MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgpcomp Structured version   Visualization version   GIF version

Theorem srgpcomp 19501
Description: If two elements of a semiring commute, they also commute if one of the elements is raised to a higher power. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srgpcomp.s 𝑆 = (Base‘𝑅)
srgpcomp.m × = (.r𝑅)
srgpcomp.g 𝐺 = (mulGrp‘𝑅)
srgpcomp.e = (.g𝐺)
srgpcomp.r (𝜑𝑅 ∈ SRing)
srgpcomp.a (𝜑𝐴𝑆)
srgpcomp.b (𝜑𝐵𝑆)
srgpcomp.k (𝜑𝐾 ∈ ℕ0)
srgpcomp.c (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
Assertion
Ref Expression
srgpcomp (𝜑 → ((𝐾 𝐵) × 𝐴) = (𝐴 × (𝐾 𝐵)))

Proof of Theorem srgpcomp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 srgpcomp.k . 2 (𝜑𝐾 ∈ ℕ0)
2 oveq1 7198 . . . . . 6 (𝑥 = 0 → (𝑥 𝐵) = (0 𝐵))
32oveq1d 7206 . . . . 5 (𝑥 = 0 → ((𝑥 𝐵) × 𝐴) = ((0 𝐵) × 𝐴))
42oveq2d 7207 . . . . 5 (𝑥 = 0 → (𝐴 × (𝑥 𝐵)) = (𝐴 × (0 𝐵)))
53, 4eqeq12d 2752 . . . 4 (𝑥 = 0 → (((𝑥 𝐵) × 𝐴) = (𝐴 × (𝑥 𝐵)) ↔ ((0 𝐵) × 𝐴) = (𝐴 × (0 𝐵))))
65imbi2d 344 . . 3 (𝑥 = 0 → ((𝜑 → ((𝑥 𝐵) × 𝐴) = (𝐴 × (𝑥 𝐵))) ↔ (𝜑 → ((0 𝐵) × 𝐴) = (𝐴 × (0 𝐵)))))
7 oveq1 7198 . . . . . 6 (𝑥 = 𝑦 → (𝑥 𝐵) = (𝑦 𝐵))
87oveq1d 7206 . . . . 5 (𝑥 = 𝑦 → ((𝑥 𝐵) × 𝐴) = ((𝑦 𝐵) × 𝐴))
97oveq2d 7207 . . . . 5 (𝑥 = 𝑦 → (𝐴 × (𝑥 𝐵)) = (𝐴 × (𝑦 𝐵)))
108, 9eqeq12d 2752 . . . 4 (𝑥 = 𝑦 → (((𝑥 𝐵) × 𝐴) = (𝐴 × (𝑥 𝐵)) ↔ ((𝑦 𝐵) × 𝐴) = (𝐴 × (𝑦 𝐵))))
1110imbi2d 344 . . 3 (𝑥 = 𝑦 → ((𝜑 → ((𝑥 𝐵) × 𝐴) = (𝐴 × (𝑥 𝐵))) ↔ (𝜑 → ((𝑦 𝐵) × 𝐴) = (𝐴 × (𝑦 𝐵)))))
12 oveq1 7198 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝑥 𝐵) = ((𝑦 + 1) 𝐵))
1312oveq1d 7206 . . . . 5 (𝑥 = (𝑦 + 1) → ((𝑥 𝐵) × 𝐴) = (((𝑦 + 1) 𝐵) × 𝐴))
1412oveq2d 7207 . . . . 5 (𝑥 = (𝑦 + 1) → (𝐴 × (𝑥 𝐵)) = (𝐴 × ((𝑦 + 1) 𝐵)))
1513, 14eqeq12d 2752 . . . 4 (𝑥 = (𝑦 + 1) → (((𝑥 𝐵) × 𝐴) = (𝐴 × (𝑥 𝐵)) ↔ (((𝑦 + 1) 𝐵) × 𝐴) = (𝐴 × ((𝑦 + 1) 𝐵))))
1615imbi2d 344 . . 3 (𝑥 = (𝑦 + 1) → ((𝜑 → ((𝑥 𝐵) × 𝐴) = (𝐴 × (𝑥 𝐵))) ↔ (𝜑 → (((𝑦 + 1) 𝐵) × 𝐴) = (𝐴 × ((𝑦 + 1) 𝐵)))))
