| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | dpjidcl.3 | . . . 4
⊢ (𝜑 → 𝐴 ∈ (𝐺 DProd 𝑆)) | 
| 2 |  | dpjfval.2 | . . . . 5
⊢ (𝜑 → dom 𝑆 = 𝐼) | 
| 3 |  | dpjidcl.0 | . . . . . 6
⊢  0 =
(0g‘𝐺) | 
| 4 |  | dpjidcl.w | . . . . . 6
⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } | 
| 5 | 3, 4 | eldprd 20024 | . . . . 5
⊢ (dom
𝑆 = 𝐼 → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ 𝑊 𝐴 = (𝐺 Σg 𝑓)))) | 
| 6 | 2, 5 | syl 17 | . . . 4
⊢ (𝜑 → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ 𝑊 𝐴 = (𝐺 Σg 𝑓)))) | 
| 7 | 1, 6 | mpbid 232 | . . 3
⊢ (𝜑 → (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ 𝑊 𝐴 = (𝐺 Σg 𝑓))) | 
| 8 | 7 | simprd 495 | . 2
⊢ (𝜑 → ∃𝑓 ∈ 𝑊 𝐴 = (𝐺 Σg 𝑓)) | 
| 9 |  | dpjfval.1 | . . . . 5
⊢ (𝜑 → 𝐺dom DProd 𝑆) | 
| 10 | 9 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) → 𝐺dom DProd 𝑆) | 
| 11 | 2 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) → dom 𝑆 = 𝐼) | 
| 12 | 9 | ad2antrr 726 | . . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → 𝐺dom DProd 𝑆) | 
| 13 | 2 | ad2antrr 726 | . . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → dom 𝑆 = 𝐼) | 
| 14 |  | dpjfval.p | . . . . . 6
⊢ 𝑃 = (𝐺dProj𝑆) | 
| 15 |  | simpr 484 | . . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → 𝑥 ∈ 𝐼) | 
| 16 | 12, 13, 14, 15 | dpjf 20077 | . . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝑃‘𝑥):(𝐺 DProd 𝑆)⟶(𝑆‘𝑥)) | 
| 17 | 1 | ad2antrr 726 | . . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → 𝐴 ∈ (𝐺 DProd 𝑆)) | 
| 18 | 16, 17 | ffvelcdmd 7105 | . . . 4
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → ((𝑃‘𝑥)‘𝐴) ∈ (𝑆‘𝑥)) | 
| 19 | 9, 2 | dprddomcld 20021 | . . . . . . 7
⊢ (𝜑 → 𝐼 ∈ V) | 
| 20 | 19 | mptexd 7244 | . . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)) ∈ V) | 
| 21 | 20 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) → (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)) ∈ V) | 
| 22 |  | funmpt 6604 | . . . . . 6
⊢ Fun
(𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)) | 
| 23 | 22 | a1i 11 | . . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) → Fun (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴))) | 
| 24 |  | simprl 771 | . . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) → 𝑓 ∈ 𝑊) | 
| 25 | 4, 10, 11, 24 | dprdffsupp 20034 | . . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) → 𝑓 finSupp 0 ) | 
| 26 |  | eldifi 4131 | . . . . . . . 8
⊢ (𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 )) → 𝑥 ∈ 𝐼) | 
| 27 |  | eqid 2737 | . . . . . . . . . 10
⊢
(proj1‘𝐺) = (proj1‘𝐺) | 
| 28 | 12, 13, 14, 27, 15 | dpjval 20076 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝑃‘𝑥) = ((𝑆‘𝑥)(proj1‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))) | 
| 29 | 28 | fveq1d 6908 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → ((𝑃‘𝑥)‘𝐴) = (((𝑆‘𝑥)(proj1‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴)) | 
| 30 | 26, 29 | sylan2 593 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → ((𝑃‘𝑥)‘𝐴) = (((𝑆‘𝑥)(proj1‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴)) | 
