Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgpcompp Structured version   Visualization version   GIF version

Theorem srgpcompp 19280
 Description: If two elements of a semiring commute, they also commute if the elements are raised to a higher power. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srgpcomp.s 𝑆 = (Base‘𝑅)
srgpcomp.m × = (.r𝑅)
srgpcomp.g 𝐺 = (mulGrp‘𝑅)
srgpcomp.e = (.g𝐺)
srgpcomp.r (𝜑𝑅 ∈ SRing)
srgpcomp.a (𝜑𝐴𝑆)
srgpcomp.b (𝜑𝐵𝑆)
srgpcomp.k (𝜑𝐾 ∈ ℕ0)
srgpcomp.c (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
srgpcompp.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
srgpcompp (𝜑 → (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴) = (((𝑁 + 1) 𝐴) × (𝐾 𝐵)))

Proof of Theorem srgpcompp
StepHypRef Expression
1 srgpcomp.r . . 3 (𝜑𝑅 ∈ SRing)
2 srgpcomp.g . . . . . 6 𝐺 = (mulGrp‘𝑅)
32srgmgp 19257 . . . . 5 (𝑅 ∈ SRing → 𝐺 ∈ Mnd)
41, 3syl 17 . . . 4 (𝜑𝐺 ∈ Mnd)
5 srgpcompp.n . . . 4 (𝜑𝑁 ∈ ℕ0)
6 srgpcomp.a . . . 4 (𝜑𝐴𝑆)
7 srgpcomp.s . . . . . 6 𝑆 = (Base‘𝑅)
82, 7mgpbas 19242 . . . . 5 𝑆 = (Base‘𝐺)
9 srgpcomp.e . . . . 5 = (.g𝐺)
108, 9mulgnn0cl 18240 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝐴𝑆) → (𝑁 𝐴) ∈ 𝑆)
114, 5, 6, 10syl3anc 1368 . . 3 (𝜑 → (𝑁 𝐴) ∈ 𝑆)
12 srgpcomp.k . . . 4 (𝜑𝐾 ∈ ℕ0)
13 srgpcomp.b . . . 4 (𝜑𝐵𝑆)
148, 9mulgnn0cl 18240 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐾 ∈ ℕ0𝐵𝑆) → (𝐾 𝐵) ∈ 𝑆)
154, 12, 13, 14syl3anc 1368 . . 3 (𝜑 → (𝐾 𝐵) ∈ 𝑆)
16 srgpcomp.m . . . 4 × = (.r𝑅)
177, 16srgass 19260 . . 3 ((𝑅 ∈ SRing ∧ ((𝑁 𝐴) ∈ 𝑆 ∧ (𝐾 𝐵) ∈ 𝑆𝐴𝑆)) → (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴) = ((𝑁 𝐴) × ((𝐾 𝐵) × 𝐴)))
181, 11, 15, 6, 17syl13anc 1369 . 2 (𝜑 → (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴) = ((𝑁 𝐴) × ((𝐾 𝐵) × 𝐴)))
19 srgpcomp.c . . . . 5 (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
207, 16, 2, 9, 1, 6, 13, 12, 19srgpcomp 19279 . . . 4 (𝜑 → ((𝐾 𝐵) × 𝐴) = (𝐴 × (𝐾 𝐵)))
2120oveq2d 7152 . . 3 (𝜑 → ((𝑁 𝐴) × ((𝐾 𝐵) × 𝐴)) = ((𝑁 𝐴) × (𝐴 × (𝐾 𝐵))))
227, 16srgass 19260 . . . 4 ((𝑅 ∈ SRing ∧ ((𝑁 𝐴) ∈ 𝑆𝐴𝑆 ∧ (𝐾 𝐵) ∈ 𝑆)) → (((𝑁 𝐴) × 𝐴) × (𝐾 𝐵)) = ((𝑁 𝐴) × (𝐴 × (𝐾 𝐵))))
231, 11, 6, 15, 22syl13anc 1369 . . 3 (𝜑 → (((𝑁 𝐴) × 𝐴) × (𝐾 𝐵)) = ((𝑁 𝐴) × (𝐴 × (𝐾 𝐵))))
2421, 23eqtr4d 2836 . 2 (𝜑 → ((𝑁 𝐴) × ((𝐾 𝐵) × 𝐴)) = (((𝑁 𝐴) × 𝐴) × (𝐾 𝐵)))
252, 16mgpplusg 19240 . . . . . 6 × = (+g𝐺)
268, 9, 25mulgnn0p1 18235 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝐴𝑆) → ((𝑁 + 1) 𝐴) = ((𝑁 𝐴) × 𝐴))
274, 5, 6, 26syl3anc 1368 . . . 4 (𝜑 → ((𝑁 + 1) 𝐴) = ((𝑁 𝐴) × 𝐴))
2827eqcomd 2804 . . 3 (𝜑 → ((𝑁 𝐴) × 𝐴) = ((𝑁 + 1) 𝐴))
2928oveq1d 7151 . 2 (𝜑 → (((𝑁 𝐴) × 𝐴) × (𝐾 𝐵)) = (((𝑁 + 1) 𝐴) × (𝐾 𝐵)))
3018, 24, 293eqtrd 2837 1 (𝜑 → (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴) = (((𝑁 + 1) 𝐴) × (𝐾 𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2111  ‘cfv 6325  (class class class)co 7136  1c1 10530   + caddc 10532  ℕ0cn0 11888  Basecbs 16478  .rcmulr 16561  Mndcmnd 17906  .gcmg 18220  mulGrpcmgp 19236  SRingcsrg 19252 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-1st 7674  df-2nd 7675  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11629  df-2 11691  df-n0 11889  df-z 11973  df-uz 12235  df-fz 12889  df-seq 13368  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-plusg 16573  df-0g 16710  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-mulg 18221  df-mgp 19237  df-ur 19249  df-srg 19253 This theorem is referenced by:  srgpcomppsc  19281
 Copyright terms: Public domain W3C validator