![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simprrd | Structured version Visualization version GIF version |
Description: Deduction form of simprr 772, eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
simprrd.1 | ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) |
Ref | Expression |
---|---|
simprrd | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprrd.1 | . . 3 ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) | |
2 | 1 | simprd 495 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
3 | 2 | simprd 495 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: fpwwe2lem3 10702 uzind 12735 latcl2 18506 clatlem 18572 dirge 18673 srgrz 20234 lmodvs1 20910 lmhmsca 21052 evlsvar 22137 uzsind 28409 mirbtwn 28684 dfcgra2 28856 3trlond 30205 3pthond 30207 3spthond 30209 ssdifidllem 33449 ssmxidllem 33466 ssmxidl 33467 axtgupdim2ALTV 34645 mvtinf 35523 rngoid 37862 rngoideu 37863 rngorn1eq 37894 rngomndo 37895 fzne2d 41937 mzpcl34 42687 icccncfext 45808 fourierdlem12 46040 fourierdlem34 46062 fourierdlem41 46069 fourierdlem48 46075 fourierdlem49 46076 fourierdlem74 46101 fourierdlem75 46102 fourierdlem76 46103 fourierdlem89 46116 fourierdlem91 46118 fourierdlem92 46119 fourierdlem94 46121 fourierdlem113 46140 sssalgen 46256 issalgend 46259 smfaddlem1 46684 |
Copyright terms: Public domain | W3C validator |