| 31 |  | simplrr 778 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝐴 = (𝐺 Σg 𝑓)) | 
| 32 |  | eqid 2737 | . . . . . . . . . . 11
⊢
(Base‘𝐺) =
(Base‘𝐺) | 
| 33 |  | eqid 2737 | . . . . . . . . . . 11
⊢
(Cntz‘𝐺) =
(Cntz‘𝐺) | 
| 34 |  | dprdgrp 20025 | . . . . . . . . . . . . 13
⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) | 
| 35 |  | grpmnd 18958 | . . . . . . . . . . . . 13
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | 
| 36 | 10, 34, 35 | 3syl 18 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) → 𝐺 ∈ Mnd) | 
| 37 | 36 | adantr 480 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝐺 ∈ Mnd) | 
| 38 | 19 | ad2antrr 726 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝐼 ∈ V) | 
| 39 | 4, 10, 11, 24, 32 | dprdff 20032 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) → 𝑓:𝐼⟶(Base‘𝐺)) | 
| 40 | 39 | adantr 480 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝑓:𝐼⟶(Base‘𝐺)) | 
| 41 | 24 | adantr 480 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → 𝑓 ∈ 𝑊) | 
| 42 | 4, 12, 13, 41, 33 | dprdfcntz 20035 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → ran 𝑓 ⊆ ((Cntz‘𝐺)‘ran 𝑓)) | 
| 43 | 26, 42 | sylan2 593 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → ran 𝑓 ⊆ ((Cntz‘𝐺)‘ran 𝑓)) | 
| 44 |  | snssi 4808 | . . . . . . . . . . . . 13
⊢ (𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 )) → {𝑥} ⊆ (𝐼 ∖ (𝑓 supp 0 ))) | 
| 45 | 44 | adantl 481 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → {𝑥} ⊆ (𝐼 ∖ (𝑓 supp 0 ))) | 
| 46 | 45 | difss2d 4139 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → {𝑥} ⊆ 𝐼) | 
| 47 |  | suppssdm 8202 | . . . . . . . . . . . . . . 15
⊢ (𝑓 supp 0 ) ⊆ dom 𝑓 | 
| 48 | 47, 39 | fssdm 6755 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) → (𝑓 supp 0 ) ⊆ 𝐼) | 
| 49 | 48 | adantr 480 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → (𝑓 supp 0 ) ⊆ 𝐼) | 
| 50 |  | ssconb 4142 | . . . . . . . . . . . . 13
⊢ (({𝑥} ⊆ 𝐼 ∧ (𝑓 supp 0 ) ⊆ 𝐼) → ({𝑥} ⊆ (𝐼 ∖ (𝑓 supp 0 )) ↔ (𝑓 supp 0 ) ⊆ (𝐼 ∖ {𝑥}))) | 
| 51 | 46, 49, 50 | syl2anc 584 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → ({𝑥} ⊆ (𝐼 ∖ (𝑓 supp 0 )) ↔ (𝑓 supp 0 ) ⊆ (𝐼 ∖ {𝑥}))) | 
| 52 | 45, 51 | mpbid 232 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → (𝑓 supp 0 ) ⊆ (𝐼 ∖ {𝑥})) | 
| 53 | 25 | adantr 480 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝑓 finSupp 0 ) | 
| 54 | 32, 3, 33, 37, 38, 40, 43, 52, 53 | gsumzres 19927 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → (𝐺 Σg
(𝑓 ↾ (𝐼 ∖ {𝑥}))) = (𝐺 Σg 𝑓)) | 
| 55 | 31, 54 | eqtr4d 2780 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝐴 = (𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥})))) | 
| 56 |  | eqid 2737 | . . . . . . . . . . 11
⊢ {ℎ ∈ X𝑖 ∈
(𝐼 ∖ {𝑥})((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑖) ∣ ℎ finSupp 0 } = {ℎ ∈ X𝑖 ∈ (𝐼 ∖ {𝑥})((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑖) ∣ ℎ finSupp 0 } | 
| 57 |  | difss 4136 | . . . . . . . . . . . . . 14
⊢ (𝐼 ∖ {𝑥}) ⊆ 𝐼 | 
| 58 | 57 | a1i 11 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝐼 ∖ {𝑥}) ⊆ 𝐼) | 