17 oveq1 7198 . . . . . 6 (𝑥 = 𝐾 → (𝑥 𝐵) = (𝐾 𝐵))
1817oveq1d 7206 . . . . 5 (𝑥 = 𝐾 → ((𝑥 𝐵) × 𝐴) = ((𝐾 𝐵) × 𝐴))
1917oveq2d 7207 . . . . 5 (𝑥 = 𝐾 → (𝐴 × (𝑥 𝐵)) = (𝐴 × (𝐾 𝐵)))
2018, 19eqeq12d 2752 . . . 4 (𝑥 = 𝐾 → (((𝑥 𝐵) × 𝐴) = (𝐴 × (𝑥 𝐵)) ↔ ((𝐾 𝐵) × 𝐴) = (𝐴 × (𝐾 𝐵))))
2120imbi2d 344 . . 3 (𝑥 = 𝐾 → ((𝜑 → ((𝑥 𝐵) × 𝐴) = (𝐴 × (𝑥 𝐵))) ↔ (𝜑 → ((𝐾 𝐵) × 𝐴) = (𝐴 × (𝐾 𝐵)))))
22 srgpcomp.b . . . . . 6 (𝜑𝐵𝑆)
23 srgpcomp.g . . . . . . . 8 𝐺 = (mulGrp‘𝑅)
24 srgpcomp.s . . . . . . . 8 𝑆 = (Base‘𝑅)
2523, 24mgpbas 19464 . . . . . . 7 𝑆 = (Base‘𝐺)
26 eqid 2736 . . . . . . . 8 (1r𝑅) = (1r𝑅)
2723, 26ringidval 19472 . . . . . . 7 (1r𝑅) = (0g𝐺)
28 srgpcomp.e . . . . . . 7 = (.g𝐺)
2925, 27, 28mulg0 18449 . . . . . 6 (𝐵𝑆 → (0 𝐵) = (1r𝑅))
3022, 29syl 17 . . . . 5 (𝜑 → (0 𝐵) = (1r𝑅))
3130oveq1d 7206 . . . 4 (𝜑 → ((0 𝐵) × 𝐴) = ((1r𝑅) × 𝐴))
32 srgpcomp.r . . . . . 6 (𝜑𝑅 ∈ SRing)
33 srgpcomp.a . . . . . 6 (𝜑𝐴𝑆)
34 srgpcomp.m . . . . . . 7 × = (.r𝑅)
3524, 34, 26srgridm 19491 . . . . . 6 ((𝑅 ∈ SRing ∧ 𝐴𝑆) → (𝐴 × (1r𝑅)) = 𝐴)
3632, 33, 35syl2anc 587 . . . . 5 (𝜑 → (𝐴 × (1r𝑅)) = 𝐴)
3730oveq2d 7207 . . . . 5 (𝜑 → (𝐴 × (0 𝐵)) = (𝐴 × (1r𝑅)))
3824, 34, 26srglidm 19490 . . . . . 6 ((𝑅 ∈ SRing ∧ 𝐴𝑆) → ((1r𝑅) × 𝐴) = 𝐴)
3932, 33, 38syl2anc 587 . . . . 5 (𝜑 → ((1r𝑅) × 𝐴) = 𝐴)
4036, 37, 393eqtr4rd 2782 . . . 4 (𝜑 → ((1r𝑅) × 𝐴) = (𝐴 × (0 𝐵)))
4131, 40eqtrd 2771 . . 3 (𝜑 → ((0 𝐵) × 𝐴) = (𝐴 × (0 𝐵)))
4223srgmgp 19479 . . . . . . . . . . . . 13 (𝑅 ∈ SRing → 𝐺 ∈ Mnd)
4332, 42syl 17 . . . . . . . . . . . 12 (𝜑𝐺 ∈ Mnd)
4443adantr 484 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ0) → 𝐺 ∈ Mnd)
45 simpr 488 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ0) → 𝑦 ∈ ℕ0)
4622adantr 484 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ0) → 𝐵𝑆)
4723, 34mgpplusg 19462 . . . . . . . . . . . 12 × = (+g𝐺)
