![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > srgpcompp | Structured version Visualization version GIF version |
Description: If two elements of a semiring commute, they also commute if the elements are raised to a higher power. (Contributed by AV, 23-Aug-2019.) |
Ref | Expression |
---|---|
srgpcomp.s | ⊢ 𝑆 = (Base‘𝑅) |
srgpcomp.m | ⊢ × = (.r‘𝑅) |
srgpcomp.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
srgpcomp.e | ⊢ ↑ = (.g‘𝐺) |
srgpcomp.r | ⊢ (𝜑 → 𝑅 ∈ SRing) |
srgpcomp.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
srgpcomp.b | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
srgpcomp.k | ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
srgpcomp.c | ⊢ (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴)) |
srgpcompp.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
srgpcompp | ⊢ (𝜑 → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srgpcomp.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ SRing) | |
2 | srgpcomp.g | . . . . 5 ⊢ 𝐺 = (mulGrp‘𝑅) | |
3 | srgpcomp.s | . . . . 5 ⊢ 𝑆 = (Base‘𝑅) | |
4 | 2, 3 | mgpbas 20035 | . . . 4 ⊢ 𝑆 = (Base‘𝐺) |
5 | srgpcomp.e | . . . 4 ⊢ ↑ = (.g‘𝐺) | |
6 | 2 | srgmgp 20086 | . . . . 5 ⊢ (𝑅 ∈ SRing → 𝐺 ∈ Mnd) |
7 | 1, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
8 | srgpcompp.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
9 | srgpcomp.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
10 | 4, 5, 7, 8, 9 | mulgnn0cld 19012 | . . 3 ⊢ (𝜑 → (𝑁 ↑ 𝐴) ∈ 𝑆) |
11 | srgpcomp.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℕ0) | |
12 | srgpcomp.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
13 | 4, 5, 7, 11, 12 | mulgnn0cld 19012 | . . 3 ⊢ (𝜑 → (𝐾 ↑ 𝐵) ∈ 𝑆) |
14 | srgpcomp.m | . . . 4 ⊢ × = (.r‘𝑅) | |
15 | 3, 14 | srgass 20089 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ ((𝑁 ↑ 𝐴) ∈ 𝑆 ∧ (𝐾 ↑ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴))) |
16 | 1, 10, 13, 9, 15 | syl13anc 1371 | . 2 ⊢ (𝜑 → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴))) |
17 | srgpcomp.c | . . . . 5 ⊢ (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴)) | |
18 | 3, 14, 2, 5, 1, 9, 12, 11, 17 | srgpcomp 20113 | . . . 4 ⊢ (𝜑 → ((𝐾 ↑ 𝐵) × 𝐴) = (𝐴 × (𝐾 ↑ 𝐵))) |
19 | 18 | oveq2d 7428 | . . 3 ⊢ (𝜑 → ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴)) = ((𝑁 ↑ 𝐴) × (𝐴 × (𝐾 ↑ 𝐵)))) |
20 | 3, 14 | srgass 20089 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ ((𝑁 ↑ 𝐴) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ (𝐾 ↑ 𝐵) ∈ 𝑆)) → (((𝑁 ↑ 𝐴) × 𝐴) × (𝐾 ↑ 𝐵)) = ((𝑁 ↑ 𝐴) × (𝐴 × (𝐾 ↑ 𝐵)))) |
21 | 1, 10, 9, 13, 20 | syl13anc 1371 | . . 3 ⊢ (𝜑 → (((𝑁 ↑ 𝐴) × 𝐴) × (𝐾 ↑ 𝐵)) = ((𝑁 ↑ 𝐴) × (𝐴 × (𝐾 ↑ 𝐵)))) |
22 | 19, 21 | eqtr4d 2774 | . 2 ⊢ (𝜑 → ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴)) = (((𝑁 ↑ 𝐴) × 𝐴) × (𝐾 ↑ 𝐵))) |
23 | 2, 14 | mgpplusg 20033 | . . . . . 6 ⊢ × = (+g‘𝐺) |
24 | 4, 5, 23 | mulgnn0p1 19002 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑆) → ((𝑁 + 1) ↑ 𝐴) = ((𝑁 ↑ 𝐴) × 𝐴)) |
25 | 7, 8, 9, 24 | syl3anc 1370 | . . . 4 ⊢ (𝜑 → ((𝑁 + 1) ↑ 𝐴) = ((𝑁 ↑ 𝐴) × 𝐴)) |
26 | 25 | eqcomd 2737 | . . 3 ⊢ (𝜑 → ((𝑁 ↑ 𝐴) × 𝐴) = ((𝑁 + 1) ↑ 𝐴)) |
27 | 26 | oveq1d 7427 | . 2 ⊢ (𝜑 → (((𝑁 ↑ 𝐴) × 𝐴) × (𝐾 ↑ 𝐵)) = (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵))) |
28 | 16, 22, 27 | 3eqtrd 2775 | 1 ⊢ (𝜑 → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ‘cfv 6543 (class class class)co 7412 1c1 11115 + caddc 11117 ℕ0cn0 12477 Basecbs 17149 .rcmulr 17203 Mndcmnd 18660 .gcmg 18987 mulGrpcmgp 20029 SRingcsrg 20081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-n0 12478 df-z 12564 df-uz 12828 df-fz 13490 df-seq 13972 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-plusg 17215 df-0g 17392 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-mulg 18988 df-mgp 20030 df-ur 20077 df-srg 20082 |
This theorem is referenced by: srgpcomppsc 20115 |
Copyright terms: Public domain | W3C validator |