| Step | Hyp | Ref
| Expression |
| 1 | | dpjidcl.3 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ (𝐺 DProd 𝑆)) |
| 2 | | dpjfval.2 |
. . . . 5
⊢ (𝜑 → dom 𝑆 = 𝐼) |
| 3 | | dpjidcl.0 |
. . . . . 6
⊢ 0 =
(0g‘𝐺) |
| 4 | | dpjidcl.w |
. . . . . 6
⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
| 5 | 3, 4 | eldprd 19992 |
. . . . 5
⊢ (dom
𝑆 = 𝐼 → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ 𝑊 𝐴 = (𝐺 Σg 𝑓)))) |
| 6 | 2, 5 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ 𝑊 𝐴 = (𝐺 Σg 𝑓)))) |
| 7 | 1, 6 | mpbid 232 |
. . 3
⊢ (𝜑 → (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ 𝑊 𝐴 = (𝐺 Σg 𝑓))) |
| 8 | 7 | simprd 495 |
. 2
⊢ (𝜑 → ∃𝑓 ∈ 𝑊 𝐴 = (𝐺 Σg 𝑓)) |
| 9 | | dpjfval.1 |
. . . . 5
⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| 10 | 9 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) → 𝐺dom DProd 𝑆) |
| 11 | 2 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) → dom 𝑆 = 𝐼) |
| 12 | 9 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → 𝐺dom DProd 𝑆) |
| 13 | 2 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → dom 𝑆 = 𝐼) |
| 14 | | dpjfval.p |
. . . . . 6
⊢ 𝑃 = (𝐺dProj𝑆) |
| 15 | | simpr 484 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → 𝑥 ∈ 𝐼) |
| 16 | 12, 13, 14, 15 | dpjf 20045 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝑃‘𝑥):(𝐺 DProd 𝑆)⟶(𝑆‘𝑥)) |
| 17 | 1 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → 𝐴 ∈ (𝐺 DProd 𝑆)) |
| 18 | 16, 17 | ffvelcdmd 7080 |
. . . 4
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → ((𝑃‘𝑥)‘𝐴) ∈ (𝑆‘𝑥)) |
| 19 | 9, 2 | dprddomcld 19989 |
. . . . . . 7
⊢ (𝜑 → 𝐼 ∈ V) |
| 20 | 19 | mptexd 7221 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)) ∈ V) |
| 21 | 20 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) → (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)) ∈ V) |
| 22 | | funmpt 6579 |
. . . . . 6
⊢ Fun
(𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)) |
| 23 | 22 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) → Fun (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴))) |
| 24 | | simprl 770 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) → 𝑓 ∈ 𝑊) |
| 25 | 4, 10, 11, 24 | dprdffsupp 20002 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) → 𝑓 finSupp 0 ) |
| 26 | | eldifi 4111 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 )) → 𝑥 ∈ 𝐼) |
| 27 | | eqid 2736 |
. . . . . . . . . 10
⊢
(proj1‘𝐺) = (proj1‘𝐺) |
| 28 | 12, 13, 14, 27, 15 | dpjval 20044 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝑃‘𝑥) = ((𝑆‘𝑥)(proj1‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))) |
| 29 | 28 | fveq1d 6883 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → ((𝑃‘𝑥)‘𝐴) = (((𝑆‘𝑥)(proj1‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴)) |
| 30 | 26, 29 | sylan2 593 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → ((𝑃‘𝑥)‘𝐴) = (((𝑆‘𝑥)(proj1‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴)) |
| 31 | | simplrr 777 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝐴 = (𝐺 Σg 𝑓)) |
| 32 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 33 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(Cntz‘𝐺) =
(Cntz‘𝐺) |
| 34 | | dprdgrp 19993 |
. . . . . . . . . . . . 13
⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) |
| 35 | | grpmnd 18928 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
| 36 | 10, 34, 35 | 3syl 18 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) → 𝐺 ∈ Mnd) |
| 37 | 36 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝐺 ∈ Mnd) |
| 38 | 19 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝐼 ∈ V) |
| 39 | 4, 10, 11, 24, 32 | dprdff 20000 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) → 𝑓:𝐼⟶(Base‘𝐺)) |
| 40 | 39 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝑓:𝐼⟶(Base‘𝐺)) |
