MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem11 Structured version   Visualization version   GIF version

Theorem rpnnen2lem11 16106
Description: Lemma for rpnnen2 16108. (Contributed by Mario Carneiro, 13-May-2013.)
Hypotheses
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
rpnnen2.2 (𝜑𝐴 ⊆ ℕ)
rpnnen2.3 (𝜑𝐵 ⊆ ℕ)
rpnnen2.4 (𝜑𝑚 ∈ (𝐴𝐵))
rpnnen2.5 (𝜑 → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝐴𝑛𝐵)))
rpnnen2.6 (𝜓 ↔ Σ𝑘 ∈ ℕ ((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝐵)‘𝑘))
Assertion
Ref Expression
rpnnen2lem11 (𝜑 → ¬ 𝜓)
Distinct variable groups:   𝑚,𝑛,𝑥,𝑘   𝐴,𝑘,𝑛,𝑥   𝐵,𝑘,𝑛,𝑥   𝑘,𝑚,𝐹   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝜓(𝑥,𝑘,𝑚,𝑛)   𝐴(𝑚)   𝐵(𝑚)   𝐹(𝑥,𝑛)

Proof of Theorem rpnnen2lem11
StepHypRef Expression
1 rpnnen2.3 . . . 4 (𝜑𝐵 ⊆ ℕ)
2 rpnnen2.2 . . . . 5 (𝜑𝐴 ⊆ ℕ)
3 rpnnen2.4 . . . . 5 (𝜑𝑚 ∈ (𝐴𝐵))
4 eldifi 4086 . . . . . 6 (𝑚 ∈ (𝐴𝐵) → 𝑚𝐴)
5 ssel2 3939 . . . . . 6 ((𝐴 ⊆ ℕ ∧ 𝑚𝐴) → 𝑚 ∈ ℕ)
64, 5sylan2 593 . . . . 5 ((𝐴 ⊆ ℕ ∧ 𝑚 ∈ (𝐴𝐵)) → 𝑚 ∈ ℕ)
72, 3, 6syl2anc 584 . . . 4 (𝜑𝑚 ∈ ℕ)
8 rpnnen2.1 . . . . 5 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
98rpnnen2lem6 16101 . . . 4 ((𝐵 ⊆ ℕ ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘) ∈ ℝ)
101, 7, 9syl2anc 584 . . 3 (𝜑 → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘) ∈ ℝ)
11 3nn 12232 . . . . . 6 3 ∈ ℕ
12 nnrecre 12195 . . . . . 6 (3 ∈ ℕ → (1 / 3) ∈ ℝ)
1311, 12ax-mp 5 . . . . 5 (1 / 3) ∈ ℝ
147nnnn0d 12473 . . . . 5 (𝜑𝑚 ∈ ℕ0)
15 reexpcl 13984 . . . . 5 (((1 / 3) ∈ ℝ ∧ 𝑚 ∈ ℕ0) → ((1 / 3)↑𝑚) ∈ ℝ)
1613, 14, 15sylancr 587 . . . 4 (𝜑 → ((1 / 3)↑𝑚) ∈ ℝ)
178rpnnen2lem6 16101 . . . . 5 ((𝐴 ⊆ ℕ ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) ∈ ℝ)
182, 7, 17syl2anc 584 . . . 4 (𝜑 → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) ∈ ℝ)
19 nnrp 12926 . . . . . . . . 9 (3 ∈ ℕ → 3 ∈ ℝ+)
20 rpreccl 12941 . . . . . . . . 9 (3 ∈ ℝ+ → (1 / 3) ∈ ℝ+)
2111, 19, 20mp2b 10 . . . . . . . 8 (1 / 3) ∈ ℝ+
227nnzd 12526 . . . . . . . 8 (𝜑𝑚 ∈ ℤ)
23 rpexpcl 13986 . . . . . . . 8 (((1 / 3) ∈ ℝ+𝑚 ∈ ℤ) → ((1 / 3)↑𝑚) ∈ ℝ+)
2421, 22, 23sylancr 587 . . . . . . 7 (𝜑 → ((1 / 3)↑𝑚) ∈ ℝ+)
2524rpred 12957 . . . . . 6 (𝜑 → ((1 / 3)↑𝑚) ∈ ℝ)
2625rehalfcld 12400 . . . . 5 (𝜑 → (((1 / 3)↑𝑚) / 2) ∈ ℝ)
273snssd 4769 . . . . . . . . 9 (𝜑 → {𝑚} ⊆ (𝐴𝐵))
282ssdifd 4100 . . . . . . . . 9 (𝜑 → (𝐴𝐵) ⊆ (ℕ ∖ 𝐵))
2927, 28sstrd 3954 . . . . . . . 8 (𝜑 → {𝑚} ⊆ (ℕ ∖ 𝐵))
307snssd 4769 . . . . . . . . 9 (𝜑 → {𝑚} ⊆ ℕ)
