![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simprrd | Structured version Visualization version GIF version |
Description: Deduction form of simprr 773, eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
simprrd.1 | ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) |
Ref | Expression |
---|---|
simprrd | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprrd.1 | . . 3 ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) | |
2 | 1 | simprd 495 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
3 | 2 | simprd 495 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: fpwwe2lem3 10671 uzind 12708 latcl2 18494 clatlem 18560 dirge 18661 srgrz 20225 lmodvs1 20905 lmhmsca 21047 evlsvar 22132 uzsind 28406 mirbtwn 28681 dfcgra2 28853 3trlond 30202 3pthond 30204 3spthond 30206 ssdifidllem 33464 ssmxidllem 33481 ssmxidl 33482 axtgupdim2ALTV 34662 mvtinf 35540 rngoid 37889 rngoideu 37890 rngorn1eq 37921 rngomndo 37922 fzne2d 41962 mzpcl34 42719 icccncfext 45843 fourierdlem12 46075 fourierdlem34 46097 fourierdlem41 46104 fourierdlem48 46110 fourierdlem49 46111 fourierdlem74 46136 fourierdlem75 46137 fourierdlem76 46138 fourierdlem89 46151 fourierdlem91 46153 fourierdlem92 46154 fourierdlem94 46156 fourierdlem113 46175 sssalgen 46291 issalgend 46294 smfaddlem1 46719 |
Copyright terms: Public domain | W3C validator |