| 41 | 24 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → 𝑓 ∈ 𝑊) |
| 42 | 4, 12, 13, 41, 33 | dprdfcntz 20003 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → ran 𝑓 ⊆ ((Cntz‘𝐺)‘ran 𝑓)) |
| 43 | 26, 42 | sylan2 593 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → ran 𝑓 ⊆ ((Cntz‘𝐺)‘ran 𝑓)) |
| 44 | | snssi 4789 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 )) → {𝑥} ⊆ (𝐼 ∖ (𝑓 supp 0 ))) |
| 45 | 44 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → {𝑥} ⊆ (𝐼 ∖ (𝑓 supp 0 ))) |
| 46 | 45 | difss2d 4119 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → {𝑥} ⊆ 𝐼) |
| 47 | | suppssdm 8181 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 supp 0 ) ⊆ dom 𝑓 |
| 48 | 47, 39 | fssdm 6730 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) → (𝑓 supp 0 ) ⊆ 𝐼) |
| 49 | 48 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → (𝑓 supp 0 ) ⊆ 𝐼) |
| 50 | | ssconb 4122 |
. . . . . . . . . . . . 13
⊢ (({𝑥} ⊆ 𝐼 ∧ (𝑓 supp 0 ) ⊆ 𝐼) → ({𝑥} ⊆ (𝐼 ∖ (𝑓 supp 0 )) ↔ (𝑓 supp 0 ) ⊆ (𝐼 ∖ {𝑥}))) |
| 51 | 46, 49, 50 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → ({𝑥} ⊆ (𝐼 ∖ (𝑓 supp 0 )) ↔ (𝑓 supp 0 ) ⊆ (𝐼 ∖ {𝑥}))) |
| 52 | 45, 51 | mpbid 232 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → (𝑓 supp 0 ) ⊆ (𝐼 ∖ {𝑥})) |
| 53 | 25 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝑓 finSupp 0 ) |
| 54 | 32, 3, 33, 37, 38, 40, 43, 52, 53 | gsumzres 19895 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → (𝐺 Σg
(𝑓 ↾ (𝐼 ∖ {𝑥}))) = (𝐺 Σg 𝑓)) |
| 55 | 31, 54 | eqtr4d 2774 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝐴 = (𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥})))) |
| 56 | | eqid 2736 |
. . . . . . . . . . 11
⊢ {ℎ ∈ X𝑖 ∈
(𝐼 ∖ {𝑥})((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑖) ∣ ℎ finSupp 0 } = {ℎ ∈ X𝑖 ∈ (𝐼 ∖ {𝑥})((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑖) ∣ ℎ finSupp 0 } |
| 57 | | difss 4116 |
. . . . . . . . . . . . . 14
⊢ (𝐼 ∖ {𝑥}) ⊆ 𝐼 |
| 58 | 57 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝐼 ∖ {𝑥}) ⊆ 𝐼) |
| 59 | 12, 13, 58 | dprdres 20016 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑥})) ∧ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))) ⊆ (𝐺 DProd 𝑆))) |
| 60 | 59 | simpld 494 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → 𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))) |
| 61 | 12, 13 | dprdf2 19995 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
| 62 | | fssres 6749 |
. . . . . . . . . . . . 13
⊢ ((𝑆:𝐼⟶(SubGrp‘𝐺) ∧ (𝐼 ∖ {𝑥}) ⊆ 𝐼) → (𝑆 ↾ (𝐼 ∖ {𝑥})):(𝐼 ∖ {𝑥})⟶(SubGrp‘𝐺)) |
| 63 | 61, 57, 62 | sylancl 586 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝑆 ↾ (𝐼 ∖ {𝑥})):(𝐼 ∖ {𝑥})⟶(SubGrp‘𝐺)) |
| 64 | 63 | fdmd 6721 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → dom (𝑆 ↾ (𝐼 ∖ {𝑥})) = (𝐼 ∖ {𝑥})) |
| 65 | 39 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → 𝑓:𝐼⟶(Base‘𝐺)) |
| 66 | 65 | feqmptd 6952 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → 𝑓 = (𝑘 ∈ 𝐼 ↦ (𝑓‘𝑘))) |
| 67 | 66 | reseq1d 5970 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝑓 ↾ (𝐼 ∖ {𝑥})) = ((𝑘 ∈ 𝐼 ↦ (𝑓‘𝑘)) ↾ (𝐼 ∖ {𝑥}))) |
| 68 | | resmpt 6029 |
. . . . . . . . . . . . . 14
⊢ ((𝐼 ∖ {𝑥}) ⊆ 𝐼 → ((𝑘 ∈ 𝐼 ↦ (𝑓‘𝑘)) ↾ (𝐼 ∖ {𝑥})) = (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓‘𝑘))) |
| 69 | 57, 68 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ 𝐼 ↦ (𝑓‘𝑘)) ↾ (𝐼 ∖ {𝑥})) = (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓‘𝑘)) |
| 70 | 67, 69 | eqtrdi 2787 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝑓 ↾ (𝐼 ∖ {𝑥})) = (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓‘𝑘))) |
| 71 | | eldifi 4111 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (𝐼 ∖ {𝑥}) → 𝑘 ∈ 𝐼) |
| 72 | 4, 12, 13, 41 | dprdfcl 20001 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) → (𝑓‘𝑘) ∈ (𝑆‘𝑘)) |
