![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > srgbinomlem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for srgbinomlem 20257. (Contributed by AV, 23-Aug-2019.) |
Ref | Expression |
---|---|
srgbinom.s | ⊢ 𝑆 = (Base‘𝑅) |
srgbinom.m | ⊢ × = (.r‘𝑅) |
srgbinom.t | ⊢ · = (.g‘𝑅) |
srgbinom.a | ⊢ + = (+g‘𝑅) |
srgbinom.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
srgbinom.e | ⊢ ↑ = (.g‘𝐺) |
srgbinomlem.r | ⊢ (𝜑 → 𝑅 ∈ SRing) |
srgbinomlem.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
srgbinomlem.b | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
srgbinomlem.c | ⊢ (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴)) |
srgbinomlem.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
srgbinomlem1 | ⊢ ((𝜑 ∧ (𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0)) → ((𝐷 ↑ 𝐴) × (𝐸 ↑ 𝐵)) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srgbinomlem.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ SRing) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ (𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0)) → 𝑅 ∈ SRing) |
3 | srgbinom.g | . . . 4 ⊢ 𝐺 = (mulGrp‘𝑅) | |
4 | srgbinom.s | . . . 4 ⊢ 𝑆 = (Base‘𝑅) | |
5 | 3, 4 | mgpbas 20167 | . . 3 ⊢ 𝑆 = (Base‘𝐺) |
6 | srgbinom.e | . . 3 ⊢ ↑ = (.g‘𝐺) | |
7 | 3 | srgmgp 20218 | . . . . 5 ⊢ (𝑅 ∈ SRing → 𝐺 ∈ Mnd) |
8 | 1, 7 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
9 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0)) → 𝐺 ∈ Mnd) |
10 | simprl 770 | . . 3 ⊢ ((𝜑 ∧ (𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0)) → 𝐷 ∈ ℕ0) | |
11 | srgbinomlem.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
12 | 11 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0)) → 𝐴 ∈ 𝑆) |
13 | 5, 6, 9, 10, 12 | mulgnn0cld 19135 | . 2 ⊢ ((𝜑 ∧ (𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0)) → (𝐷 ↑ 𝐴) ∈ 𝑆) |
14 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0)) → 𝐸 ∈ ℕ0) | |
15 | srgbinomlem.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
16 | 15 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0)) → 𝐵 ∈ 𝑆) |
17 | 5, 6, 9, 14, 16 | mulgnn0cld 19135 | . 2 ⊢ ((𝜑 ∧ (𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0)) → (𝐸 ↑ 𝐵) ∈ 𝑆) |
18 | srgbinom.m | . . 3 ⊢ × = (.r‘𝑅) | |
19 | 4, 18 | srgcl 20220 | . 2 ⊢ ((𝑅 ∈ SRing ∧ (𝐷 ↑ 𝐴) ∈ 𝑆 ∧ (𝐸 ↑ 𝐵) ∈ 𝑆) → ((𝐷 ↑ 𝐴) × (𝐸 ↑ 𝐵)) ∈ 𝑆) |
20 | 2, 13, 17, 19 | syl3anc 1371 | 1 ⊢ ((𝜑 ∧ (𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0)) → ((𝐷 ↑ 𝐴) × (𝐸 ↑ 𝐵)) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 ℕ0cn0 12553 Basecbs 17258 +gcplusg 17311 .rcmulr 17312 Mndcmnd 18772 .gcmg 19107 mulGrpcmgp 20161 SRingcsrg 20213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-seq 14053 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mulg 19108 df-mgp 20162 df-srg 20214 |
This theorem is referenced by: srgbinomlem2 20254 srgbinomlem3 20255 |
Copyright terms: Public domain | W3C validator |