| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprrd | Structured version Visualization version GIF version | ||
| Description: Deduction form of simprr 772, eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| simprrd.1 | ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) |
| Ref | Expression |
|---|---|
| simprrd | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprrd.1 | . . 3 ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) | |
| 2 | 1 | simprd 495 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
| 3 | 2 | simprd 495 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fpwwe2lem3 10586 uzind 12626 latcl2 18395 clatlem 18461 dirge 18562 srgrz 20116 lmodvs1 20796 lmhmsca 20937 evlsvar 21997 uzsind 28293 mirbtwn 28585 dfcgra2 28757 3trlond 30102 3pthond 30104 3spthond 30106 ssdifidllem 33427 ssmxidllem 33444 ssmxidl 33445 axtgupdim2ALTV 34659 mvtinf 35542 rngoid 37896 rngoideu 37897 rngorn1eq 37928 rngomndo 37929 fzne2d 41968 mzpcl34 42719 icccncfext 45885 fourierdlem12 46117 fourierdlem34 46139 fourierdlem41 46146 fourierdlem48 46152 fourierdlem49 46153 fourierdlem74 46178 fourierdlem75 46179 fourierdlem76 46180 fourierdlem89 46193 fourierdlem91 46195 fourierdlem92 46196 fourierdlem94 46198 fourierdlem113 46217 sssalgen 46333 issalgend 46336 smfaddlem1 46761 nelsubc2 49055 funcoppc4 49130 |
| Copyright terms: Public domain | W3C validator |