| 59 | 12, 13, 58 | dprdres 20048 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑥})) ∧ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))) ⊆ (𝐺 DProd 𝑆))) | 
| 60 | 59 | simpld 494 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → 𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))) | 
| 61 | 12, 13 | dprdf2 20027 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → 𝑆:𝐼⟶(SubGrp‘𝐺)) | 
| 62 |  | fssres 6774 | . . . . . . . . . . . . 13
⊢ ((𝑆:𝐼⟶(SubGrp‘𝐺) ∧ (𝐼 ∖ {𝑥}) ⊆ 𝐼) → (𝑆 ↾ (𝐼 ∖ {𝑥})):(𝐼 ∖ {𝑥})⟶(SubGrp‘𝐺)) | 
| 63 | 61, 57, 62 | sylancl 586 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝑆 ↾ (𝐼 ∖ {𝑥})):(𝐼 ∖ {𝑥})⟶(SubGrp‘𝐺)) | 
| 64 | 63 | fdmd 6746 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → dom (𝑆 ↾ (𝐼 ∖ {𝑥})) = (𝐼 ∖ {𝑥})) | 
| 65 | 39 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → 𝑓:𝐼⟶(Base‘𝐺)) | 
| 66 | 65 | feqmptd 6977 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → 𝑓 = (𝑘 ∈ 𝐼 ↦ (𝑓‘𝑘))) | 
| 67 | 66 | reseq1d 5996 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝑓 ↾ (𝐼 ∖ {𝑥})) = ((𝑘 ∈ 𝐼 ↦ (𝑓‘𝑘)) ↾ (𝐼 ∖ {𝑥}))) | 
| 68 |  | resmpt 6055 | . . . . . . . . . . . . . 14
⊢ ((𝐼 ∖ {𝑥}) ⊆ 𝐼 → ((𝑘 ∈ 𝐼 ↦ (𝑓‘𝑘)) ↾ (𝐼 ∖ {𝑥})) = (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓‘𝑘))) | 
| 69 | 57, 68 | ax-mp 5 | . . . . . . . . . . . . 13
⊢ ((𝑘 ∈ 𝐼 ↦ (𝑓‘𝑘)) ↾ (𝐼 ∖ {𝑥})) = (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓‘𝑘)) | 
| 70 | 67, 69 | eqtrdi 2793 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝑓 ↾ (𝐼 ∖ {𝑥})) = (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓‘𝑘))) | 
| 71 |  | eldifi 4131 | . . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (𝐼 ∖ {𝑥}) → 𝑘 ∈ 𝐼) | 
| 72 | 4, 12, 13, 41 | dprdfcl 20033 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) ∧ 𝑘 ∈ 𝐼) → (𝑓‘𝑘) ∈ (𝑆‘𝑘)) | 
| 73 | 71, 72 | sylan2 593 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) ∧ 𝑘 ∈ (𝐼 ∖ {𝑥})) → (𝑓‘𝑘) ∈ (𝑆‘𝑘)) | 
| 74 |  | fvres 6925 | . . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (𝐼 ∖ {𝑥}) → ((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑘) = (𝑆‘𝑘)) | 
| 75 | 74 | adantl 481 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) ∧ 𝑘 ∈ (𝐼 ∖ {𝑥})) → ((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑘) = (𝑆‘𝑘)) | 
| 76 | 73, 75 | eleqtrrd 2844 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) ∧ 𝑘 ∈ (𝐼 ∖ {𝑥})) → (𝑓‘𝑘) ∈ ((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑘)) | 
| 77 | 19 | difexd 5331 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐼 ∖ {𝑥}) ∈ V) | 
| 78 | 77 | mptexd 7244 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓‘𝑘)) ∈ V) | 
| 79 | 78 | ad2antrr 726 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓‘𝑘)) ∈ V) | 
| 80 |  | funmpt 6604 | . . . . . . . . . . . . . . 15
⊢ Fun
(𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓‘𝑘)) | 
| 81 | 80 | a1i 11 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → Fun (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓‘𝑘))) | 
| 82 | 25 | adantr 480 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → 𝑓 finSupp 0 ) | 
