MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dpjidcl Structured version   Visualization version   GIF version

Theorem dpjidcl 20046
Description: The key property of projections: the sum of all the projections of 𝐴 is 𝐴. (Contributed by Mario Carneiro, 26-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
dpjfval.1 (𝜑𝐺dom DProd 𝑆)
dpjfval.2 (𝜑 → dom 𝑆 = 𝐼)
dpjfval.p 𝑃 = (𝐺dProj𝑆)
dpjidcl.3 (𝜑𝐴 ∈ (𝐺 DProd 𝑆))
dpjidcl.0 0 = (0g𝐺)
dpjidcl.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
Assertion
Ref Expression
dpjidcl (𝜑 → ((𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) ∈ 𝑊𝐴 = (𝐺 Σg (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)))))
Distinct variable groups:   𝑥,, 0   ,𝑖,𝐺,𝑥   𝑃,,𝑥   𝜑,𝑖,𝑥   ,𝐼,𝑖,𝑥   𝑥,𝑊   𝐴,,𝑥   𝑆,,𝑖,𝑥
Allowed substitution hints:   𝜑()   𝐴(𝑖)   𝑃(𝑖)   𝑊(,𝑖)   0 (𝑖)

Proof of Theorem dpjidcl
Dummy variables 𝑘 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dpjidcl.3 . . . 4 (𝜑𝐴 ∈ (𝐺 DProd 𝑆))
2 dpjfval.2 . . . . 5 (𝜑 → dom 𝑆 = 𝐼)
3 dpjidcl.0 . . . . . 6 0 = (0g𝐺)
4 dpjidcl.w . . . . . 6 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
53, 4eldprd 19992 . . . . 5 (dom 𝑆 = 𝐼 → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓𝑊 𝐴 = (𝐺 Σg 𝑓))))
62, 5syl 17 . . . 4 (𝜑 → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓𝑊 𝐴 = (𝐺 Σg 𝑓))))
71, 6mpbid 232 . . 3 (𝜑 → (𝐺dom DProd 𝑆 ∧ ∃𝑓𝑊 𝐴 = (𝐺 Σg 𝑓)))
87simprd 495 . 2 (𝜑 → ∃𝑓𝑊 𝐴 = (𝐺 Σg 𝑓))
9 dpjfval.1 . . . . 5 (𝜑𝐺dom DProd 𝑆)
109adantr 480 . . . 4 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝐺dom DProd 𝑆)
112adantr 480 . . . 4 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → dom 𝑆 = 𝐼)
129ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐺dom DProd 𝑆)
132ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → dom 𝑆 = 𝐼)
14 dpjfval.p . . . . . 6 𝑃 = (𝐺dProj𝑆)
15 simpr 484 . . . . . 6 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝑥𝐼)
1612, 13, 14, 15dpjf 20045 . . . . 5 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑃𝑥):(𝐺 DProd 𝑆)⟶(𝑆𝑥))
171ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐴 ∈ (𝐺 DProd 𝑆))
1816, 17ffvelcdmd 7080 . . . 4 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ((𝑃𝑥)‘𝐴) ∈ (𝑆𝑥))
199, 2dprddomcld 19989 . . . . . . 7 (𝜑𝐼 ∈ V)
2019mptexd 7221 . . . . . 6 (𝜑 → (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) ∈ V)
2120adantr 480 . . . . 5 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) ∈ V)
22 funmpt 6579 . . . . . 6 Fun (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴))
2322a1i 11 . . . . 5 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → Fun (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)))
24 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝑓𝑊)
254, 10, 11, 24dprdffsupp 20002 . . . . 5 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝑓 finSupp 0 )
26 eldifi 4111 . . . . . . . 8 (𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 )) → 𝑥𝐼)
27 eqid 2736 . . . . . . . . . 10 (proj1𝐺) = (proj1𝐺)
2812, 13, 14, 27, 15dpjval 20044 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑃𝑥) = ((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))))
2928fveq1d 6883 . . . . . . . 8 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ((𝑃𝑥)‘𝐴) = (((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴))
3026, 29sylan2 593 . . . . . . 7 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → ((𝑃𝑥)‘𝐴) = (((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴))
31 simplrr 777 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝐴 = (𝐺 Σg 𝑓))
32 eqid 2736 . . . . . . . . . . 11 (Base‘𝐺) = (Base‘𝐺)
33 eqid 2736 . . . . . . . . . . 11 (Cntz‘𝐺) = (Cntz‘𝐺)
34 dprdgrp 19993 . . . . . . . . . . . . 13 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
