| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > srgpcomppsc | Structured version Visualization version GIF version | ||
| Description: If two elements of a semiring commute, they also commute if the elements are raised to a higher power and a scalar multiplication is involved. (Contributed by AV, 23-Aug-2019.) |
| Ref | Expression |
|---|---|
| srgpcomp.s | ⊢ 𝑆 = (Base‘𝑅) |
| srgpcomp.m | ⊢ × = (.r‘𝑅) |
| srgpcomp.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
| srgpcomp.e | ⊢ ↑ = (.g‘𝐺) |
| srgpcomp.r | ⊢ (𝜑 → 𝑅 ∈ SRing) |
| srgpcomp.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| srgpcomp.b | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
| srgpcomp.k | ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
| srgpcomp.c | ⊢ (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴)) |
| srgpcompp.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| srgpcomppsc.t | ⊢ · = (.g‘𝑅) |
| srgpcomppsc.c | ⊢ (𝜑 → 𝐶 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| srgpcomppsc | ⊢ (𝜑 → ((𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵))) × 𝐴) = (𝐶 · (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgpcomp.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ SRing) | |
| 2 | srgpcomppsc.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℕ0) | |
| 3 | srgpcomp.g | . . . . . . 7 ⊢ 𝐺 = (mulGrp‘𝑅) | |
| 4 | srgpcomp.s | . . . . . . 7 ⊢ 𝑆 = (Base‘𝑅) | |
| 5 | 3, 4 | mgpbas 20142 | . . . . . 6 ⊢ 𝑆 = (Base‘𝐺) |
| 6 | srgpcomp.e | . . . . . 6 ⊢ ↑ = (.g‘𝐺) | |
| 7 | 3 | srgmgp 20188 | . . . . . . 7 ⊢ (𝑅 ∈ SRing → 𝐺 ∈ Mnd) |
| 8 | 1, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 9 | srgpcompp.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 10 | srgpcomp.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 11 | 5, 6, 8, 9, 10 | mulgnn0cld 19113 | . . . . 5 ⊢ (𝜑 → (𝑁 ↑ 𝐴) ∈ 𝑆) |
| 12 | srgpcomp.k | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℕ0) | |
| 13 | srgpcomp.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
| 14 | 5, 6, 8, 12, 13 | mulgnn0cld 19113 | . . . . 5 ⊢ (𝜑 → (𝐾 ↑ 𝐵) ∈ 𝑆) |
| 15 | srgpcomppsc.t | . . . . . . 7 ⊢ · = (.g‘𝑅) | |
| 16 | srgpcomp.m | . . . . . . 7 ⊢ × = (.r‘𝑅) | |
| 17 | 4, 15, 16 | srgmulgass 20214 | . . . . . 6 ⊢ ((𝑅 ∈ SRing ∧ (𝐶 ∈ ℕ0 ∧ (𝑁 ↑ 𝐴) ∈ 𝑆 ∧ (𝐾 ↑ 𝐵) ∈ 𝑆)) → ((𝐶 · (𝑁 ↑ 𝐴)) × (𝐾 ↑ 𝐵)) = (𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)))) |
| 18 | 17 | eqcomd 2743 | . . . . 5 ⊢ ((𝑅 ∈ SRing ∧ (𝐶 ∈ ℕ0 ∧ (𝑁 ↑ 𝐴) ∈ 𝑆 ∧ (𝐾 ↑ 𝐵) ∈ 𝑆)) → (𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵))) = ((𝐶 · (𝑁 ↑ 𝐴)) × (𝐾 ↑ 𝐵))) |
| 19 | 1, 2, 11, 14, 18 | syl13anc 1374 | . . . 4 ⊢ (𝜑 → (𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵))) = ((𝐶 · (𝑁 ↑ 𝐴)) × (𝐾 ↑ 𝐵))) |
| 20 | 19 | oveq1d 7446 | . . 3 ⊢ (𝜑 → ((𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵))) × 𝐴) = (((𝐶 · (𝑁 ↑ 𝐴)) × (𝐾 ↑ 𝐵)) × 𝐴)) |
| 21 | srgmnd 20187 | . . . . . 6 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) | |
| 22 | 1, 21 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Mnd) |