| 73 | 71, 72 | sylan2 593 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) ∧ 𝑘 ∈ (𝐼 ∖ {𝑥})) → (𝑓‘𝑘) ∈ (𝑆‘𝑘)) |
| 74 | | fvres 6900 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (𝐼 ∖ {𝑥}) → ((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑘) = (𝑆‘𝑘)) |
| 75 | 74 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) ∧ 𝑘 ∈ (𝐼 ∖ {𝑥})) → ((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑘) = (𝑆‘𝑘)) |
| 76 | 73, 75 | eleqtrrd 2838 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) ∧ 𝑘 ∈ (𝐼 ∖ {𝑥})) → (𝑓‘𝑘) ∈ ((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑘)) |
| 77 | 19 | difexd 5306 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐼 ∖ {𝑥}) ∈ V) |
| 78 | 77 | mptexd 7221 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓‘𝑘)) ∈ V) |
| 79 | 78 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓‘𝑘)) ∈ V) |
| 80 | | funmpt 6579 |
. . . . . . . . . . . . . . 15
⊢ Fun
(𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓‘𝑘)) |
| 81 | 80 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → Fun (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓‘𝑘))) |
| 82 | 25 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → 𝑓 finSupp 0 ) |
| 83 | | ssdif 4124 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐼 ∖ {𝑥}) ⊆ 𝐼 → ((𝐼 ∖ {𝑥}) ∖ (𝑓 supp 0 )) ⊆ (𝐼 ∖ (𝑓 supp 0 ))) |
| 84 | 57, 83 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐼 ∖ {𝑥}) ∖ (𝑓 supp 0 )) ⊆ (𝐼 ∖ (𝑓 supp 0 )) |
| 85 | 84 | sseli 3959 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ((𝐼 ∖ {𝑥}) ∖ (𝑓 supp 0 )) → 𝑘 ∈ (𝐼 ∖ (𝑓 supp 0 ))) |
| 86 | | ssidd 3987 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝑓 supp 0 ) ⊆ (𝑓 supp 0 )) |
| 87 | 19 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → 𝐼 ∈ V) |
| 88 | 3 | fvexi 6895 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 ∈
V |
| 89 | 88 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → 0 ∈ V) |
| 90 | 65, 86, 87, 89 | suppssr 8199 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) ∧ 𝑘 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → (𝑓‘𝑘) = 0 ) |
| 91 | 85, 90 | sylan2 593 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) ∧ 𝑘 ∈ ((𝐼 ∖ {𝑥}) ∖ (𝑓 supp 0 ))) → (𝑓‘𝑘) = 0 ) |
| 92 | 77 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝐼 ∖ {𝑥}) ∈ V) |
| 93 | 91, 92 | suppss2 8204 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → ((𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓‘𝑘)) supp 0 ) ⊆ (𝑓 supp 0 )) |
| 94 | | fsuppsssupp 9398 |
. . . . . . . . . . . . . 14
⊢ ((((𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓‘𝑘)) ∈ V ∧ Fun (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓‘𝑘))) ∧ (𝑓 finSupp 0 ∧ ((𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓‘𝑘)) supp 0 ) ⊆ (𝑓 supp 0 ))) → (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓‘𝑘)) finSupp 0 ) |
| 95 | 79, 81, 82, 93, 94 | syl22anc 838 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓‘𝑘)) finSupp 0 ) |
| 96 | 56, 60, 64, 76, 95 | dprdwd 19999 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓‘𝑘)) ∈ {ℎ ∈ X𝑖 ∈ (𝐼 ∖ {𝑥})((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑖) ∣ ℎ finSupp 0 }) |
| 97 | 70, 96 | eqeltrd 2835 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝑓 ↾ (𝐼 ∖ {𝑥})) ∈ {ℎ ∈ X𝑖 ∈ (𝐼 ∖ {𝑥})((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑖) ∣ ℎ finSupp 0 }) |
| 98 | 3, 56, 60, 64, 97 | eldprdi 20006 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥}))) ∈ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))) |
| 99 | 26, 98 | sylan2 593 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → (𝐺 Σg
(𝑓 ↾ (𝐼 ∖ {𝑥}))) ∈ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))) |
| 100 | 55, 99 | eqeltrd 2835 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝐴 ∈ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))) |