31 ssconb 4097 . . . . . . . . 9 ((𝐵 ⊆ ℕ ∧ {𝑚} ⊆ ℕ) → (𝐵 ⊆ (ℕ ∖ {𝑚}) ↔ {𝑚} ⊆ (ℕ ∖ 𝐵)))
321, 30, 31syl2anc 584 . . . . . . . 8 (𝜑 → (𝐵 ⊆ (ℕ ∖ {𝑚}) ↔ {𝑚} ⊆ (ℕ ∖ 𝐵)))
3329, 32mpbird 256 . . . . . . 7 (𝜑𝐵 ⊆ (ℕ ∖ {𝑚}))
34 difssd 4092 . . . . . . 7 (𝜑 → (ℕ ∖ {𝑚}) ⊆ ℕ)
358rpnnen2lem7 16102 . . . . . . 7 ((𝐵 ⊆ (ℕ ∖ {𝑚}) ∧ (ℕ ∖ {𝑚}) ⊆ ℕ ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘) ≤ Σ𝑘 ∈ (ℤ𝑚)((𝐹‘(ℕ ∖ {𝑚}))‘𝑘))
3633, 34, 7, 35syl3anc 1371 . . . . . 6 (𝜑 → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘) ≤ Σ𝑘 ∈ (ℤ𝑚)((𝐹‘(ℕ ∖ {𝑚}))‘𝑘))
378rpnnen2lem9 16104 . . . . . . . 8 (𝑚 ∈ ℕ → Σ𝑘 ∈ (ℤ𝑚)((𝐹‘(ℕ ∖ {𝑚}))‘𝑘) = (0 + (((1 / 3)↑(𝑚 + 1)) / (1 − (1 / 3)))))
387, 37syl 17 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (ℤ𝑚)((𝐹‘(ℕ ∖ {𝑚}))‘𝑘) = (0 + (((1 / 3)↑(𝑚 + 1)) / (1 − (1 / 3)))))
3913recni 11169 . . . . . . . . . . . 12 (1 / 3) ∈ ℂ
40 expp1 13974 . . . . . . . . . . . 12 (((1 / 3) ∈ ℂ ∧ 𝑚 ∈ ℕ0) → ((1 / 3)↑(𝑚 + 1)) = (((1 / 3)↑𝑚) · (1 / 3)))
4139, 14, 40sylancr 587 . . . . . . . . . . 11 (𝜑 → ((1 / 3)↑(𝑚 + 1)) = (((1 / 3)↑𝑚) · (1 / 3)))
4225recnd 11183 . . . . . . . . . . . 12 (𝜑 → ((1 / 3)↑𝑚) ∈ ℂ)
43 3cn 12234 . . . . . . . . . . . . 13 3 ∈ ℂ
44 3ne0 12259 . . . . . . . . . . . . 13 3 ≠ 0
45 divrec 11829 . . . . . . . . . . . . 13 ((((1 / 3)↑𝑚) ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → (((1 / 3)↑𝑚) / 3) = (((1 / 3)↑𝑚) · (1 / 3)))
4643, 44, 45mp3an23 1453 . . . . . . . . . . . 12 (((1 / 3)↑𝑚) ∈ ℂ → (((1 / 3)↑𝑚) / 3) = (((1 / 3)↑𝑚) · (1 / 3)))
4742, 46syl 17 . . . . . . . . . . 11 (𝜑 → (((1 / 3)↑𝑚) / 3) = (((1 / 3)↑𝑚) · (1 / 3)))
4841, 47eqtr4d 2779 . . . . . . . . . 10 (𝜑 → ((1 / 3)↑(𝑚 + 1)) = (((1 / 3)↑𝑚) / 3))
4948oveq1d 7372 . . . . . . . . 9 (𝜑 → (((1 / 3)↑(𝑚 + 1)) / (1 − (1 / 3))) = ((((1 / 3)↑𝑚) / 3) / (1 − (1 / 3))))
50 ax-1cn 11109 . . . . . . . . . . . . 13 1 ∈ ℂ
5143, 44pm3.2i 471 . . . . . . . . . . . . 13 (3 ∈ ℂ ∧ 3 ≠ 0)
52 divsubdir 11849 . . . . . . . . . . . . 13 ((3 ∈ ℂ ∧ 1 ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((3 − 1) / 3) = ((3 / 3) − (1 / 3)))
5343, 50, 51, 52mp3an 1461 . . . . . . . . . . . 12 ((3 − 1) / 3) = ((3 / 3) − (1 / 3))
54 3m1e2 12281 . . . . . . . . . . . . 13 (3 − 1) = 2
5554oveq1i 7367 . . . . . . . . . . . 12 ((3 − 1) / 3) = (2 / 3)
5643, 44dividi 11888 . . . . . . . . . . . . 13 (3 / 3) = 1
5756oveq1i 7367 . . . . . . . . . . . 12 ((3 / 3) − (1 / 3)) = (1 − (1 / 3))
5853, 55, 573eqtr3ri 2773 . . . . . . . . . . 11 (1 − (1 / 3)) = (2 / 3)
