| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprrd | Structured version Visualization version GIF version | ||
| Description: Deduction form of simprr 772, eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| simprrd.1 | ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) |
| Ref | Expression |
|---|---|
| simprrd | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprrd.1 | . . 3 ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) | |
| 2 | 1 | simprd 495 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
| 3 | 2 | simprd 495 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fpwwe2lem3 10521 uzind 12562 latcl2 18339 clatlem 18405 dirge 18506 srgrz 20123 lmodvs1 20821 lmhmsca 20962 evlsvar 22023 uzsind 28327 mirbtwn 28634 dfcgra2 28806 3trlond 30148 3pthond 30150 3spthond 30152 ssdifidllem 33416 ssmxidllem 33433 ssmxidl 33434 axtgupdim2ALTV 34676 mvtinf 35587 rngoid 37941 rngoideu 37942 rngorn1eq 37973 rngomndo 37974 fzne2d 42012 mzpcl34 42763 icccncfext 45924 fourierdlem12 46156 fourierdlem34 46178 fourierdlem41 46185 fourierdlem48 46191 fourierdlem49 46192 fourierdlem74 46217 fourierdlem75 46218 fourierdlem76 46219 fourierdlem89 46232 fourierdlem91 46234 fourierdlem92 46235 fourierdlem94 46237 fourierdlem113 46256 sssalgen 46372 issalgend 46375 smfaddlem1 46800 nelsubc2 49100 funcoppc4 49175 |
| Copyright terms: Public domain | W3C validator |