MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgpcomppsc Structured version   Visualization version   GIF version

Theorem srgpcomppsc 20148
Description: If two elements of a semiring commute, they also commute if the elements are raised to a higher power and a scalar multiplication is involved. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srgpcomp.s 𝑆 = (Base‘𝑅)
srgpcomp.m × = (.r𝑅)
srgpcomp.g 𝐺 = (mulGrp‘𝑅)
srgpcomp.e = (.g𝐺)
srgpcomp.r (𝜑𝑅 ∈ SRing)
srgpcomp.a (𝜑𝐴𝑆)
srgpcomp.b (𝜑𝐵𝑆)
srgpcomp.k (𝜑𝐾 ∈ ℕ0)
srgpcomp.c (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
srgpcompp.n (𝜑𝑁 ∈ ℕ0)
srgpcomppsc.t · = (.g𝑅)
srgpcomppsc.c (𝜑𝐶 ∈ ℕ0)
Assertion
Ref Expression
srgpcomppsc (𝜑 → ((𝐶 · ((𝑁 𝐴) × (𝐾 𝐵))) × 𝐴) = (𝐶 · (((𝑁 + 1) 𝐴) × (𝐾 𝐵))))

Proof of Theorem srgpcomppsc
StepHypRef Expression
1 srgpcomp.r . . . . 5 (𝜑𝑅 ∈ SRing)
2 srgpcomppsc.c . . . . 5 (𝜑𝐶 ∈ ℕ0)
3 srgpcomp.g . . . . . . 7 𝐺 = (mulGrp‘𝑅)
4 srgpcomp.s . . . . . . 7 𝑆 = (Base‘𝑅)
53, 4mgpbas 20073 . . . . . 6 𝑆 = (Base‘𝐺)
6 srgpcomp.e . . . . . 6 = (.g𝐺)
73srgmgp 20119 . . . . . . 7 (𝑅 ∈ SRing → 𝐺 ∈ Mnd)
81, 7syl 17 . . . . . 6 (𝜑𝐺 ∈ Mnd)
9 srgpcompp.n . . . . . 6 (𝜑𝑁 ∈ ℕ0)
10 srgpcomp.a . . . . . 6 (𝜑𝐴𝑆)
115, 6, 8, 9, 10mulgnn0cld 19018 . . . . 5 (𝜑 → (𝑁 𝐴) ∈ 𝑆)
12 srgpcomp.k . . . . . 6 (𝜑𝐾 ∈ ℕ0)
13 srgpcomp.b . . . . . 6 (𝜑𝐵𝑆)
145, 6, 8, 12, 13mulgnn0cld 19018 . . . . 5 (𝜑 → (𝐾 𝐵) ∈ 𝑆)
15 srgpcomppsc.t . . . . . . 7 · = (.g𝑅)
16 srgpcomp.m . . . . . . 7 × = (.r𝑅)
174, 15, 16srgmulgass 20145 . . . . . 6 ((𝑅 ∈ SRing ∧ (𝐶 ∈ ℕ0 ∧ (𝑁 𝐴) ∈ 𝑆 ∧ (𝐾 𝐵) ∈ 𝑆)) → ((𝐶 · (𝑁 𝐴)) × (𝐾 𝐵)) = (𝐶 · ((𝑁 𝐴) × (𝐾 𝐵))))
1817eqcomd 2739 . . . . 5 ((𝑅 ∈ SRing ∧ (𝐶 ∈ ℕ0 ∧ (𝑁 𝐴) ∈ 𝑆 ∧ (𝐾 𝐵) ∈ 𝑆)) → (𝐶 · ((𝑁 𝐴) × (𝐾 𝐵))) = ((𝐶 · (𝑁 𝐴)) × (𝐾 𝐵)))
191, 2, 11, 14, 18syl13anc 1374 . . . 4 (𝜑 → (𝐶 · ((𝑁 𝐴) × (𝐾 𝐵))) = ((𝐶 · (𝑁 𝐴)) × (𝐾 𝐵)))
2019oveq1d 7370 . . 3 (𝜑 → ((𝐶 · ((𝑁 𝐴) × (𝐾 𝐵))) × 𝐴) = (((𝐶 · (𝑁 𝐴)) × (𝐾 𝐵)) × 𝐴))
21 srgmnd 20118 . . . . . 6 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
221, 21syl 17 . . . . 5 (𝜑𝑅 ∈ Mnd)
234, 15, 22, 2, 11mulgnn0cld 19018 . . . 4 (𝜑 → (𝐶 · (𝑁 𝐴)) ∈ 𝑆)
244, 16srgass 20122 . . . 4 ((𝑅 ∈ SRing ∧ ((𝐶 · (𝑁 𝐴)) ∈ 𝑆 ∧ (𝐾 𝐵) ∈ 𝑆𝐴𝑆)) → (((𝐶 · (𝑁 𝐴)) × (𝐾 𝐵)) × 𝐴) = ((𝐶 · (𝑁 𝐴)) × ((𝐾 𝐵) × 𝐴)))
251, 23, 14, 10, 24syl13anc 1374 . . 3 (𝜑 → (((𝐶 · (𝑁 𝐴)) × (𝐾 𝐵)) × 𝐴) = ((𝐶 · (𝑁 𝐴)) × ((𝐾 𝐵) × 𝐴)))
