Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simprrd | Structured version Visualization version GIF version |
Description: Deduction form of simprr 770, eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
simprrd.1 | ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) |
Ref | Expression |
---|---|
simprrd | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprrd.1 | . . 3 ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) | |
2 | 1 | simprd 496 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
3 | 2 | simprd 496 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: fpwwe2lem3 10390 uzind 12412 latcl2 18152 clatlem 18218 dirge 18319 srgrz 19760 lmodvs1 20149 lmhmsca 20290 evlsvar 21298 mirbtwn 27017 dfcgra2 27189 3trlond 28533 3pthond 28535 3spthond 28537 ssmxidllem 31637 ssmxidl 31638 axtgupdim2ALTV 32644 mvtinf 33513 rngoid 36056 rngoideu 36057 rngorn1eq 36088 rngomndo 36089 fzne2d 39986 mzpcl34 40550 icccncfext 43399 fourierdlem12 43631 fourierdlem34 43653 fourierdlem41 43660 fourierdlem48 43666 fourierdlem49 43667 fourierdlem74 43692 fourierdlem75 43693 fourierdlem76 43694 fourierdlem89 43707 fourierdlem91 43709 fourierdlem92 43710 fourierdlem94 43712 fourierdlem113 43731 sssalgen 43845 issalgend 43848 smfaddlem1 44266 |
Copyright terms: Public domain | W3C validator |