![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simprrd | Structured version Visualization version GIF version |
Description: Deduction form of simprr 769, eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
simprrd.1 | ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) |
Ref | Expression |
---|---|
simprrd | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprrd.1 | . . 3 ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) | |
2 | 1 | simprd 494 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
3 | 2 | simprd 494 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: fpwwe2lem3 10630 uzind 12658 latcl2 18393 clatlem 18459 dirge 18560 srgrz 20101 lmodvs1 20644 lmhmsca 20785 evlsvar 21872 mirbtwn 28176 dfcgra2 28348 3trlond 29693 3pthond 29695 3spthond 29697 ssmxidllem 32863 ssmxidl 32864 axtgupdim2ALTV 33978 mvtinf 34844 rngoid 37073 rngoideu 37074 rngorn1eq 37105 rngomndo 37106 fzne2d 41152 mzpcl34 41771 icccncfext 44901 fourierdlem12 45133 fourierdlem34 45155 fourierdlem41 45162 fourierdlem48 45168 fourierdlem49 45169 fourierdlem74 45194 fourierdlem75 45195 fourierdlem76 45196 fourierdlem89 45209 fourierdlem91 45211 fourierdlem92 45212 fourierdlem94 45214 fourierdlem113 45233 sssalgen 45349 issalgend 45352 smfaddlem1 45777 |
Copyright terms: Public domain | W3C validator |