27 | 4, 16 | srgcl 19924 | . . . . 5 ⊢ ((𝑅 ∈ SRing ∧ (𝐾 ↑ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → ((𝐾 ↑ 𝐵) × 𝐴) ∈ 𝑆) |
28 | 1, 14, 10, 27 | syl3anc 1371 | . . . 4 ⊢ (𝜑 → ((𝐾 ↑ 𝐵) × 𝐴) ∈ 𝑆) |
29 | 4, 15, 16 | srgmulgass 19948 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ (𝐶 ∈ ℕ0 ∧ (𝑁 ↑ 𝐴) ∈ 𝑆 ∧ ((𝐾 ↑ 𝐵) × 𝐴) ∈ 𝑆)) → ((𝐶 · (𝑁 ↑ 𝐴)) × ((𝐾 ↑ 𝐵) × 𝐴)) = (𝐶 · ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴)))) |
30 | 1, 2, 11, 28, 29 | syl13anc 1372 | . . 3 ⊢ (𝜑 → ((𝐶 · (𝑁 ↑ 𝐴)) × ((𝐾 ↑ 𝐵) × 𝐴)) = (𝐶 · ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴)))) |
31 | 4, 16 | srgass 19925 | . . . . . 6 ⊢ ((𝑅 ∈ SRing ∧ ((𝑁 ↑ 𝐴) ∈ 𝑆 ∧ (𝐾 ↑ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴))) |
32 | 1, 11, 14, 10, 31 | syl13anc 1372 | . . . . 5 ⊢ (𝜑 → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴))) |
33 | 32 | eqcomd 2742 | . . . 4 ⊢ (𝜑 → ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴)) = (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴)) |
34 | 33 | oveq2d 7373 | . . 3 ⊢ (𝜑 → (𝐶 · ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴))) = (𝐶 · (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴))) |
35 | 30, 34 | eqtrd 2776 | . 2 ⊢ (𝜑 → ((𝐶 · (𝑁 ↑ 𝐴)) × ((𝐾 ↑ 𝐵) × 𝐴)) = (𝐶 · (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴))) |
36 | srgpcomp.c | . . . 4 ⊢ (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴)) | |
37 | 4, 16, 3, 6, 1, 10, 13, 12, 36, 9 | srgpcompp 19950 | . . 3 ⊢ (𝜑 → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵))) |
38 | 37 | oveq2d 7373 | . 2 ⊢ (𝜑 → (𝐶 · (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴)) = (𝐶 · (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵)))) |
39 | 26, 35, 38 | 3eqtrd 2780 | 1 ⊢ (𝜑 → ((𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵))) × 𝐴) = (𝐶 · (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ‘cfv 6496 (class class class)co 7357 1c1 11052 + caddc 11054 ℕ0cn0 12413 Basecbs 17083 .rcmulr 17134 Mndcmnd 18556 .gcmg 18872 mulGrpcmgp 19896 SRingcsrg 19917 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-n0 12414 df-z 12500 df-uz 12764 df-fz 13425 df-seq 13907 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-plusg 17146 df-0g 17323 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-mulg 18873 df-cmn 19564 df-mgp 19897 df-ur 19914 df-srg 19918 |
This theorem is referenced by: srgbinomlem3 19959 |
Copyright terms: Public domain | W3C validator |