| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprrd | Structured version Visualization version GIF version | ||
| Description: Deduction form of simprr 772, eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| simprrd.1 | ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) |
| Ref | Expression |
|---|---|
| simprrd | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprrd.1 | . . 3 ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) | |
| 2 | 1 | simprd 495 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
| 3 | 2 | simprd 495 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fpwwe2lem3 10674 uzind 12712 latcl2 18482 clatlem 18548 dirge 18649 srgrz 20205 lmodvs1 20889 lmhmsca 21030 evlsvar 22115 uzsind 28392 mirbtwn 28667 dfcgra2 28839 3trlond 30193 3pthond 30195 3spthond 30197 ssdifidllem 33485 ssmxidllem 33502 ssmxidl 33503 axtgupdim2ALTV 34684 mvtinf 35561 rngoid 37910 rngoideu 37911 rngorn1eq 37942 rngomndo 37943 fzne2d 41982 mzpcl34 42747 icccncfext 45907 fourierdlem12 46139 fourierdlem34 46161 fourierdlem41 46168 fourierdlem48 46174 fourierdlem49 46175 fourierdlem74 46200 fourierdlem75 46201 fourierdlem76 46202 fourierdlem89 46215 fourierdlem91 46217 fourierdlem92 46218 fourierdlem94 46220 fourierdlem113 46239 sssalgen 46355 issalgend 46358 smfaddlem1 46783 |
| Copyright terms: Public domain | W3C validator |