MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dpjidcl Structured version   Visualization version   GIF version

Theorem dpjidcl 19173
Description: The key property of projections: the sum of all the projections of 𝐴 is 𝐴. (Contributed by Mario Carneiro, 26-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
dpjfval.1 (𝜑𝐺dom DProd 𝑆)
dpjfval.2 (𝜑 → dom 𝑆 = 𝐼)
dpjfval.p 𝑃 = (𝐺dProj𝑆)
dpjidcl.3 (𝜑𝐴 ∈ (𝐺 DProd 𝑆))
dpjidcl.0 0 = (0g𝐺)
dpjidcl.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
Assertion
Ref Expression
dpjidcl (𝜑 → ((𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) ∈ 𝑊𝐴 = (𝐺 Σg (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)))))
Distinct variable groups:   𝑥,, 0   ,𝑖,𝐺,𝑥   𝑃,,𝑥   𝜑,𝑖,𝑥   ,𝐼,𝑖,𝑥   𝑥,𝑊   𝐴,,𝑥   𝑆,,𝑖,𝑥
Allowed substitution hints:   𝜑()   𝐴(𝑖)   𝑃(𝑖)   𝑊(,𝑖)   0 (𝑖)

Proof of Theorem dpjidcl
Dummy variables 𝑘 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dpjidcl.3 . . . 4 (𝜑𝐴 ∈ (𝐺 DProd 𝑆))
2 dpjfval.2 . . . . 5 (𝜑 → dom 𝑆 = 𝐼)
3 dpjidcl.0 . . . . . 6 0 = (0g𝐺)
4 dpjidcl.w . . . . . 6 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
53, 4eldprd 19119 . . . . 5 (dom 𝑆 = 𝐼 → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓𝑊 𝐴 = (𝐺 Σg 𝑓))))
62, 5syl 17 . . . 4 (𝜑 → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓𝑊 𝐴 = (𝐺 Σg 𝑓))))
71, 6mpbid 235 . . 3 (𝜑 → (𝐺dom DProd 𝑆 ∧ ∃𝑓𝑊 𝐴 = (𝐺 Σg 𝑓)))
87simprd 499 . 2 (𝜑 → ∃𝑓𝑊 𝐴 = (𝐺 Σg 𝑓))
9 dpjfval.1 . . . . 5 (𝜑𝐺dom DProd 𝑆)
109adantr 484 . . . 4 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝐺dom DProd 𝑆)
112adantr 484 . . . 4 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → dom 𝑆 = 𝐼)
129ad2antrr 725 . . . . . 6 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐺dom DProd 𝑆)
132ad2antrr 725 . . . . . 6 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → dom 𝑆 = 𝐼)
14 dpjfval.p . . . . . 6 𝑃 = (𝐺dProj𝑆)
15 simpr 488 . . . . . 6 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝑥𝐼)
1612, 13, 14, 15dpjf 19172 . . . . 5 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑃𝑥):(𝐺 DProd 𝑆)⟶(𝑆𝑥))
171ad2antrr 725 . . . . 5 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐴 ∈ (𝐺 DProd 𝑆))
1816, 17ffvelrnd 6829 . . . 4 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ((𝑃𝑥)‘𝐴) ∈ (𝑆𝑥))
199, 2dprddomcld 19116 . . . . . . 7 (𝜑𝐼 ∈ V)
2019mptexd 6964 . . . . . 6 (𝜑 → (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) ∈ V)
2120adantr 484 . . . . 5 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) ∈ V)
22 funmpt 6362 . . . . . 6 Fun (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴))
2322a1i 11 . . . . 5 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → Fun (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)))
24 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝑓𝑊)
254, 10, 11, 24dprdffsupp 19129 . . . . 5 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝑓 finSupp 0 )
26 eldifi 4054 . . . . . . . 8 (𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 )) → 𝑥𝐼)
27 eqid 2798 . . . . . . . . . 10 (proj1𝐺) = (proj1𝐺)
2812, 13, 14, 27, 15dpjval 19171 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑃𝑥) = ((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))))
2928fveq1d 6647 . . . . . . . 8 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ((𝑃𝑥)‘𝐴) = (((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴))
3026, 29sylan2 595 . . . . . . 7 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → ((𝑃𝑥)‘𝐴) = (((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴))
31 simplrr 777 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝐴 = (𝐺 Σg 𝑓))
32 eqid 2798 . . . . . . . . . . 11 (Base‘𝐺) = (Base‘𝐺)
33 eqid 2798 . . . . . . . . . . 11 (Cntz‘𝐺) = (Cntz‘𝐺)
34 dprdgrp 19120 . . . . . . . . . . . . 13 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