| 83 |  | ssdif 4144 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝐼 ∖ {𝑥}) ⊆ 𝐼 → ((𝐼 ∖ {𝑥}) ∖ (𝑓 supp 0 )) ⊆ (𝐼 ∖ (𝑓 supp 0 ))) | 
| 84 | 57, 83 | ax-mp 5 | . . . . . . . . . . . . . . . . 17
⊢ ((𝐼 ∖ {𝑥}) ∖ (𝑓 supp 0 )) ⊆ (𝐼 ∖ (𝑓 supp 0 )) | 
| 85 | 84 | sseli 3979 | . . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ((𝐼 ∖ {𝑥}) ∖ (𝑓 supp 0 )) → 𝑘 ∈ (𝐼 ∖ (𝑓 supp 0 ))) | 
| 86 |  | ssidd 4007 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝑓 supp 0 ) ⊆ (𝑓 supp 0 )) | 
| 87 | 19 | ad2antrr 726 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → 𝐼 ∈ V) | 
| 88 | 3 | fvexi 6920 | . . . . . . . . . . . . . . . . . 18
⊢  0 ∈
V | 
| 89 | 88 | a1i 11 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → 0 ∈ V) | 
| 90 | 65, 86, 87, 89 | suppssr 8220 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) ∧ 𝑘 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → (𝑓‘𝑘) = 0 ) | 
| 91 | 85, 90 | sylan2 593 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) ∧ 𝑘 ∈ ((𝐼 ∖ {𝑥}) ∖ (𝑓 supp 0 ))) → (𝑓‘𝑘) = 0 ) | 
| 92 | 77 | ad2antrr 726 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝐼 ∖ {𝑥}) ∈ V) | 
| 93 | 91, 92 | suppss2 8225 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → ((𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓‘𝑘)) supp 0 ) ⊆ (𝑓 supp 0 )) | 
| 94 |  | fsuppsssupp 9421 | . . . . . . . . . . . . . 14
⊢ ((((𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓‘𝑘)) ∈ V ∧ Fun (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓‘𝑘))) ∧ (𝑓 finSupp 0 ∧ ((𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓‘𝑘)) supp 0 ) ⊆ (𝑓 supp 0 ))) → (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓‘𝑘)) finSupp 0 ) | 
| 95 | 79, 81, 82, 93, 94 | syl22anc 839 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓‘𝑘)) finSupp 0 ) | 
| 96 | 56, 60, 64, 76, 95 | dprdwd 20031 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓‘𝑘)) ∈ {ℎ ∈ X𝑖 ∈ (𝐼 ∖ {𝑥})((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑖) ∣ ℎ finSupp 0 }) | 
| 97 | 70, 96 | eqeltrd 2841 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝑓 ↾ (𝐼 ∖ {𝑥})) ∈ {ℎ ∈ X𝑖 ∈ (𝐼 ∖ {𝑥})((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑖) ∣ ℎ finSupp 0 }) | 
| 98 | 3, 56, 60, 64, 97 | eldprdi 20038 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥}))) ∈ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))) | 
| 99 | 26, 98 | sylan2 593 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → (𝐺 Σg
(𝑓 ↾ (𝐼 ∖ {𝑥}))) ∈ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))) | 
| 100 | 55, 99 | eqeltrd 2841 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝐴 ∈ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))) | 
| 101 |  | eqid 2737 | . . . . . . . . . 10
⊢
(+g‘𝐺) = (+g‘𝐺) | 
| 102 |  | eqid 2737 | . . . . . . . . . 10
⊢
(LSSum‘𝐺) =
(LSSum‘𝐺) | 
| 103 | 61, 15 | ffvelcdmd 7105 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝑆‘𝑥) ∈ (SubGrp‘𝐺)) | 
| 104 |  | dprdsubg 20044 | . . . . . . . . . . 11
⊢ (𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑥})) → (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺)) | 
| 105 | 60, 104 | syl 17 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺)) | 