35 grpmnd 18928 . . . . . . . . . . . . 13 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
3610, 34, 353syl 18 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝐺 ∈ Mnd)
3736adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝐺 ∈ Mnd)
3819ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝐼 ∈ V)
394, 10, 11, 24, 32dprdff 20000 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝑓:𝐼⟶(Base‘𝐺))
4039adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝑓:𝐼⟶(Base‘𝐺))
4124adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝑓𝑊)
424, 12, 13, 41, 33dprdfcntz 20003 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ran 𝑓 ⊆ ((Cntz‘𝐺)‘ran 𝑓))
4326, 42sylan2 593 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → ran 𝑓 ⊆ ((Cntz‘𝐺)‘ran 𝑓))
44 snssi 4789 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 )) → {𝑥} ⊆ (𝐼 ∖ (𝑓 supp 0 )))
4544adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → {𝑥} ⊆ (𝐼 ∖ (𝑓 supp 0 )))
4645difss2d 4119 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → {𝑥} ⊆ 𝐼)
47 suppssdm 8181 . . . . . . . . . . . . . . 15 (𝑓 supp 0 ) ⊆ dom 𝑓
4847, 39fssdm 6730 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → (𝑓 supp 0 ) ⊆ 𝐼)
4948adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → (𝑓 supp 0 ) ⊆ 𝐼)
50 ssconb 4122 . . . . . . . . . . . . 13 (({𝑥} ⊆ 𝐼 ∧ (𝑓 supp 0 ) ⊆ 𝐼) → ({𝑥} ⊆ (𝐼 ∖ (𝑓 supp 0 )) ↔ (𝑓 supp 0 ) ⊆ (𝐼 ∖ {𝑥})))
5146, 49, 50syl2anc 584 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → ({𝑥} ⊆ (𝐼 ∖ (𝑓 supp 0 )) ↔ (𝑓 supp 0 ) ⊆ (𝐼 ∖ {𝑥})))
5245, 51mpbid 232 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → (𝑓 supp 0 ) ⊆ (𝐼 ∖ {𝑥}))
5325adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝑓 finSupp 0 )
5432, 3, 33, 37, 38, 40, 43, 52, 53gsumzres 19895 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → (𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥}))) = (𝐺 Σg 𝑓))
5531, 54eqtr4d 2774 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝐴 = (𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥}))))
56 eqid 2736 . . . . . . . . . . 11 {X𝑖 ∈ (𝐼 ∖ {𝑥})((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑖) ∣ finSupp 0 } = {X𝑖 ∈ (𝐼 ∖ {𝑥})((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑖) ∣ finSupp 0 }
57 difss 4116 . . . . . . . . . . . . . 14 (𝐼 ∖ {𝑥}) ⊆ 𝐼
5857a1i 11 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐼 ∖ {𝑥}) ⊆ 𝐼)
5912, 13, 58dprdres 20016 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑥})) ∧ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))) ⊆ (𝐺 DProd 𝑆)))
6059simpld 494 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))
6112, 13dprdf2 19995 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝑆:𝐼⟶(SubGrp‘𝐺))
62 fssres 6749 . . . . . . . . . . . . 13 ((𝑆:𝐼⟶(SubGrp‘𝐺) ∧ (𝐼 ∖ {𝑥}) ⊆ 𝐼) → (𝑆 ↾ (𝐼 ∖ {𝑥})):(𝐼 ∖ {𝑥})⟶(SubGrp‘𝐺))
6361, 57, 62sylancl 586 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑆 ↾ (𝐼 ∖ {𝑥})):(𝐼 ∖ {𝑥})⟶(SubGrp‘𝐺))
6463fdmd 6721 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → dom (𝑆 ↾ (𝐼 ∖ {𝑥})) = (𝐼 ∖ {𝑥}))
6539adantr 480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝑓:𝐼⟶(Base‘𝐺))
6665feqmptd 6952 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝑓 = (𝑘𝐼 ↦ (𝑓𝑘)))
6766reseq1d 5970 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑓 ↾ (𝐼 ∖ {𝑥})) = ((𝑘𝐼 ↦ (𝑓𝑘)) ↾ (𝐼 ∖ {𝑥})))
68 resmpt 6029 . . . . . . . . . . . . . 14 ((𝐼 ∖ {𝑥}) ⊆ 𝐼 → ((𝑘𝐼 ↦ (𝑓𝑘)) ↾ (𝐼 ∖ {𝑥})) = (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)))
6957, 68ax-mp 5 . . . . . . . . . . . . 13 ((𝑘𝐼 ↦ (𝑓𝑘)) ↾ (𝐼 ∖ {𝑥})) = (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘))
7067, 69eqtrdi 2787 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑓 ↾ (𝐼 ∖ {𝑥})) = (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)))
71 eldifi 4111 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝐼 ∖ {𝑥}) → 𝑘𝐼)