4825, 28, 47mulgnn0p1 18457 . . . . . . . . . . 11 ((𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝐵𝑆) → ((𝑦 + 1) 𝐵) = ((𝑦 𝐵) × 𝐵))
4944, 45, 46, 48syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℕ0) → ((𝑦 + 1) 𝐵) = ((𝑦 𝐵) × 𝐵))
5049oveq1d 7206 . . . . . . . . 9 ((𝜑𝑦 ∈ ℕ0) → (((𝑦 + 1) 𝐵) × 𝐴) = (((𝑦 𝐵) × 𝐵) × 𝐴))
51 srgpcomp.c . . . . . . . . . . . . 13 (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
5251eqcomd 2742 . . . . . . . . . . . 12 (𝜑 → (𝐵 × 𝐴) = (𝐴 × 𝐵))
5352adantr 484 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ0) → (𝐵 × 𝐴) = (𝐴 × 𝐵))
5453oveq2d 7207 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℕ0) → ((𝑦 𝐵) × (𝐵 × 𝐴)) = ((𝑦 𝐵) × (𝐴 × 𝐵)))
5532adantr 484 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ0) → 𝑅 ∈ SRing)
5625, 28mulgnn0cl 18462 . . . . . . . . . . . 12 ((𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝐵𝑆) → (𝑦 𝐵) ∈ 𝑆)
5744, 45, 46, 56syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ0) → (𝑦 𝐵) ∈ 𝑆)
5833adantr 484 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ0) → 𝐴𝑆)
5924, 34srgass 19482 . . . . . . . . . . 11 ((𝑅 ∈ SRing ∧ ((𝑦 𝐵) ∈ 𝑆𝐵𝑆𝐴𝑆)) → (((𝑦 𝐵) × 𝐵) × 𝐴) = ((𝑦 𝐵) × (𝐵 × 𝐴)))
6055, 57, 46, 58, 59syl13anc 1374 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℕ0) → (((𝑦 𝐵) × 𝐵) × 𝐴) = ((𝑦 𝐵) × (𝐵 × 𝐴)))
6124, 34srgass 19482 . . . . . . . . . . 11 ((𝑅 ∈ SRing ∧ ((𝑦 𝐵) ∈ 𝑆𝐴𝑆𝐵𝑆)) → (((𝑦 𝐵) × 𝐴) × 𝐵) = ((𝑦 𝐵) × (𝐴 × 𝐵)))
6255, 57, 58, 46, 61syl13anc 1374 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℕ0) → (((𝑦 𝐵) × 𝐴) × 𝐵) = ((𝑦 𝐵) × (𝐴 × 𝐵)))
6354, 60, 623eqtr4d 2781 . . . . . . . . 9 ((𝜑𝑦 ∈ ℕ0) → (((𝑦 𝐵) × 𝐵) × 𝐴) = (((𝑦 𝐵) × 𝐴) × 𝐵))
6450, 63eqtrd 2771 . . . . . . . 8 ((𝜑𝑦 ∈ ℕ0) → (((𝑦 + 1) 𝐵) × 𝐴) = (((𝑦 𝐵) × 𝐴) × 𝐵))
6564adantr 484 . . . . . . 7 (((𝜑𝑦 ∈ ℕ0) ∧ ((𝑦 𝐵) × 𝐴) = (𝐴 × (𝑦 𝐵))) → (((𝑦 + 1) 𝐵) × 𝐴) = (((𝑦 𝐵) × 𝐴) × 𝐵))
66 oveq1 7198 . . . . . . . 8 (((𝑦 𝐵) × 𝐴) = (𝐴 × (𝑦 𝐵)) → (((𝑦 𝐵) × 𝐴) × 𝐵) = ((𝐴 × (𝑦 𝐵)) × 𝐵))