| 101 | | eqid 2736 |
. . . . . . . . . 10
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 102 | | eqid 2736 |
. . . . . . . . . 10
⊢
(LSSum‘𝐺) =
(LSSum‘𝐺) |
| 103 | 61, 15 | ffvelcdmd 7080 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝑆‘𝑥) ∈ (SubGrp‘𝐺)) |
| 104 | | dprdsubg 20012 |
. . . . . . . . . . 11
⊢ (𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑥})) → (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺)) |
| 105 | 60, 104 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺)) |
| 106 | 12, 13, 15, 3 | dpjdisj 20041 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → ((𝑆‘𝑥) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))) = { 0 }) |
| 107 | 12, 13, 15, 33 | dpjcntz 20040 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))) |
| 108 | 101, 102,
3, 33, 103, 105, 106, 107, 27 | pj1rid 19688 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) ∧ 𝐴 ∈ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))) → (((𝑆‘𝑥)(proj1‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴) = 0 ) |
| 109 | 26, 108 | sylanl2 681 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝐴 ∈ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))) → (((𝑆‘𝑥)(proj1‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴) = 0 ) |
| 110 | 100, 109 | mpdan 687 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → (((𝑆‘𝑥)(proj1‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴) = 0 ) |
| 111 | 30, 110 | eqtrd 2771 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → ((𝑃‘𝑥)‘𝐴) = 0 ) |
| 112 | 19 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) → 𝐼 ∈ V) |
| 113 | 111, 112 | suppss2 8204 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) → ((𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)) supp 0 ) ⊆ (𝑓 supp 0 )) |
| 114 | | fsuppsssupp 9398 |
. . . . 5
⊢ ((((𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)) ∈ V ∧ Fun (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴))) ∧ (𝑓 finSupp 0 ∧ ((𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)) supp 0 ) ⊆ (𝑓 supp 0 ))) → (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)) finSupp 0 ) |
| 115 | 21, 23, 25, 113, 114 | syl22anc 838 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) → (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)) finSupp 0 ) |
| 116 | 4, 10, 11, 18, 115 | dprdwd 19999 |
. . 3
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) → (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)) ∈ 𝑊) |
| 117 | | simprr 772 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) → 𝐴 = (𝐺 Σg 𝑓)) |
| 118 | 39 | feqmptd 6952 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) → 𝑓 = (𝑥 ∈ 𝐼 ↦ (𝑓‘𝑥))) |
| 119 | | simplrr 777 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → 𝐴 = (𝐺 Σg 𝑓)) |
| 120 | 12, 34, 35 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → 𝐺 ∈ Mnd) |
| 121 | 4, 12, 13, 41 | dprdffsupp 20002 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → 𝑓 finSupp 0 ) |
| 122 | | disjdif 4452 |
. . . . . . . . . . . . 13
⊢ ({𝑥} ∩ (𝐼 ∖ {𝑥})) = ∅ |
| 123 | 122 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → ({𝑥} ∩ (𝐼 ∖ {𝑥})) = ∅) |
| 124 | | undif2 4457 |
. . . . . . . . . . . . 13
⊢ ({𝑥} ∪ (𝐼 ∖ {𝑥})) = ({𝑥} ∪ 𝐼) |
| 125 | 15 | snssd 4790 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → {𝑥} ⊆ 𝐼) |
| 126 | | ssequn1 4166 |
. . . . . . . . . . . . . 14
⊢ ({𝑥} ⊆ 𝐼 ↔ ({𝑥} ∪ 𝐼) = 𝐼) |
| 127 | 125, 126 | sylib 218 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → ({𝑥} ∪ 𝐼) = 𝐼) |
| 128 | 124, 127 | eqtr2id 2784 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → 𝐼 = ({𝑥} ∪ (𝐼 ∖ {𝑥}))) |
| 129 | 32, 3, 101, 33, 120, 87, 65, 42, 121, 123, 128 | gsumzsplit 19913 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝐺 Σg 𝑓) = ((𝐺 Σg (𝑓 ↾ {𝑥}))(+g‘𝐺)(𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥}))))) |