724, 12, 13, 41dprdfcl 20001 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → (𝑓𝑘) ∈ (𝑆𝑘))
7371, 72sylan2 593 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) ∧ 𝑘 ∈ (𝐼 ∖ {𝑥})) → (𝑓𝑘) ∈ (𝑆𝑘))
74 fvres 6900 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝐼 ∖ {𝑥}) → ((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑘) = (𝑆𝑘))
7574adantl 481 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) ∧ 𝑘 ∈ (𝐼 ∖ {𝑥})) → ((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑘) = (𝑆𝑘))
7673, 75eleqtrrd 2838 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) ∧ 𝑘 ∈ (𝐼 ∖ {𝑥})) → (𝑓𝑘) ∈ ((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑘))
7719difexd 5306 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐼 ∖ {𝑥}) ∈ V)
7877mptexd 7221 . . . . . . . . . . . . . . 15 (𝜑 → (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)) ∈ V)
7978ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)) ∈ V)
80 funmpt 6579 . . . . . . . . . . . . . . 15 Fun (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘))
8180a1i 11 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → Fun (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)))
8225adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝑓 finSupp 0 )
83 ssdif 4124 . . . . . . . . . . . . . . . . . 18 ((𝐼 ∖ {𝑥}) ⊆ 𝐼 → ((𝐼 ∖ {𝑥}) ∖ (𝑓 supp 0 )) ⊆ (𝐼 ∖ (𝑓 supp 0 )))
8457, 83ax-mp 5 . . . . . . . . . . . . . . . . 17 ((𝐼 ∖ {𝑥}) ∖ (𝑓 supp 0 )) ⊆ (𝐼 ∖ (𝑓 supp 0 ))
8584sseli 3959 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ((𝐼 ∖ {𝑥}) ∖ (𝑓 supp 0 )) → 𝑘 ∈ (𝐼 ∖ (𝑓 supp 0 )))
86 ssidd 3987 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑓 supp 0 ) ⊆ (𝑓 supp 0 ))
8719ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐼 ∈ V)
883fvexi 6895 . . . . . . . . . . . . . . . . . 18 0 ∈ V
8988a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 0 ∈ V)
9065, 86, 87, 89suppssr 8199 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) ∧ 𝑘 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → (𝑓𝑘) = 0 )
9185, 90sylan2 593 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) ∧ 𝑘 ∈ ((𝐼 ∖ {𝑥}) ∖ (𝑓 supp 0 ))) → (𝑓𝑘) = 0 )
9277ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐼 ∖ {𝑥}) ∈ V)
9391, 92suppss2 8204 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ((𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)) supp 0 ) ⊆ (𝑓 supp 0 ))
94 fsuppsssupp 9398 . . . . . . . . . . . . . 14 ((((𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)) ∈ V ∧ Fun (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘))) ∧ (𝑓 finSupp 0 ∧ ((𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)) supp 0 ) ⊆ (𝑓 supp 0 ))) → (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)) finSupp 0 )
9579, 81, 82, 93, 94syl22anc 838 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)) finSupp 0 )
9656, 60, 64, 76, 95dprdwd 19999 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)) ∈ {X𝑖 ∈ (𝐼 ∖ {𝑥})((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑖) ∣ finSupp 0 })
9770, 96eqeltrd 2835 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑓 ↾ (𝐼 ∖ {𝑥})) ∈ {X𝑖 ∈ (𝐼 ∖ {𝑥})((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑖) ∣ finSupp 0 })
983, 56, 60, 64, 97eldprdi 20006 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥}))) ∈ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))
9926, 98sylan2 593 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → (𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥}))) ∈ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))
10055, 99eqeltrd 2835 . . . . . . . 8 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝐴 ∈ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))
101 eqid 2736 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
102 eqid 2736 . . . . . . . . . 10 (LSSum‘𝐺) = (LSSum‘𝐺)