| 23 | 4, 15, 22, 2, 11 | mulgnn0cld 19113 | . . . 4 ⊢ (𝜑 → (𝐶 · (𝑁 ↑ 𝐴)) ∈ 𝑆) |
| 24 | 4, 16 | srgass 20191 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ ((𝐶 · (𝑁 ↑ 𝐴)) ∈ 𝑆 ∧ (𝐾 ↑ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) → (((𝐶 · (𝑁 ↑ 𝐴)) × (𝐾 ↑ 𝐵)) × 𝐴) = ((𝐶 · (𝑁 ↑ 𝐴)) × ((𝐾 ↑ 𝐵) × 𝐴))) |
| 25 | 1, 23, 14, 10, 24 | syl13anc 1374 | . . 3 ⊢ (𝜑 → (((𝐶 · (𝑁 ↑ 𝐴)) × (𝐾 ↑ 𝐵)) × 𝐴) = ((𝐶 · (𝑁 ↑ 𝐴)) × ((𝐾 ↑ 𝐵) × 𝐴))) |
| 26 | 20, 25 | eqtrd 2777 | . 2 ⊢ (𝜑 → ((𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵))) × 𝐴) = ((𝐶 · (𝑁 ↑ 𝐴)) × ((𝐾 ↑ 𝐵) × 𝐴))) |
| 27 | 4, 16 | srgcl 20190 | . . . . 5 ⊢ ((𝑅 ∈ SRing ∧ (𝐾 ↑ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → ((𝐾 ↑ 𝐵) × 𝐴) ∈ 𝑆) |
| 28 | 1, 14, 10, 27 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → ((𝐾 ↑ 𝐵) × 𝐴) ∈ 𝑆) |
| 29 | 4, 15, 16 | srgmulgass 20214 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ (𝐶 ∈ ℕ0 ∧ (𝑁 ↑ 𝐴) ∈ 𝑆 ∧ ((𝐾 ↑ 𝐵) × 𝐴) ∈ 𝑆)) → ((𝐶 · (𝑁 ↑ 𝐴)) × ((𝐾 ↑ 𝐵) × 𝐴)) = (𝐶 · ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴)))) |
| 30 | 1, 2, 11, 28, 29 | syl13anc 1374 | . . 3 ⊢ (𝜑 → ((𝐶 · (𝑁 ↑ 𝐴)) × ((𝐾 ↑ 𝐵) × 𝐴)) = (𝐶 · ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴)))) |
| 31 | 4, 16 | srgass 20191 | . . . . . 6 ⊢ ((𝑅 ∈ SRing ∧ ((𝑁 ↑ 𝐴) ∈ 𝑆 ∧ (𝐾 ↑ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴))) |
| 32 | 1, 11, 14, 10, 31 | syl13anc 1374 | . . . . 5 ⊢ (𝜑 → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴))) |
| 33 | 32 | eqcomd 2743 | . . . 4 ⊢ (𝜑 → ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴)) = (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴)) |
| 34 | 33 | oveq2d 7447 | . . 3 ⊢ (𝜑 → (𝐶 · ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴))) = (𝐶 · (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴))) |
| 35 | 30, 34 | eqtrd 2777 | . 2 ⊢ (𝜑 → ((𝐶 · (𝑁 ↑ 𝐴)) × ((𝐾 ↑ 𝐵) × 𝐴)) = (𝐶 · (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴))) |
| 36 | srgpcomp.c | . . . 4 ⊢ (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴)) | |
| 37 | 4, 16, 3, 6, 1, 10, 13, 12, 36, 9 | srgpcompp 20216 | . . 3 ⊢ (𝜑 → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵))) |
| 38 | 37 | oveq2d 7447 | . 2 ⊢ (𝜑 → (𝐶 · (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴)) = (𝐶 · (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵)))) |
| 39 | 26, 35, 38 | 3eqtrd 2781 | 1 ⊢ (𝜑 → ((𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵))) × 𝐴) = (𝐶 · (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ‘cfv 6561 (class class class)co 7431 1c1 11156 + caddc 11158 ℕ0cn0 12526 Basecbs 17247 .rcmulr 17298 Mndcmnd 18747 .gcmg 19085 mulGrpcmgp 20137 SRingcsrg 20183 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-seq 14043 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-plusg 17310 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-mulg 19086 df-cmn 19800 df-mgp 20138 df-ur 20179 df-srg 20184 |
| This theorem is referenced by: srgbinomlem3 20225 |
| Copyright terms: Public domain | W3C validator |