MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simprrd Structured version   Visualization version   GIF version

Theorem simprrd 773
Description: Deduction form of simprr 772, eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
simprrd.1 (𝜑 → (𝜓 ∧ (𝜒𝜃)))
Assertion
Ref Expression
simprrd (𝜑𝜃)

Proof of Theorem simprrd
StepHypRef Expression
1 simprrd.1 . . 3 (𝜑 → (𝜓 ∧ (𝜒𝜃)))
21simprd 497 . 2 (𝜑 → (𝜒𝜃))
32simprd 497 1 (𝜑𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398
This theorem is referenced by:  fpwwe2lem3  10628  uzind  12654  latcl2  18389  clatlem  18455  dirge  18556  srgrz  20030  lmodvs1  20500  lmhmsca  20641  evlsvar  21653  mirbtwn  27909  dfcgra2  28081  3trlond  29426  3pthond  29428  3spthond  29430  ssmxidllem  32589  ssmxidl  32590  axtgupdim2ALTV  33680  mvtinf  34546  rngoid  36770  rngoideu  36771  rngorn1eq  36802  rngomndo  36803  fzne2d  40846  mzpcl34  41469  icccncfext  44603  fourierdlem12  44835  fourierdlem34  44857  fourierdlem41  44864  fourierdlem48  44870  fourierdlem49  44871  fourierdlem74  44896  fourierdlem75  44897  fourierdlem76  44898  fourierdlem89  44911  fourierdlem91  44913  fourierdlem92  44914  fourierdlem94  44916  fourierdlem113  44935  sssalgen  45051  issalgend  45054  smfaddlem1  45479
  Copyright terms: Public domain W3C validator