2620, 25eqtrd 2768 . 2 (𝜑 → ((𝐶 · ((𝑁 𝐴) × (𝐾 𝐵))) × 𝐴) = ((𝐶 · (𝑁 𝐴)) × ((𝐾 𝐵) × 𝐴)))
274, 16srgcl 20121 . . . . 5 ((𝑅 ∈ SRing ∧ (𝐾 𝐵) ∈ 𝑆𝐴𝑆) → ((𝐾 𝐵) × 𝐴) ∈ 𝑆)
281, 14, 10, 27syl3anc 1373 . . . 4 (𝜑 → ((𝐾 𝐵) × 𝐴) ∈ 𝑆)
294, 15, 16srgmulgass 20145 . . . 4 ((𝑅 ∈ SRing ∧ (𝐶 ∈ ℕ0 ∧ (𝑁 𝐴) ∈ 𝑆 ∧ ((𝐾 𝐵) × 𝐴) ∈ 𝑆)) → ((𝐶 · (𝑁 𝐴)) × ((𝐾 𝐵) × 𝐴)) = (𝐶 · ((𝑁 𝐴) × ((𝐾 𝐵) × 𝐴))))
301, 2, 11, 28, 29syl13anc 1374 . . 3 (𝜑 → ((𝐶 · (𝑁 𝐴)) × ((𝐾 𝐵) × 𝐴)) = (𝐶 · ((𝑁 𝐴) × ((𝐾 𝐵) × 𝐴))))
314, 16srgass 20122 . . . . . 6 ((𝑅 ∈ SRing ∧ ((𝑁 𝐴) ∈ 𝑆 ∧ (𝐾 𝐵) ∈ 𝑆𝐴𝑆)) → (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴) = ((𝑁 𝐴) × ((𝐾 𝐵) × 𝐴)))
321, 11, 14, 10, 31syl13anc 1374 . . . . 5 (𝜑 → (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴) = ((𝑁 𝐴) × ((𝐾 𝐵) × 𝐴)))
3332eqcomd 2739 . . . 4 (𝜑 → ((𝑁 𝐴) × ((𝐾 𝐵) × 𝐴)) = (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴))
3433oveq2d 7371 . . 3 (𝜑 → (𝐶 · ((𝑁 𝐴) × ((𝐾 𝐵) × 𝐴))) = (𝐶 · (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴)))
3530, 34eqtrd 2768 . 2 (𝜑 → ((𝐶 · (𝑁 𝐴)) × ((𝐾 𝐵) × 𝐴)) = (𝐶 · (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴)))
36 srgpcomp.c . . . 4 (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
374, 16, 3, 6, 1, 10, 13, 12, 36, 9srgpcompp 20147 . . 3 (𝜑 → (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴) = (((𝑁 + 1) 𝐴) × (𝐾 𝐵)))
3837oveq2d 7371 . 2 (𝜑 → (𝐶 · (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴)) = (𝐶 · (((𝑁 + 1) 𝐴) × (𝐾 𝐵))))
3926, 35, 383eqtrd 2772 1 (𝜑 → ((𝐶 · ((𝑁 𝐴) × (𝐾 𝐵))) × 𝐴) = (𝐶 · (((𝑁 + 1) 𝐴) × (𝐾 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  cfv 6489  (class class class)co 7355  1c1 11017   + caddc 11019  0cn0 12391  Basecbs 17130  .rcmulr 17172  Mndcmnd 18652  .gcmg 18990  mulGrpcmgp 20068  SRingcsrg 20114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8879  df-dom 8880  df-sdom 8881  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-2 12198  df-n0 12392  df-z 12479  df-uz 12743  df-fz 13418  df-seq 13919  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-plusg 17184  df-0g 17355  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-mulg 18991  df-cmn 19704  df-mgp 20069  df-ur 20110  df-srg 20115
This theorem is referenced by:  srgbinomlem3  20156
  Copyright terms: Public domain W3C validator