35 grpmnd 18102 . . . . . . . . . . . . 13 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
3610, 34, 353syl 18 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝐺 ∈ Mnd)
3736adantr 484 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝐺 ∈ Mnd)
3819ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝐼 ∈ V)
394, 10, 11, 24, 32dprdff 19127 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝑓:𝐼⟶(Base‘𝐺))
4039adantr 484 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝑓:𝐼⟶(Base‘𝐺))
4124adantr 484 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝑓𝑊)
424, 12, 13, 41, 33dprdfcntz 19130 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ran 𝑓 ⊆ ((Cntz‘𝐺)‘ran 𝑓))
4326, 42sylan2 595 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → ran 𝑓 ⊆ ((Cntz‘𝐺)‘ran 𝑓))
44 snssi 4701 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 )) → {𝑥} ⊆ (𝐼 ∖ (𝑓 supp 0 )))
4544adantl 485 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → {𝑥} ⊆ (𝐼 ∖ (𝑓 supp 0 )))
4645difss2d 4062 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → {𝑥} ⊆ 𝐼)
47 suppssdm 7826 . . . . . . . . . . . . . . 15 (𝑓 supp 0 ) ⊆ dom 𝑓
4847, 39fssdm 6504 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → (𝑓 supp 0 ) ⊆ 𝐼)
4948adantr 484 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → (𝑓 supp 0 ) ⊆ 𝐼)
50 ssconb 4065 . . . . . . . . . . . . 13 (({𝑥} ⊆ 𝐼 ∧ (𝑓 supp 0 ) ⊆ 𝐼) → ({𝑥} ⊆ (𝐼 ∖ (𝑓 supp 0 )) ↔ (𝑓 supp 0 ) ⊆ (𝐼 ∖ {𝑥})))
5146, 49, 50syl2anc 587 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → ({𝑥} ⊆ (𝐼 ∖ (𝑓 supp 0 )) ↔ (𝑓 supp 0 ) ⊆ (𝐼 ∖ {𝑥})))
5245, 51mpbid 235 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → (𝑓 supp 0 ) ⊆ (𝐼 ∖ {𝑥}))
5325adantr 484 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝑓 finSupp 0 )
5432, 3, 33, 37, 38, 40, 43, 52, 53gsumzres 19022 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → (𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥}))) = (𝐺 Σg 𝑓))
5531, 54eqtr4d 2836 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝐴 = (𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥}))))
56 eqid 2798 . . . . . . . . . . 11 {X𝑖 ∈ (𝐼 ∖ {𝑥})((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑖) ∣ finSupp 0 } = {X𝑖 ∈ (𝐼 ∖ {𝑥})((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑖) ∣ finSupp 0 }
57 difss 4059 . . . . . . . . . . . . . 14 (𝐼 ∖ {𝑥}) ⊆ 𝐼
5857a1i 11 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐼 ∖ {𝑥}) ⊆ 𝐼)
5912, 13, 58dprdres 19143 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑥})) ∧ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))) ⊆ (𝐺 DProd 𝑆)))
6059simpld 498 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))
6112, 13dprdf2 19122 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝑆:𝐼⟶(SubGrp‘𝐺))
62 fssres 6518 . . . . . . . . . . . . 13 ((𝑆:𝐼⟶(SubGrp‘𝐺) ∧ (𝐼 ∖ {𝑥}) ⊆ 𝐼) → (𝑆 ↾ (𝐼 ∖ {𝑥})):(𝐼 ∖ {𝑥})⟶(SubGrp‘𝐺))
6361, 57, 62sylancl 589 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑆 ↾ (𝐼 ∖ {𝑥})):(𝐼 ∖ {𝑥})⟶(SubGrp‘𝐺))
6463fdmd 6497 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → dom (𝑆 ↾ (𝐼 ∖ {𝑥})) = (𝐼 ∖ {𝑥}))
6539adantr 484 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝑓:𝐼⟶(Base‘𝐺))
6665feqmptd 6708 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝑓 = (𝑘𝐼 ↦ (𝑓𝑘)))
6766reseq1d 5817 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑓 ↾ (𝐼 ∖ {𝑥})) = ((𝑘𝐼 ↦ (𝑓𝑘)) ↾ (𝐼 ∖ {𝑥})))
68 resmpt 5872 . . . . . . . . . . . . . 14 ((𝐼 ∖ {𝑥}) ⊆ 𝐼 → ((𝑘𝐼 ↦ (𝑓𝑘)) ↾ (𝐼 ∖ {𝑥})) = (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)))
6957, 68ax-mp 5 . . . . . . . . . . . . 13 ((𝑘𝐼 ↦ (𝑓𝑘)) ↾ (𝐼 ∖ {𝑥})) = (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘))
7067, 69eqtrdi 2849 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑓 ↾ (𝐼 ∖ {𝑥})) = (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)))