6724, 34srgass 19482 . . . . . . . . . 10 ((𝑅 ∈ SRing ∧ (𝐴𝑆 ∧ (𝑦 𝐵) ∈ 𝑆𝐵𝑆)) → ((𝐴 × (𝑦 𝐵)) × 𝐵) = (𝐴 × ((𝑦 𝐵) × 𝐵)))
6855, 58, 57, 46, 67syl13anc 1374 . . . . . . . . 9 ((𝜑𝑦 ∈ ℕ0) → ((𝐴 × (𝑦 𝐵)) × 𝐵) = (𝐴 × ((𝑦 𝐵) × 𝐵)))
6949eqcomd 2742 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℕ0) → ((𝑦 𝐵) × 𝐵) = ((𝑦 + 1) 𝐵))
7069oveq2d 7207 . . . . . . . . 9 ((𝜑𝑦 ∈ ℕ0) → (𝐴 × ((𝑦 𝐵) × 𝐵)) = (𝐴 × ((𝑦 + 1) 𝐵)))
7168, 70eqtrd 2771 . . . . . . . 8 ((𝜑𝑦 ∈ ℕ0) → ((𝐴 × (𝑦 𝐵)) × 𝐵) = (𝐴 × ((𝑦 + 1) 𝐵)))
7266, 71sylan9eqr 2793 . . . . . . 7 (((𝜑𝑦 ∈ ℕ0) ∧ ((𝑦 𝐵) × 𝐴) = (𝐴 × (𝑦 𝐵))) → (((𝑦 𝐵) × 𝐴) × 𝐵) = (𝐴 × ((𝑦 + 1) 𝐵)))
7365, 72eqtrd 2771 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ ((𝑦 𝐵) × 𝐴) = (𝐴 × (𝑦 𝐵))) → (((𝑦 + 1) 𝐵) × 𝐴) = (𝐴 × ((𝑦 + 1) 𝐵)))
7473ex 416 . . . . 5 ((𝜑𝑦 ∈ ℕ0) → (((𝑦 𝐵) × 𝐴) = (𝐴 × (𝑦 𝐵)) → (((𝑦 + 1) 𝐵) × 𝐴) = (𝐴 × ((𝑦 + 1) 𝐵))))
7574expcom 417 . . . 4 (𝑦 ∈ ℕ0 → (𝜑 → (((𝑦 𝐵) × 𝐴) = (𝐴 × (𝑦 𝐵)) → (((𝑦 + 1) 𝐵) × 𝐴) = (𝐴 × ((𝑦 + 1) 𝐵)))))
7675a2d 29 . . 3 (𝑦 ∈ ℕ0 → ((𝜑 → ((𝑦 𝐵) × 𝐴) = (𝐴 × (𝑦 𝐵))) → (𝜑 → (((𝑦 + 1) 𝐵) × 𝐴) = (𝐴 × ((𝑦 + 1) 𝐵)))))
776, 11, 16, 21, 41, 76nn0ind 12237 . 2 (𝐾 ∈ ℕ0 → (𝜑 → ((𝐾 𝐵) × 𝐴) = (𝐴 × (𝐾 𝐵))))
781, 77mpcom 38 1 (𝜑 → ((𝐾 𝐵) × 𝐴) = (𝐴 × (𝐾 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  cfv 6358  (class class class)co 7191  0cc0 10694  1c1 10695   + caddc 10697  0cn0 12055  Basecbs 16666  .rcmulr 16750  Mndcmnd 18127  .gcmg 18442  mulGrpcmgp 19458  1rcur 19470  SRingcsrg 19474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-n0 12056  df-z 12142  df-uz 12404  df-fz 13061  df-seq 13540  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-plusg 16762  df-0g 16900  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-mulg 18443  df-mgp 19459  df-ur 19471  df-srg 19475
This theorem is referenced by:  srgpcompp  19502  mplcoe5lem  20950
  Copyright terms: Public domain W3C validator