| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > srgpcompp | Structured version Visualization version GIF version | ||
| Description: If two elements of a semiring commute, they also commute if the elements are raised to a higher power. (Contributed by AV, 23-Aug-2019.) |
| Ref | Expression |
|---|---|
| srgpcomp.s | ⊢ 𝑆 = (Base‘𝑅) |
| srgpcomp.m | ⊢ × = (.r‘𝑅) |
| srgpcomp.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
| srgpcomp.e | ⊢ ↑ = (.g‘𝐺) |
| srgpcomp.r | ⊢ (𝜑 → 𝑅 ∈ SRing) |
| srgpcomp.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| srgpcomp.b | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
| srgpcomp.k | ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
| srgpcomp.c | ⊢ (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴)) |
| srgpcompp.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| srgpcompp | ⊢ (𝜑 → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgpcomp.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ SRing) | |
| 2 | srgpcomp.g | . . . . 5 ⊢ 𝐺 = (mulGrp‘𝑅) | |
| 3 | srgpcomp.s | . . . . 5 ⊢ 𝑆 = (Base‘𝑅) | |
| 4 | 2, 3 | mgpbas 20060 | . . . 4 ⊢ 𝑆 = (Base‘𝐺) |
| 5 | srgpcomp.e | . . . 4 ⊢ ↑ = (.g‘𝐺) | |
| 6 | 2 | srgmgp 20106 | . . . . 5 ⊢ (𝑅 ∈ SRing → 𝐺 ∈ Mnd) |
| 7 | 1, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 8 | srgpcompp.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 9 | srgpcomp.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 10 | 4, 5, 7, 8, 9 | mulgnn0cld 19033 | . . 3 ⊢ (𝜑 → (𝑁 ↑ 𝐴) ∈ 𝑆) |
| 11 | srgpcomp.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℕ0) | |
| 12 | srgpcomp.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
| 13 | 4, 5, 7, 11, 12 | mulgnn0cld 19033 | . . 3 ⊢ (𝜑 → (𝐾 ↑ 𝐵) ∈ 𝑆) |
| 14 | srgpcomp.m | . . . 4 ⊢ × = (.r‘𝑅) | |
| 15 | 3, 14 | srgass 20109 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ ((𝑁 ↑ 𝐴) ∈ 𝑆 ∧ (𝐾 ↑ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴))) |
| 16 | 1, 10, 13, 9, 15 | syl13anc 1374 | . 2 ⊢ (𝜑 → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴))) |
| 17 | srgpcomp.c | . . . . 5 ⊢ (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴)) | |
| 18 | 3, 14, 2, 5, 1, 9, 12, 11, 17 | srgpcomp 20133 | . . . 4 ⊢ (𝜑 → ((𝐾 ↑ 𝐵) × 𝐴) = (𝐴 × (𝐾 ↑ 𝐵))) |
| 19 | 18 | oveq2d 7405 | . . 3 ⊢ (𝜑 → ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴)) = ((𝑁 ↑ 𝐴) × (𝐴 × (𝐾 ↑ 𝐵)))) |
| 20 | 3, 14 | srgass 20109 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ ((𝑁 ↑ 𝐴) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ (𝐾 ↑ 𝐵) ∈ 𝑆)) → (((𝑁 ↑ 𝐴) × 𝐴) × (𝐾 ↑ 𝐵)) = ((𝑁 ↑ 𝐴) × (𝐴 × (𝐾 ↑ 𝐵)))) |
| 21 | 1, 10, 9, 13, 20 | syl13anc 1374 | . . 3 ⊢ (𝜑 → (((𝑁 ↑ 𝐴) × 𝐴) × (𝐾 ↑ 𝐵)) = ((𝑁 ↑ 𝐴) × (𝐴 × (𝐾 ↑ 𝐵)))) |
| 22 | 19, 21 | eqtr4d 2768 | . 2 ⊢ (𝜑 → ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴)) = (((𝑁 ↑ 𝐴) × 𝐴) × (𝐾 ↑ 𝐵))) |
| 23 | 2, 14 | mgpplusg 20059 | . . . . . 6 ⊢ × = (+g‘𝐺) |
| 24 | 4, 5, 23 | mulgnn0p1 19023 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑆) → ((𝑁 + 1) ↑ 𝐴) = ((𝑁 ↑ 𝐴) × 𝐴)) |
| 25 | 7, 8, 9, 24 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → ((𝑁 + 1) ↑ 𝐴) = ((𝑁 ↑ 𝐴) × 𝐴)) |
| 26 | 25 | eqcomd 2736 | . . 3 ⊢ (𝜑 → ((𝑁 ↑ 𝐴) × 𝐴) = ((𝑁 + 1) ↑ 𝐴)) |
| 27 | 26 | oveq1d 7404 | . 2 ⊢ (𝜑 → (((𝑁 ↑ 𝐴) × 𝐴) × (𝐾 ↑ 𝐵)) = (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵))) |
| 28 | 16, 22, 27 | 3eqtrd 2769 | 1 ⊢ (𝜑 → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6513 (class class class)co 7389 1c1 11075 + caddc 11077 ℕ0cn0 12448 Basecbs 17185 .rcmulr 17227 Mndcmnd 18667 .gcmg 19005 mulGrpcmgp 20055 SRingcsrg 20101 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-n0 12449 df-z 12536 df-uz 12800 df-fz 13475 df-seq 13973 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-plusg 17239 df-0g 17410 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mulg 19006 df-mgp 20056 df-ur 20097 df-srg 20102 |
| This theorem is referenced by: srgpcomppsc 20135 |
| Copyright terms: Public domain | W3C validator |