71 eldifi 4054 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝐼 ∖ {𝑥}) → 𝑘𝐼)
724, 12, 13, 41dprdfcl 19128 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → (𝑓𝑘) ∈ (𝑆𝑘))
7371, 72sylan2 595 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) ∧ 𝑘 ∈ (𝐼 ∖ {𝑥})) → (𝑓𝑘) ∈ (𝑆𝑘))
74 fvres 6664 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝐼 ∖ {𝑥}) → ((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑘) = (𝑆𝑘))
7574adantl 485 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) ∧ 𝑘 ∈ (𝐼 ∖ {𝑥})) → ((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑘) = (𝑆𝑘))
7673, 75eleqtrrd 2893 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) ∧ 𝑘 ∈ (𝐼 ∖ {𝑥})) → (𝑓𝑘) ∈ ((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑘))
77 difexg 5195 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ V → (𝐼 ∖ {𝑥}) ∈ V)
7819, 77syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐼 ∖ {𝑥}) ∈ V)
7978mptexd 6964 . . . . . . . . . . . . . . 15 (𝜑 → (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)) ∈ V)
8079ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)) ∈ V)
81 funmpt 6362 . . . . . . . . . . . . . . 15 Fun (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘))
8281a1i 11 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → Fun (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)))
8325adantr 484 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝑓 finSupp 0 )
84 ssdif 4067 . . . . . . . . . . . . . . . . . 18 ((𝐼 ∖ {𝑥}) ⊆ 𝐼 → ((𝐼 ∖ {𝑥}) ∖ (𝑓 supp 0 )) ⊆ (𝐼 ∖ (𝑓 supp 0 )))
8557, 84ax-mp 5 . . . . . . . . . . . . . . . . 17 ((𝐼 ∖ {𝑥}) ∖ (𝑓 supp 0 )) ⊆ (𝐼 ∖ (𝑓 supp 0 ))
8685sseli 3911 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ((𝐼 ∖ {𝑥}) ∖ (𝑓 supp 0 )) → 𝑘 ∈ (𝐼 ∖ (𝑓 supp 0 )))
87 ssidd 3938 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑓 supp 0 ) ⊆ (𝑓 supp 0 ))
8819ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐼 ∈ V)
893fvexi 6659 . . . . . . . . . . . . . . . . . 18 0 ∈ V
9089a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 0 ∈ V)
9165, 87, 88, 90suppssr 7844 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) ∧ 𝑘 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → (𝑓𝑘) = 0 )
9286, 91sylan2 595 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) ∧ 𝑘 ∈ ((𝐼 ∖ {𝑥}) ∖ (𝑓 supp 0 ))) → (𝑓𝑘) = 0 )
9378ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐼 ∖ {𝑥}) ∈ V)
9492, 93suppss2 7847 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ((𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)) supp 0 ) ⊆ (𝑓 supp 0 ))
95 fsuppsssupp 8833 . . . . . . . . . . . . . 14 ((((𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)) ∈ V ∧ Fun (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘))) ∧ (𝑓 finSupp 0 ∧ ((𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)) supp 0 ) ⊆ (𝑓 supp 0 ))) → (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)) finSupp 0 )
9680, 82, 83, 94, 95syl22anc 837 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)) finSupp 0 )
9756, 60, 64, 76, 96dprdwd 19126 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)) ∈ {X𝑖 ∈ (𝐼 ∖ {𝑥})((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑖) ∣ finSupp 0 })
9870, 97eqeltrd 2890 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑓 ↾ (𝐼 ∖ {𝑥})) ∈ {X𝑖 ∈ (𝐼 ∖ {𝑥})((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑖) ∣ finSupp 0 })
993, 56, 60, 64, 98eldprdi 19133 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥}))) ∈ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))
10026, 99sylan2 595 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → (𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥}))) ∈ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))
10155, 100eqeltrd 2890 . . . . . . . 8 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝐴 ∈ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))
