![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > srgpcomppsc | Structured version Visualization version GIF version |
Description: If two elements of a semiring commute, they also commute if the elements are raised to a higher power and a scalar multiplication is involved. (Contributed by AV, 23-Aug-2019.) |
Ref | Expression |
---|---|
srgpcomp.s | ⊢ 𝑆 = (Base‘𝑅) |
srgpcomp.m | ⊢ × = (.r‘𝑅) |
srgpcomp.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
srgpcomp.e | ⊢ ↑ = (.g‘𝐺) |
srgpcomp.r | ⊢ (𝜑 → 𝑅 ∈ SRing) |
srgpcomp.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
srgpcomp.b | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
srgpcomp.k | ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
srgpcomp.c | ⊢ (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴)) |
srgpcompp.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
srgpcomppsc.t | ⊢ · = (.g‘𝑅) |
srgpcomppsc.c | ⊢ (𝜑 → 𝐶 ∈ ℕ0) |
Ref | Expression |
---|---|
srgpcomppsc | ⊢ (𝜑 → ((𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵))) × 𝐴) = (𝐶 · (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srgpcomp.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ SRing) | |
2 | srgpcomppsc.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℕ0) | |
3 | srgpcomp.g | . . . . . . 7 ⊢ 𝐺 = (mulGrp‘𝑅) | |
4 | srgpcomp.s | . . . . . . 7 ⊢ 𝑆 = (Base‘𝑅) | |
5 | 3, 4 | mgpbas 19985 | . . . . . 6 ⊢ 𝑆 = (Base‘𝐺) |
6 | srgpcomp.e | . . . . . 6 ⊢ ↑ = (.g‘𝐺) | |
7 | 3 | srgmgp 20005 | . . . . . . 7 ⊢ (𝑅 ∈ SRing → 𝐺 ∈ Mnd) |
8 | 1, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
9 | srgpcompp.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
10 | srgpcomp.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
11 | 5, 6, 8, 9, 10 | mulgnn0cld 18969 | . . . . 5 ⊢ (𝜑 → (𝑁 ↑ 𝐴) ∈ 𝑆) |
12 | srgpcomp.k | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℕ0) | |
13 | srgpcomp.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
14 | 5, 6, 8, 12, 13 | mulgnn0cld 18969 | . . . . 5 ⊢ (𝜑 → (𝐾 ↑ 𝐵) ∈ 𝑆) |
15 | srgpcomppsc.t | . . . . . . 7 ⊢ · = (.g‘𝑅) | |
16 | srgpcomp.m | . . . . . . 7 ⊢ × = (.r‘𝑅) | |
17 | 4, 15, 16 | srgmulgass 20031 | . . . . . 6 ⊢ ((𝑅 ∈ SRing ∧ (𝐶 ∈ ℕ0 ∧ (𝑁 ↑ 𝐴) ∈ 𝑆 ∧ (𝐾 ↑ 𝐵) ∈ 𝑆)) → ((𝐶 · (𝑁 ↑ 𝐴)) × (𝐾 ↑ 𝐵)) = (𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)))) |
18 | 17 | eqcomd 2739 | . . . . 5 ⊢ ((𝑅 ∈ SRing ∧ (𝐶 ∈ ℕ0 ∧ (𝑁 ↑ 𝐴) ∈ 𝑆 ∧ (𝐾 ↑ 𝐵) ∈ 𝑆)) → (𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵))) = ((𝐶 · (𝑁 ↑ 𝐴)) × (𝐾 ↑ 𝐵))) |
19 | 1, 2, 11, 14, 18 | syl13anc 1373 | . . . 4 ⊢ (𝜑 → (𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵))) = ((𝐶 · (𝑁 ↑ 𝐴)) × (𝐾 ↑ 𝐵))) |
20 | 19 | oveq1d 7419 | . . 3 ⊢ (𝜑 → ((𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵))) × 𝐴) = (((𝐶 · (𝑁 ↑ 𝐴)) × (𝐾 ↑ 𝐵)) × 𝐴)) |
21 | srgmnd 20004 | . . . . . 6 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) | |
22 | 1, 21 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Mnd) |
23 | 4, 15, 22, 2, 11 | mulgnn0cld 18969 | . . . 4 ⊢ (𝜑 → (𝐶 · (𝑁 ↑ 𝐴)) ∈ 𝑆) |