| 130 | 65, 125 | feqresmpt 6953 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝑓 ↾ {𝑥}) = (𝑘 ∈ {𝑥} ↦ (𝑓‘𝑘))) |
| 131 | 130 | oveq2d 7426 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝐺 Σg (𝑓 ↾ {𝑥})) = (𝐺 Σg (𝑘 ∈ {𝑥} ↦ (𝑓‘𝑘)))) |
| 132 | 65, 15 | ffvelcdmd 7080 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝑓‘𝑥) ∈ (Base‘𝐺)) |
| 133 | | fveq2 6881 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑥 → (𝑓‘𝑘) = (𝑓‘𝑥)) |
| 134 | 32, 133 | gsumsn 19940 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐼 ∧ (𝑓‘𝑥) ∈ (Base‘𝐺)) → (𝐺 Σg (𝑘 ∈ {𝑥} ↦ (𝑓‘𝑘))) = (𝑓‘𝑥)) |
| 135 | 120, 15, 132, 134 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝐺 Σg (𝑘 ∈ {𝑥} ↦ (𝑓‘𝑘))) = (𝑓‘𝑥)) |
| 136 | 131, 135 | eqtrd 2771 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝐺 Σg (𝑓 ↾ {𝑥})) = (𝑓‘𝑥)) |
| 137 | 136 | oveq1d 7425 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → ((𝐺 Σg (𝑓 ↾ {𝑥}))(+g‘𝐺)(𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥})))) = ((𝑓‘𝑥)(+g‘𝐺)(𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥}))))) |
| 138 | 119, 129,
137 | 3eqtrd 2775 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → 𝐴 = ((𝑓‘𝑥)(+g‘𝐺)(𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥}))))) |
| 139 | 12, 13, 15, 102 | dpjlsm 20042 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝐺 DProd 𝑆) = ((𝑆‘𝑥)(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))) |
| 140 | 17, 139 | eleqtrd 2837 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → 𝐴 ∈ ((𝑆‘𝑥)(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))) |
| 141 | 4, 10, 11, 24 | dprdfcl 20001 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝑓‘𝑥) ∈ (𝑆‘𝑥)) |
| 142 | 101, 102,
3, 33, 103, 105, 106, 107, 27, 140, 141, 98 | pj1eq 19686 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝐴 = ((𝑓‘𝑥)(+g‘𝐺)(𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥})))) ↔ ((((𝑆‘𝑥)(proj1‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴) = (𝑓‘𝑥) ∧ (((𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))(proj1‘𝐺)(𝑆‘𝑥))‘𝐴) = (𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥})))))) |
| 143 | 138, 142 | mpbid 232 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → ((((𝑆‘𝑥)(proj1‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴) = (𝑓‘𝑥) ∧ (((𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))(proj1‘𝐺)(𝑆‘𝑥))‘𝐴) = (𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥}))))) |
| 144 | 143 | simpld 494 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (((𝑆‘𝑥)(proj1‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴) = (𝑓‘𝑥)) |
| 145 | 29, 144 | eqtrd 2771 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → ((𝑃‘𝑥)‘𝐴) = (𝑓‘𝑥)) |
| 146 | 145 | mpteq2dva 5219 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) → (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)) = (𝑥 ∈ 𝐼 ↦ (𝑓‘𝑥))) |
| 147 | 118, 146 | eqtr4d 2774 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) → 𝑓 = (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴))) |
| 148 | 147 | oveq2d 7426 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) → (𝐺 Σg 𝑓) = (𝐺 Σg (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)))) |
| 149 | 117, 148 | eqtrd 2771 |
. . 3
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) → 𝐴 = (𝐺 Σg (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)))) |
| 150 | 116, 149 | jca 511 |
. 2
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) → ((𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)) ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴))))) |
| 151 | 8, 150 | rexlimddv 3148 |
1
⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)) ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴))))) |