102 eqid 2798 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
103 eqid 2798 . . . . . . . . . 10 (LSSum‘𝐺) = (LSSum‘𝐺)
10461, 15ffvelrnd 6829 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑆𝑥) ∈ (SubGrp‘𝐺))
105 dprdsubg 19139 . . . . . . . . . . 11 (𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑥})) → (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
10660, 105syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
10712, 13, 15, 3dpjdisj 19168 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ((𝑆𝑥) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))) = { 0 })
10812, 13, 15, 33dpjcntz 19167 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))))
109102, 103, 3, 33, 104, 106, 107, 108, 27pj1rid 18820 . . . . . . . . 9 ((((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) ∧ 𝐴 ∈ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))) → (((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴) = 0 )
11026, 109sylanl2 680 . . . . . . . 8 ((((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝐴 ∈ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))) → (((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴) = 0 )
111101, 110mpdan 686 . . . . . . 7 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → (((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴) = 0 )
11230, 111eqtrd 2833 . . . . . 6 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → ((𝑃𝑥)‘𝐴) = 0 )
11319adantr 484 . . . . . 6 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝐼 ∈ V)
114112, 113suppss2 7847 . . . . 5 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → ((𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) supp 0 ) ⊆ (𝑓 supp 0 ))
115 fsuppsssupp 8833 . . . . 5 ((((𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) ∈ V ∧ Fun (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴))) ∧ (𝑓 finSupp 0 ∧ ((𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) supp 0 ) ⊆ (𝑓 supp 0 ))) → (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) finSupp 0 )
11621, 23, 25, 114, 115syl22anc 837 . . . 4 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) finSupp 0 )
1174, 10, 11, 18, 116dprdwd 19126 . . 3 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) ∈ 𝑊)
118 simprr 772 . . . 4 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝐴 = (𝐺 Σg 𝑓))
11939feqmptd 6708 . . . . . 6 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝑓 = (𝑥𝐼 ↦ (𝑓𝑥)))
120 simplrr 777 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐴 = (𝐺 Σg 𝑓))
12112, 34, 353syl 18 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐺 ∈ Mnd)
1224, 12, 13, 41dprdffsupp 19129 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝑓 finSupp 0 )
123 disjdif 4379 . . . . . . . . . . . . 13 ({𝑥} ∩ (𝐼 ∖ {𝑥})) = ∅
124123a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ({𝑥} ∩ (𝐼 ∖ {𝑥})) = ∅)
125 undif2 4383 . . . . . . . . . . . . 13 ({𝑥} ∪ (𝐼 ∖ {𝑥})) = ({𝑥} ∪ 𝐼)
12615snssd 4702 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → {𝑥} ⊆ 𝐼)
127 ssequn1 4107 . . . . . . . . . . . . . 14 ({𝑥} ⊆ 𝐼 ↔ ({𝑥} ∪ 𝐼) = 𝐼)
128126, 127sylib 221 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ({𝑥} ∪ 𝐼) = 𝐼)
129125, 128syl5req 2846 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐼 = ({𝑥} ∪ (𝐼 ∖ {𝑥})))
13032, 3, 102, 33, 121, 88, 65, 42, 122, 124, 129gsumzsplit 19040 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐺 Σg 𝑓) = ((𝐺 Σg (𝑓 ↾ {𝑥}))(+g𝐺)(𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥})))))
13165, 126feqresmpt 6709 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑓 ↾ {𝑥}) = (𝑘 ∈ {𝑥} ↦ (𝑓𝑘)))
132131oveq2d 7151 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐺 Σg (𝑓 ↾ {𝑥})) = (𝐺 Σg (𝑘 ∈ {𝑥} ↦ (𝑓𝑘))))
13365, 15ffvelrnd 6829 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ (Base‘𝐺))
134 fveq2 6645 . . . . . . . . . . . . . . 15 (𝑘 = 𝑥 → (𝑓𝑘) = (𝑓𝑥))
