Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simprrd | Structured version Visualization version GIF version |
Description: Deduction form of simprr 769, eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
simprrd.1 | ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) |
Ref | Expression |
---|---|
simprrd | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprrd.1 | . . 3 ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) | |
2 | 1 | simprd 495 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
3 | 2 | simprd 495 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: fpwwe2lem3 10320 uzind 12342 latcl2 18069 clatlem 18135 dirge 18236 srgrz 19677 lmodvs1 20066 lmhmsca 20207 evlsvar 21210 mirbtwn 26923 dfcgra2 27095 3trlond 28438 3pthond 28440 3spthond 28442 ssmxidllem 31543 ssmxidl 31544 axtgupdim2ALTV 32548 mvtinf 33417 rngoid 35987 rngoideu 35988 rngorn1eq 36019 rngomndo 36020 fzne2d 39917 mzpcl34 40469 icccncfext 43318 fourierdlem12 43550 fourierdlem34 43572 fourierdlem41 43579 fourierdlem48 43585 fourierdlem49 43586 fourierdlem74 43611 fourierdlem75 43612 fourierdlem76 43613 fourierdlem89 43626 fourierdlem91 43628 fourierdlem92 43629 fourierdlem94 43631 fourierdlem113 43650 sssalgen 43764 issalgend 43767 smfaddlem1 44185 |
Copyright terms: Public domain | W3C validator |