5958oveq2i 7368 . . . . . . . . . 10 ((((1 / 3)↑𝑚) / 3) / (1 − (1 / 3))) = ((((1 / 3)↑𝑚) / 3) / (2 / 3))
60 2cnne0 12363 . . . . . . . . . . . 12 (2 ∈ ℂ ∧ 2 ≠ 0)
61 divcan7 11864 . . . . . . . . . . . 12 ((((1 / 3)↑𝑚) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((((1 / 3)↑𝑚) / 3) / (2 / 3)) = (((1 / 3)↑𝑚) / 2))
6260, 51, 61mp3an23 1453 . . . . . . . . . . 11 (((1 / 3)↑𝑚) ∈ ℂ → ((((1 / 3)↑𝑚) / 3) / (2 / 3)) = (((1 / 3)↑𝑚) / 2))
6342, 62syl 17 . . . . . . . . . 10 (𝜑 → ((((1 / 3)↑𝑚) / 3) / (2 / 3)) = (((1 / 3)↑𝑚) / 2))
6459, 63eqtrid 2788 . . . . . . . . 9 (𝜑 → ((((1 / 3)↑𝑚) / 3) / (1 − (1 / 3))) = (((1 / 3)↑𝑚) / 2))
6549, 64eqtrd 2776 . . . . . . . 8 (𝜑 → (((1 / 3)↑(𝑚 + 1)) / (1 − (1 / 3))) = (((1 / 3)↑𝑚) / 2))
6665oveq2d 7373 . . . . . . 7 (𝜑 → (0 + (((1 / 3)↑(𝑚 + 1)) / (1 − (1 / 3)))) = (0 + (((1 / 3)↑𝑚) / 2)))
6726recnd 11183 . . . . . . . 8 (𝜑 → (((1 / 3)↑𝑚) / 2) ∈ ℂ)
6867addid2d 11356 . . . . . . 7 (𝜑 → (0 + (((1 / 3)↑𝑚) / 2)) = (((1 / 3)↑𝑚) / 2))
6938, 66, 683eqtrd 2780 . . . . . 6 (𝜑 → Σ𝑘 ∈ (ℤ𝑚)((𝐹‘(ℕ ∖ {𝑚}))‘𝑘) = (((1 / 3)↑𝑚) / 2))
7036, 69breqtrd 5131 . . . . 5 (𝜑 → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘) ≤ (((1 / 3)↑𝑚) / 2))
71 rphalflt 12944 . . . . . 6 (((1 / 3)↑𝑚) ∈ ℝ+ → (((1 / 3)↑𝑚) / 2) < ((1 / 3)↑𝑚))
7224, 71syl 17 . . . . 5 (𝜑 → (((1 / 3)↑𝑚) / 2) < ((1 / 3)↑𝑚))
7310, 26, 25, 70, 72lelttrd 11313 . . . 4 (𝜑 → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘) < ((1 / 3)↑𝑚))
74 eluznn 12843 . . . . . . . . 9 ((𝑚 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑚)) → 𝑘 ∈ ℕ)
757, 74sylan 580 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑚)) → 𝑘 ∈ ℕ)
768rpnnen2lem1 16096 . . . . . . . 8 (({𝑚} ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘{𝑚})‘𝑘) = if(𝑘 ∈ {𝑚}, ((1 / 3)↑𝑘), 0))
7730, 75, 76syl2an2r 683 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑚)) → ((𝐹‘{𝑚})‘𝑘) = if(𝑘 ∈ {𝑚}, ((1 / 3)↑𝑘), 0))
7877sumeq2dv 15588 . . . . . 6 (𝜑 → Σ𝑘 ∈ (ℤ𝑚)((𝐹‘{𝑚})‘𝑘) = Σ𝑘 ∈ (ℤ𝑚)if(𝑘 ∈ {𝑚}, ((1 / 3)↑𝑘), 0))
79 uzid 12778 . . . . . . . . 9 (𝑚 ∈ ℤ → 𝑚 ∈ (ℤ𝑚))
8022, 79syl 17 . . . . . . . 8 (𝜑𝑚 ∈ (ℤ𝑚))
8180snssd 4769 . . . . . . 7 (𝜑 → {𝑚} ⊆ (ℤ𝑚))
82 vex 3449 . . . . . . . . 9 𝑚 ∈ V
83 oveq2 7365 . . . . . . . . . 10 (𝑘 = 𝑚 → ((1 / 3)↑𝑘) = ((1 / 3)↑𝑚))
8483eleq1d 2822 . . . . . . . . 9 (𝑘 = 𝑚 → (((1 / 3)↑𝑘) ∈ ℂ ↔ ((1 / 3)↑𝑚) ∈ ℂ))
8582, 84ralsn 4642 . . . . . . . 8 (∀𝑘 ∈ {𝑚} ((1 / 3)↑𝑘) ∈ ℂ ↔ ((1 / 3)↑𝑚) ∈ ℂ)
8642, 85sylibr 233 . . . . . . 7 (𝜑 → ∀𝑘 ∈ {𝑚} ((1 / 3)↑𝑘) ∈ ℂ)
87 ssidd 3967 . . . . . . . 8 (𝜑 → (ℤ𝑚) ⊆ (ℤ𝑚))
