| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprrd | Structured version Visualization version GIF version | ||
| Description: Deduction form of simprr 772, eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| simprrd.1 | ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) |
| Ref | Expression |
|---|---|
| simprrd | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprrd.1 | . . 3 ⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) | |
| 2 | 1 | simprd 495 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
| 3 | 2 | simprd 495 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fpwwe2lem3 10531 uzind 12571 latcl2 18344 clatlem 18410 dirge 18511 srgrz 20127 lmodvs1 20825 lmhmsca 20966 evlsvar 22026 uzsind 28330 mirbtwn 28637 dfcgra2 28809 3trlond 30155 3pthond 30157 3spthond 30159 ssdifidllem 33428 ssmxidllem 33445 ssmxidl 33446 axtgupdim2ALTV 34702 mvtinf 35620 rngoid 37962 rngoideu 37963 rngorn1eq 37994 rngomndo 37995 fzne2d 42093 mzpcl34 42848 icccncfext 46009 fourierdlem12 46241 fourierdlem34 46263 fourierdlem41 46270 fourierdlem48 46276 fourierdlem49 46277 fourierdlem74 46302 fourierdlem75 46303 fourierdlem76 46304 fourierdlem89 46317 fourierdlem91 46319 fourierdlem92 46320 fourierdlem94 46322 fourierdlem113 46341 sssalgen 46457 issalgend 46460 smfaddlem1 46885 nelsubc2 49194 funcoppc4 49269 |
| Copyright terms: Public domain | W3C validator |