| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > srgpcomppsc | Structured version Visualization version GIF version | ||
| Description: If two elements of a semiring commute, they also commute if the elements are raised to a higher power and a scalar multiplication is involved. (Contributed by AV, 23-Aug-2019.) |
| Ref | Expression |
|---|---|
| srgpcomp.s | ⊢ 𝑆 = (Base‘𝑅) |
| srgpcomp.m | ⊢ × = (.r‘𝑅) |
| srgpcomp.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
| srgpcomp.e | ⊢ ↑ = (.g‘𝐺) |
| srgpcomp.r | ⊢ (𝜑 → 𝑅 ∈ SRing) |
| srgpcomp.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| srgpcomp.b | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
| srgpcomp.k | ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
| srgpcomp.c | ⊢ (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴)) |
| srgpcompp.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| srgpcomppsc.t | ⊢ · = (.g‘𝑅) |
| srgpcomppsc.c | ⊢ (𝜑 → 𝐶 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| srgpcomppsc | ⊢ (𝜑 → ((𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵))) × 𝐴) = (𝐶 · (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgpcomp.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ SRing) | |
| 2 | srgpcomppsc.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℕ0) | |
| 3 | srgpcomp.g | . . . . . . 7 ⊢ 𝐺 = (mulGrp‘𝑅) | |
| 4 | srgpcomp.s | . . . . . . 7 ⊢ 𝑆 = (Base‘𝑅) | |
| 5 | 3, 4 | mgpbas 20056 | . . . . . 6 ⊢ 𝑆 = (Base‘𝐺) |
| 6 | srgpcomp.e | . . . . . 6 ⊢ ↑ = (.g‘𝐺) | |
| 7 | 3 | srgmgp 20102 | . . . . . . 7 ⊢ (𝑅 ∈ SRing → 𝐺 ∈ Mnd) |
| 8 | 1, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 9 | srgpcompp.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 10 | srgpcomp.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 11 | 5, 6, 8, 9, 10 | mulgnn0cld 19000 | . . . . 5 ⊢ (𝜑 → (𝑁 ↑ 𝐴) ∈ 𝑆) |
| 12 | srgpcomp.k | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℕ0) | |
| 13 | srgpcomp.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
| 14 | 5, 6, 8, 12, 13 | mulgnn0cld 19000 | . . . . 5 ⊢ (𝜑 → (𝐾 ↑ 𝐵) ∈ 𝑆) |
| 15 | srgpcomppsc.t | . . . . . . 7 ⊢ · = (.g‘𝑅) | |
| 16 | srgpcomp.m | . . . . . . 7 ⊢ × = (.r‘𝑅) | |
| 17 | 4, 15, 16 | srgmulgass 20128 | . . . . . 6 ⊢ ((𝑅 ∈ SRing ∧ (𝐶 ∈ ℕ0 ∧ (𝑁 ↑ 𝐴) ∈ 𝑆 ∧ (𝐾 ↑ 𝐵) ∈ 𝑆)) → ((𝐶 · (𝑁 ↑ 𝐴)) × (𝐾 ↑ 𝐵)) = (𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)))) |
| 18 | 17 | eqcomd 2736 | . . . . 5 ⊢ ((𝑅 ∈ SRing ∧ (𝐶 ∈ ℕ0 ∧ (𝑁 ↑ 𝐴) ∈ 𝑆 ∧ (𝐾 ↑ 𝐵) ∈ 𝑆)) → (𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵))) = ((𝐶 · (𝑁 ↑ 𝐴)) × (𝐾 ↑ 𝐵))) |
| 19 | 1, 2, 11, 14, 18 | syl13anc 1374 | . . . 4 ⊢ (𝜑 → (𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵))) = ((𝐶 · (𝑁 ↑ 𝐴)) × (𝐾 ↑ 𝐵))) |
| 20 | 19 | oveq1d 7356 | . . 3 ⊢ (𝜑 → ((𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵))) × 𝐴) = (((𝐶 · (𝑁 ↑ 𝐴)) × (𝐾 ↑ 𝐵)) × 𝐴)) |
| 21 | srgmnd 20101 | . . . . . 6 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) | |
| 22 | 1, 21 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Mnd) |