8887orcd 871 . . . . . . 7 (𝜑 → ((ℤ𝑚) ⊆ (ℤ𝑚) ∨ (ℤ𝑚) ∈ Fin))
89 sumss2 15611 . . . . . . 7 ((({𝑚} ⊆ (ℤ𝑚) ∧ ∀𝑘 ∈ {𝑚} ((1 / 3)↑𝑘) ∈ ℂ) ∧ ((ℤ𝑚) ⊆ (ℤ𝑚) ∨ (ℤ𝑚) ∈ Fin)) → Σ𝑘 ∈ {𝑚} ((1 / 3)↑𝑘) = Σ𝑘 ∈ (ℤ𝑚)if(𝑘 ∈ {𝑚}, ((1 / 3)↑𝑘), 0))
9081, 86, 88, 89syl21anc 836 . . . . . 6 (𝜑 → Σ𝑘 ∈ {𝑚} ((1 / 3)↑𝑘) = Σ𝑘 ∈ (ℤ𝑚)if(𝑘 ∈ {𝑚}, ((1 / 3)↑𝑘), 0))
9183sumsn 15631 . . . . . . 7 ((𝑚 ∈ ℕ ∧ ((1 / 3)↑𝑚) ∈ ℂ) → Σ𝑘 ∈ {𝑚} ((1 / 3)↑𝑘) = ((1 / 3)↑𝑚))
927, 42, 91syl2anc 584 . . . . . 6 (𝜑 → Σ𝑘 ∈ {𝑚} ((1 / 3)↑𝑘) = ((1 / 3)↑𝑚))
9378, 90, 923eqtr2d 2782 . . . . 5 (𝜑 → Σ𝑘 ∈ (ℤ𝑚)((𝐹‘{𝑚})‘𝑘) = ((1 / 3)↑𝑚))
943, 4syl 17 . . . . . . 7 (𝜑𝑚𝐴)
9594snssd 4769 . . . . . 6 (𝜑 → {𝑚} ⊆ 𝐴)
968rpnnen2lem7 16102 . . . . . 6 (({𝑚} ⊆ 𝐴𝐴 ⊆ ℕ ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ (ℤ𝑚)((𝐹‘{𝑚})‘𝑘) ≤ Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘))
9795, 2, 7, 96syl3anc 1371 . . . . 5 (𝜑 → Σ𝑘 ∈ (ℤ𝑚)((𝐹‘{𝑚})‘𝑘) ≤ Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘))
9893, 97eqbrtrrd 5129 . . . 4 (𝜑 → ((1 / 3)↑𝑚) ≤ Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘))
9910, 16, 18, 73, 98ltletrd 11315 . . 3 (𝜑 → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘) < Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘))
10010, 99gtned 11290 . 2 (𝜑 → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) ≠ Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘))
101 rpnnen2.5 . . . . 5 (𝜑 → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝐴𝑛𝐵)))
102 rpnnen2.6 . . . . 5 (𝜓 ↔ Σ𝑘 ∈ ℕ ((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝐵)‘𝑘))
1038, 2, 1, 3, 101, 102rpnnen2lem10 16105 . . . 4 ((𝜑𝜓) → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘))
104103ex 413 . . 3 (𝜑 → (𝜓 → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)))
105104necon3ad 2956 . 2 (𝜑 → (Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) ≠ Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘) → ¬ 𝜓))
106100, 105mpd 15 1 (𝜑 → ¬ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2943  wral 3064  cdif 3907  wss 3910  ifcif 4486  𝒫 cpw 4560  {csn 4586   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357  Fincfn 8883  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  3c3 12209  0cn0 12413  cz 12499  cuz 12763  +crp 12915  cexp 13967  Σcsu 15570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-ico 13270  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571
This theorem is referenced by:  rpnnen2lem12  16107
  Copyright terms: Public domain W3C validator