24 | 4, 16 | srgass 20008 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ ((𝐶 · (𝑁 ↑ 𝐴)) ∈ 𝑆 ∧ (𝐾 ↑ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) → (((𝐶 · (𝑁 ↑ 𝐴)) × (𝐾 ↑ 𝐵)) × 𝐴) = ((𝐶 · (𝑁 ↑ 𝐴)) × ((𝐾 ↑ 𝐵) × 𝐴))) |
25 | 1, 23, 14, 10, 24 | syl13anc 1373 | . . 3 ⊢ (𝜑 → (((𝐶 · (𝑁 ↑ 𝐴)) × (𝐾 ↑ 𝐵)) × 𝐴) = ((𝐶 · (𝑁 ↑ 𝐴)) × ((𝐾 ↑ 𝐵) × 𝐴))) |
26 | 20, 25 | eqtrd 2773 | . 2 ⊢ (𝜑 → ((𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵))) × 𝐴) = ((𝐶 · (𝑁 ↑ 𝐴)) × ((𝐾 ↑ 𝐵) × 𝐴))) |
27 | 4, 16 | srgcl 20007 | . . . . 5 ⊢ ((𝑅 ∈ SRing ∧ (𝐾 ↑ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → ((𝐾 ↑ 𝐵) × 𝐴) ∈ 𝑆) |
28 | 1, 14, 10, 27 | syl3anc 1372 | . . . 4 ⊢ (𝜑 → ((𝐾 ↑ 𝐵) × 𝐴) ∈ 𝑆) |
29 | 4, 15, 16 | srgmulgass 20031 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ (𝐶 ∈ ℕ0 ∧ (𝑁 ↑ 𝐴) ∈ 𝑆 ∧ ((𝐾 ↑ 𝐵) × 𝐴) ∈ 𝑆)) → ((𝐶 · (𝑁 ↑ 𝐴)) × ((𝐾 ↑ 𝐵) × 𝐴)) = (𝐶 · ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴)))) |
30 | 1, 2, 11, 28, 29 | syl13anc 1373 | . . 3 ⊢ (𝜑 → ((𝐶 · (𝑁 ↑ 𝐴)) × ((𝐾 ↑ 𝐵) × 𝐴)) = (𝐶 · ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴)))) |
31 | 4, 16 | srgass 20008 | . . . . . 6 ⊢ ((𝑅 ∈ SRing ∧ ((𝑁 ↑ 𝐴) ∈ 𝑆 ∧ (𝐾 ↑ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴))) |
32 | 1, 11, 14, 10, 31 | syl13anc 1373 | . . . . 5 ⊢ (𝜑 → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴))) |
33 | 32 | eqcomd 2739 | . . . 4 ⊢ (𝜑 → ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴)) = (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴)) |
34 | 33 | oveq2d 7420 | . . 3 ⊢ (𝜑 → (𝐶 · ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴))) = (𝐶 · (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴))) |
35 | 30, 34 | eqtrd 2773 | . 2 ⊢ (𝜑 → ((𝐶 · (𝑁 ↑ 𝐴)) × ((𝐾 ↑ 𝐵) × 𝐴)) = (𝐶 · (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴))) |
36 | srgpcomp.c | . . . 4 ⊢ (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴)) | |
37 | 4, 16, 3, 6, 1, 10, 13, 12, 36, 9 | srgpcompp 20033 | . . 3 ⊢ (𝜑 → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵))) |
38 | 37 | oveq2d 7420 | . 2 ⊢ (𝜑 → (𝐶 · (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴)) = (𝐶 · (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵)))) |
39 | 26, 35, 38 | 3eqtrd 2777 | 1 ⊢ (𝜑 → ((𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵))) × 𝐴) = (𝐶 · (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ‘cfv 6540 (class class class)co 7404 1c1 11107 + caddc 11109 ℕ0cn0 12468 Basecbs 17140 .rcmulr 17194 Mndcmnd 18621 .gcmg 18944 mulGrpcmgp 19979 SRingcsrg 20000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7851 df-1st 7970 df-2nd 7971 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-seq 13963 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-plusg 17206 df-0g 17383 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-mulg 18945 df-cmn 19643 df-mgp 19980 df-ur 19997 df-srg 20001 |
This theorem is referenced by: srgbinomlem3 20042 |
Copyright terms: Public domain | W3C validator |