10361, 15ffvelcdmd 7080 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑆𝑥) ∈ (SubGrp‘𝐺))
104 dprdsubg 20012 . . . . . . . . . . 11 (𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑥})) → (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
10560, 104syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
10612, 13, 15, 3dpjdisj 20041 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ((𝑆𝑥) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))) = { 0 })
10712, 13, 15, 33dpjcntz 20040 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))))
108101, 102, 3, 33, 103, 105, 106, 107, 27pj1rid 19688 . . . . . . . . 9 ((((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) ∧ 𝐴 ∈ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))) → (((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴) = 0 )
10926, 108sylanl2 681 . . . . . . . 8 ((((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝐴 ∈ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))) → (((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴) = 0 )
110100, 109mpdan 687 . . . . . . 7 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → (((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴) = 0 )
11130, 110eqtrd 2771 . . . . . 6 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → ((𝑃𝑥)‘𝐴) = 0 )
11219adantr 480 . . . . . 6 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝐼 ∈ V)
113111, 112suppss2 8204 . . . . 5 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → ((𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) supp 0 ) ⊆ (𝑓 supp 0 ))
114 fsuppsssupp 9398 . . . . 5 ((((𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) ∈ V ∧ Fun (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴))) ∧ (𝑓 finSupp 0 ∧ ((𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) supp 0 ) ⊆ (𝑓 supp 0 ))) → (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) finSupp 0 )
11521, 23, 25, 113, 114syl22anc 838 . . . 4 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) finSupp 0 )
1164, 10, 11, 18, 115dprdwd 19999 . . 3 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) ∈ 𝑊)
117 simprr 772 . . . 4 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝐴 = (𝐺 Σg 𝑓))
11839feqmptd 6952 . . . . . 6 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝑓 = (𝑥𝐼 ↦ (𝑓𝑥)))
119 simplrr 777 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐴 = (𝐺 Σg 𝑓))
12012, 34, 353syl 18 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐺 ∈ Mnd)
1214, 12, 13, 41dprdffsupp 20002 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝑓 finSupp 0 )
122 disjdif 4452 . . . . . . . . . . . . 13 ({𝑥} ∩ (𝐼 ∖ {𝑥})) = ∅
123122a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ({𝑥} ∩ (𝐼 ∖ {𝑥})) = ∅)
124 undif2 4457 . . . . . . . . . . . . 13 ({𝑥} ∪ (𝐼 ∖ {𝑥})) = ({𝑥} ∪ 𝐼)
12515snssd 4790 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → {𝑥} ⊆ 𝐼)
126 ssequn1 4166 . . . . . . . . . . . . . 14 ({𝑥} ⊆ 𝐼 ↔ ({𝑥} ∪ 𝐼) = 𝐼)
127125, 126sylib 218 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ({𝑥} ∪ 𝐼) = 𝐼)
128124, 127eqtr2id 2784 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐼 = ({𝑥} ∪ (𝐼 ∖ {𝑥})))
12932, 3, 101, 33, 120, 87, 65, 42, 121, 123, 128gsumzsplit 19913 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐺 Σg 𝑓) = ((𝐺 Σg (𝑓 ↾ {𝑥}))(+g𝐺)(𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥})))))
13065, 125feqresmpt 6953 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑓 ↾ {𝑥}) = (𝑘 ∈ {𝑥} ↦ (𝑓𝑘)))
131130oveq2d 7426 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐺 Σg (𝑓 ↾ {𝑥})) = (𝐺 Σg (𝑘 ∈ {𝑥} ↦ (𝑓𝑘))))
13265, 15ffvelcdmd 7080 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ (Base‘𝐺))
133 fveq2 6881 . . . . . . . . . . . . . . 15 (𝑘 = 𝑥 → (𝑓𝑘) = (𝑓𝑥))
