MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgbinomlem1 Structured version   Visualization version   GIF version

Theorem srgbinomlem1 18927
Description: Lemma 1 for srgbinomlem 18931. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srgbinom.s 𝑆 = (Base‘𝑅)
srgbinom.m × = (.r𝑅)
srgbinom.t · = (.g𝑅)
srgbinom.a + = (+g𝑅)
srgbinom.g 𝐺 = (mulGrp‘𝑅)
srgbinom.e = (.g𝐺)
srgbinomlem.r (𝜑𝑅 ∈ SRing)
srgbinomlem.a (𝜑𝐴𝑆)
srgbinomlem.b (𝜑𝐵𝑆)
srgbinomlem.c (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
srgbinomlem.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
srgbinomlem1 ((𝜑 ∧ (𝐷 ∈ ℕ0𝐸 ∈ ℕ0)) → ((𝐷 𝐴) × (𝐸 𝐵)) ∈ 𝑆)

Proof of Theorem srgbinomlem1
StepHypRef Expression
1 srgbinomlem.r . . 3 (𝜑𝑅 ∈ SRing)
21adantr 474 . 2 ((𝜑 ∧ (𝐷 ∈ ℕ0𝐸 ∈ ℕ0)) → 𝑅 ∈ SRing)
3 srgbinom.g . . . . . 6 𝐺 = (mulGrp‘𝑅)
43srgmgp 18897 . . . . 5 (𝑅 ∈ SRing → 𝐺 ∈ Mnd)
51, 4syl 17 . . . 4 (𝜑𝐺 ∈ Mnd)
65adantr 474 . . 3 ((𝜑 ∧ (𝐷 ∈ ℕ0𝐸 ∈ ℕ0)) → 𝐺 ∈ Mnd)
7 simprl 761 . . 3 ((𝜑 ∧ (𝐷 ∈ ℕ0𝐸 ∈ ℕ0)) → 𝐷 ∈ ℕ0)
8 srgbinomlem.a . . . 4 (𝜑𝐴𝑆)
98adantr 474 . . 3 ((𝜑 ∧ (𝐷 ∈ ℕ0𝐸 ∈ ℕ0)) → 𝐴𝑆)
10 srgbinom.s . . . . 5 𝑆 = (Base‘𝑅)
113, 10mgpbas 18882 . . . 4 𝑆 = (Base‘𝐺)
12 srgbinom.e . . . 4 = (.g𝐺)
1311, 12mulgnn0cl 17944 . . 3 ((𝐺 ∈ Mnd ∧ 𝐷 ∈ ℕ0𝐴𝑆) → (𝐷 𝐴) ∈ 𝑆)
146, 7, 9, 13syl3anc 1439 . 2 ((𝜑 ∧ (𝐷 ∈ ℕ0𝐸 ∈ ℕ0)) → (𝐷 𝐴) ∈ 𝑆)
15 simprr 763 . . 3 ((𝜑 ∧ (𝐷 ∈ ℕ0𝐸 ∈ ℕ0)) → 𝐸 ∈ ℕ0)
16 srgbinomlem.b . . . 4 (𝜑𝐵𝑆)
1716adantr 474 . . 3 ((𝜑 ∧ (𝐷 ∈ ℕ0𝐸 ∈ ℕ0)) → 𝐵𝑆)
1811, 12mulgnn0cl 17944 . . 3 ((𝐺 ∈ Mnd ∧ 𝐸 ∈ ℕ0𝐵𝑆) → (𝐸 𝐵) ∈ 𝑆)
196, 15, 17, 18syl3anc 1439 . 2 ((𝜑 ∧ (𝐷 ∈ ℕ0𝐸 ∈ ℕ0)) → (𝐸 𝐵) ∈ 𝑆)
20 srgbinom.m . . 3 × = (.r𝑅)
2110, 20srgcl 18899 . 2 ((𝑅 ∈ SRing ∧ (𝐷 𝐴) ∈ 𝑆 ∧ (𝐸 𝐵) ∈ 𝑆) → ((𝐷 𝐴) × (𝐸 𝐵)) ∈ 𝑆)
222, 14, 19, 21syl3anc 1439 1 ((𝜑 ∧ (𝐷 ∈ ℕ0𝐸 ∈ ℕ0)) → ((𝐷 𝐴) × (𝐸 𝐵)) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  cfv 6135  (class class class)co 6922  0cn0 11642  Basecbs 16255  +gcplusg 16338  .rcmulr 16339  Mndcmnd 17680  .gcmg 17927  mulGrpcmgp 18876  SRingcsrg 18892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-n0 11643  df-z 11729  df-uz 11993  df-fz 12644  df-seq 13120  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-plusg 16351  df-0g 16488  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-mulg 17928  df-mgp 18877  df-srg 18893
This theorem is referenced by:  srgbinomlem2  18928  srgbinomlem3  18929
  Copyright terms: Public domain W3C validator