Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simprrd | Structured version Visualization version GIF version |
Description: Deduction form of simprr 770, eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
simprrd.1 | ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) |
Ref | Expression |
---|---|
simprrd | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprrd.1 | . . 3 ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) | |
2 | 1 | simprd 496 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
3 | 2 | simprd 496 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: fpwwe2lem3 10389 uzind 12412 latcl2 18154 clatlem 18220 dirge 18321 srgrz 19762 lmodvs1 20151 lmhmsca 20292 evlsvar 21300 mirbtwn 27019 dfcgra2 27191 3trlond 28537 3pthond 28539 3spthond 28541 ssmxidllem 31641 ssmxidl 31642 axtgupdim2ALTV 32648 mvtinf 33517 rngoid 36060 rngoideu 36061 rngorn1eq 36092 rngomndo 36093 fzne2d 39989 mzpcl34 40553 icccncfext 43428 fourierdlem12 43660 fourierdlem34 43682 fourierdlem41 43689 fourierdlem48 43695 fourierdlem49 43696 fourierdlem74 43721 fourierdlem75 43722 fourierdlem76 43723 fourierdlem89 43736 fourierdlem91 43738 fourierdlem92 43739 fourierdlem94 43741 fourierdlem113 43760 sssalgen 43874 issalgend 43877 smfaddlem1 44298 |
Copyright terms: Public domain | W3C validator |