| 23 | 4, 15, 22, 2, 11 | mulgnn0cld 19000 | . . . 4 ⊢ (𝜑 → (𝐶 · (𝑁 ↑ 𝐴)) ∈ 𝑆) |
| 24 | 4, 16 | srgass 20105 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ ((𝐶 · (𝑁 ↑ 𝐴)) ∈ 𝑆 ∧ (𝐾 ↑ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) → (((𝐶 · (𝑁 ↑ 𝐴)) × (𝐾 ↑ 𝐵)) × 𝐴) = ((𝐶 · (𝑁 ↑ 𝐴)) × ((𝐾 ↑ 𝐵) × 𝐴))) |
| 25 | 1, 23, 14, 10, 24 | syl13anc 1374 | . . 3 ⊢ (𝜑 → (((𝐶 · (𝑁 ↑ 𝐴)) × (𝐾 ↑ 𝐵)) × 𝐴) = ((𝐶 · (𝑁 ↑ 𝐴)) × ((𝐾 ↑ 𝐵) × 𝐴))) |
| 26 | 20, 25 | eqtrd 2765 | . 2 ⊢ (𝜑 → ((𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵))) × 𝐴) = ((𝐶 · (𝑁 ↑ 𝐴)) × ((𝐾 ↑ 𝐵) × 𝐴))) |
| 27 | 4, 16 | srgcl 20104 | . . . . 5 ⊢ ((𝑅 ∈ SRing ∧ (𝐾 ↑ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → ((𝐾 ↑ 𝐵) × 𝐴) ∈ 𝑆) |
| 28 | 1, 14, 10, 27 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → ((𝐾 ↑ 𝐵) × 𝐴) ∈ 𝑆) |
| 29 | 4, 15, 16 | srgmulgass 20128 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ (𝐶 ∈ ℕ0 ∧ (𝑁 ↑ 𝐴) ∈ 𝑆 ∧ ((𝐾 ↑ 𝐵) × 𝐴) ∈ 𝑆)) → ((𝐶 · (𝑁 ↑ 𝐴)) × ((𝐾 ↑ 𝐵) × 𝐴)) = (𝐶 · ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴)))) |
| 30 | 1, 2, 11, 28, 29 | syl13anc 1374 | . . 3 ⊢ (𝜑 → ((𝐶 · (𝑁 ↑ 𝐴)) × ((𝐾 ↑ 𝐵) × 𝐴)) = (𝐶 · ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴)))) |
| 31 | 4, 16 | srgass 20105 | . . . . . 6 ⊢ ((𝑅 ∈ SRing ∧ ((𝑁 ↑ 𝐴) ∈ 𝑆 ∧ (𝐾 ↑ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴))) |
| 32 | 1, 11, 14, 10, 31 | syl13anc 1374 | . . . . 5 ⊢ (𝜑 → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴))) |
| 33 | 32 | eqcomd 2736 | . . . 4 ⊢ (𝜑 → ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴)) = (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴)) |
| 34 | 33 | oveq2d 7357 | . . 3 ⊢ (𝜑 → (𝐶 · ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴))) = (𝐶 · (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴))) |
| 35 | 30, 34 | eqtrd 2765 | . 2 ⊢ (𝜑 → ((𝐶 · (𝑁 ↑ 𝐴)) × ((𝐾 ↑ 𝐵) × 𝐴)) = (𝐶 · (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴))) |
| 36 | srgpcomp.c | . . . 4 ⊢ (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴)) | |
| 37 | 4, 16, 3, 6, 1, 10, 13, 12, 36, 9 | srgpcompp 20130 | . . 3 ⊢ (𝜑 → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵))) |
| 38 | 37 | oveq2d 7357 | . 2 ⊢ (𝜑 → (𝐶 · (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴)) = (𝐶 · (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵)))) |
| 39 | 26, 35, 38 | 3eqtrd 2769 | 1 ⊢ (𝜑 → ((𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵))) × 𝐴) = (𝐶 · (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ‘cfv 6477 (class class class)co 7341 1c1 10999 + caddc 11001 ℕ0cn0 12373 Basecbs 17112 .rcmulr 17154 Mndcmnd 18634 .gcmg 18972 mulGrpcmgp 20051 SRingcsrg 20097 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-n0 12374 df-z 12461 df-uz 12725 df-fz 13400 df-seq 13901 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-plusg 17166 df-0g 17337 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-mulg 18973 df-cmn 19687 df-mgp 20052 df-ur 20093 df-srg 20098 |
| This theorem is referenced by: srgbinomlem3 20139 |
| Copyright terms: Public domain | W3C validator |