| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprrd | Structured version Visualization version GIF version | ||
| Description: Deduction form of simprr 772, eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| simprrd.1 | ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) |
| Ref | Expression |
|---|---|
| simprrd | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprrd.1 | . . 3 ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) | |
| 2 | 1 | simprd 495 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
| 3 | 2 | simprd 495 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fpwwe2lem3 10652 uzind 12690 latcl2 18451 clatlem 18517 dirge 18618 srgrz 20172 lmodvs1 20852 lmhmsca 20993 evlsvar 22053 uzsind 28350 mirbtwn 28642 dfcgra2 28814 3trlond 30159 3pthond 30161 3spthond 30163 ssdifidllem 33476 ssmxidllem 33493 ssmxidl 33494 axtgupdim2ALTV 34705 mvtinf 35582 rngoid 37931 rngoideu 37932 rngorn1eq 37963 rngomndo 37964 fzne2d 41998 mzpcl34 42721 icccncfext 45883 fourierdlem12 46115 fourierdlem34 46137 fourierdlem41 46144 fourierdlem48 46150 fourierdlem49 46151 fourierdlem74 46176 fourierdlem75 46177 fourierdlem76 46178 fourierdlem89 46191 fourierdlem91 46193 fourierdlem92 46194 fourierdlem94 46196 fourierdlem113 46215 sssalgen 46331 issalgend 46334 smfaddlem1 46759 nelsubc2 49003 funcoppc4 49054 |
| Copyright terms: Public domain | W3C validator |