13432, 133gsumsn 19940 . . . . . . . . . . . . . 14 ((𝐺 ∈ Mnd ∧ 𝑥𝐼 ∧ (𝑓𝑥) ∈ (Base‘𝐺)) → (𝐺 Σg (𝑘 ∈ {𝑥} ↦ (𝑓𝑘))) = (𝑓𝑥))
135120, 15, 132, 134syl3anc 1373 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐺 Σg (𝑘 ∈ {𝑥} ↦ (𝑓𝑘))) = (𝑓𝑥))
136131, 135eqtrd 2771 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐺 Σg (𝑓 ↾ {𝑥})) = (𝑓𝑥))
137136oveq1d 7425 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ((𝐺 Σg (𝑓 ↾ {𝑥}))(+g𝐺)(𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥})))) = ((𝑓𝑥)(+g𝐺)(𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥})))))
138119, 129, 1373eqtrd 2775 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐴 = ((𝑓𝑥)(+g𝐺)(𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥})))))
13912, 13, 15, 102dpjlsm 20042 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐺 DProd 𝑆) = ((𝑆𝑥)(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))))
14017, 139eleqtrd 2837 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐴 ∈ ((𝑆𝑥)(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))))
1414, 10, 11, 24dprdfcl 20001 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ (𝑆𝑥))
142101, 102, 3, 33, 103, 105, 106, 107, 27, 140, 141, 98pj1eq 19686 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐴 = ((𝑓𝑥)(+g𝐺)(𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥})))) ↔ ((((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴) = (𝑓𝑥) ∧ (((𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))(proj1𝐺)(𝑆𝑥))‘𝐴) = (𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥}))))))
143138, 142mpbid 232 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ((((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴) = (𝑓𝑥) ∧ (((𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))(proj1𝐺)(𝑆𝑥))‘𝐴) = (𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥})))))
144143simpld 494 . . . . . . . 8 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴) = (𝑓𝑥))
14529, 144eqtrd 2771 . . . . . . 7 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ((𝑃𝑥)‘𝐴) = (𝑓𝑥))
146145mpteq2dva 5219 . . . . . 6 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) = (𝑥𝐼 ↦ (𝑓𝑥)))
147118, 146eqtr4d 2774 . . . . 5 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝑓 = (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)))
148147oveq2d 7426 . . . 4 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → (𝐺 Σg 𝑓) = (𝐺 Σg (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴))))
149117, 148eqtrd 2771 . . 3 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝐴 = (𝐺 Σg (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴))))
150116, 149jca 511 . 2 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → ((𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) ∈ 𝑊𝐴 = (𝐺 Σg (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)))))
1518, 150rexlimddv 3148 1 (𝜑 → ((𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) ∈ 𝑊𝐴 = (𝐺 Σg (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3061  {crab 3420  Vcvv 3464  cdif 3928  cun 3929  cin 3930  wss 3931  c0 4313  {csn 4606   class class class wbr 5124  cmpt 5206  dom cdm 5659  ran crn 5660  cres 5661  Fun wfun 6530  wf 6532  cfv 6536  (class class class)co 7410   supp csupp 8164  Xcixp 8916   finSupp cfsupp 9378  Basecbs 17233  +gcplusg 17276  0gc0g 17458   Σg cgsu 17459  Mndcmnd 18717  Grpcgrp 18921  SubGrpcsubg 19108  Cntzccntz 19303  LSSumclsm 19620  proj1cpj1 19621   DProd cdprd 19981  dProjcdpj 19982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-0g 17460  df-gsum 17461  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-ghm 19201  df-gim 19247  df-cntz 19305  df-oppg 19334  df-lsm 19622  df-pj1 19623  df-cmn 19768  df-dprd 19983  df-dpj 19984
This theorem is referenced by:  dpjeq  20047  dpjid  20048
  Copyright terms: Public domain W3C validator