13532, 134gsumsn 19067 . . . . . . . . . . . . . 14 ((𝐺 ∈ Mnd ∧ 𝑥𝐼 ∧ (𝑓𝑥) ∈ (Base‘𝐺)) → (𝐺 Σg (𝑘 ∈ {𝑥} ↦ (𝑓𝑘))) = (𝑓𝑥))
136121, 15, 133, 135syl3anc 1368 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐺 Σg (𝑘 ∈ {𝑥} ↦ (𝑓𝑘))) = (𝑓𝑥))
137132, 136eqtrd 2833 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐺 Σg (𝑓 ↾ {𝑥})) = (𝑓𝑥))
138137oveq1d 7150 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ((𝐺 Σg (𝑓 ↾ {𝑥}))(+g𝐺)(𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥})))) = ((𝑓𝑥)(+g𝐺)(𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥})))))
139120, 130, 1383eqtrd 2837 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐴 = ((𝑓𝑥)(+g𝐺)(𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥})))))
14012, 13, 15, 103dpjlsm 19169 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐺 DProd 𝑆) = ((𝑆𝑥)(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))))
14117, 140eleqtrd 2892 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐴 ∈ ((𝑆𝑥)(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))))
1424, 10, 11, 24dprdfcl 19128 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ (𝑆𝑥))
143102, 103, 3, 33, 104, 106, 107, 108, 27, 141, 142, 99pj1eq 18818 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐴 = ((𝑓𝑥)(+g𝐺)(𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥})))) ↔ ((((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴) = (𝑓𝑥) ∧ (((𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))(proj1𝐺)(𝑆𝑥))‘𝐴) = (𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥}))))))
144139, 143mpbid 235 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ((((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴) = (𝑓𝑥) ∧ (((𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))(proj1𝐺)(𝑆𝑥))‘𝐴) = (𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥})))))
145144simpld 498 . . . . . . . 8 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴) = (𝑓𝑥))
14629, 145eqtrd 2833 . . . . . . 7 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ((𝑃𝑥)‘𝐴) = (𝑓𝑥))
147146mpteq2dva 5125 . . . . . 6 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) = (𝑥𝐼 ↦ (𝑓𝑥)))
148119, 147eqtr4d 2836 . . . . 5 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝑓 = (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)))
149148oveq2d 7151 . . . 4 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → (𝐺 Σg 𝑓) = (𝐺 Σg (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴))))
150118, 149eqtrd 2833 . . 3 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝐴 = (𝐺 Σg (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴))))
151117, 150jca 515 . 2 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → ((𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) ∈ 𝑊𝐴 = (𝐺 Σg (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)))))
1528, 151rexlimddv 3250 1 (𝜑 → ((𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) ∈ 𝑊𝐴 = (𝐺 Σg (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wrex 3107  {crab 3110  Vcvv 3441  cdif 3878  cun 3879  cin 3880  wss 3881  c0 4243  {csn 4525   class class class wbr 5030  cmpt 5110  dom cdm 5519  ran crn 5520  cres 5521  Fun wfun 6318  wf 6320  cfv 6324  (class class class)co 7135   supp csupp 7813  Xcixp 8444   finSupp cfsupp 8817  Basecbs 16475  +gcplusg 16557  0gc0g 16705   Σg cgsu 16706  Mndcmnd 17903  Grpcgrp 18095  SubGrpcsubg 18265  Cntzccntz 18437  LSSumclsm 18751  proj1cpj1 18752   DProd cdprd 19108  dProjcdpj 19109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-0g 16707  df-gsum 16708  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-ghm 18348  df-gim 18391  df-cntz 18439  df-oppg 18466  df-lsm 18753  df-pj1 18754  df-cmn 18900  df-dprd 19110  df-dpj 19111
This theorem is referenced by:  dpjeq  19174  dpjid  19175
  Copyright terms: Public domain W3C validator