| 106 | 12, 13, 15, 3 | dpjdisj 20073 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → ((𝑆‘𝑥) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))) = { 0 }) | 
| 107 | 12, 13, 15, 33 | dpjcntz 20072 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))) | 
| 108 | 101, 102,
3, 33, 103, 105, 106, 107, 27 | pj1rid 19720 | . . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) ∧ 𝐴 ∈ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))) → (((𝑆‘𝑥)(proj1‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴) = 0 ) | 
| 109 | 26, 108 | sylanl2 681 | . . . . . . . 8
⊢ ((((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝐴 ∈ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))) → (((𝑆‘𝑥)(proj1‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴) = 0 ) | 
| 110 | 100, 109 | mpdan 687 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → (((𝑆‘𝑥)(proj1‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴) = 0 ) | 
| 111 | 30, 110 | eqtrd 2777 | . . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → ((𝑃‘𝑥)‘𝐴) = 0 ) | 
| 112 | 19 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) → 𝐼 ∈ V) | 
| 113 | 111, 112 | suppss2 8225 | . . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) → ((𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)) supp 0 ) ⊆ (𝑓 supp 0 )) | 
| 114 |  | fsuppsssupp 9421 | . . . . 5
⊢ ((((𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)) ∈ V ∧ Fun (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴))) ∧ (𝑓 finSupp 0 ∧ ((𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)) supp 0 ) ⊆ (𝑓 supp 0 ))) → (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)) finSupp 0 ) | 
| 115 | 21, 23, 25, 113, 114 | syl22anc 839 | . . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) → (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)) finSupp 0 ) | 
| 116 | 4, 10, 11, 18, 115 | dprdwd 20031 | . . 3
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) → (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)) ∈ 𝑊) | 
| 117 |  | simprr 773 | . . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) → 𝐴 = (𝐺 Σg 𝑓)) | 
| 118 | 39 | feqmptd 6977 | . . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) → 𝑓 = (𝑥 ∈ 𝐼 ↦ (𝑓‘𝑥))) | 
| 119 |  | simplrr 778 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → 𝐴 = (𝐺 Σg 𝑓)) | 
| 120 | 12, 34, 35 | 3syl 18 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → 𝐺 ∈ Mnd) | 
| 121 | 4, 12, 13, 41 | dprdffsupp 20034 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → 𝑓 finSupp 0 ) | 
| 122 |  | disjdif 4472 | . . . . . . . . . . . . 13
⊢ ({𝑥} ∩ (𝐼 ∖ {𝑥})) = ∅ | 
| 123 | 122 | a1i 11 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → ({𝑥} ∩ (𝐼 ∖ {𝑥})) = ∅) | 
| 124 |  | undif2 4477 | . . . . . . . . . . . . 13
⊢ ({𝑥} ∪ (𝐼 ∖ {𝑥})) = ({𝑥} ∪ 𝐼) | 
| 125 | 15 | snssd 4809 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → {𝑥} ⊆ 𝐼) | 
| 126 |  | ssequn1 4186 | . . . . . . . . . . . . . 14
⊢ ({𝑥} ⊆ 𝐼 ↔ ({𝑥} ∪ 𝐼) = 𝐼) | 
| 127 | 125, 126 | sylib 218 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → ({𝑥} ∪ 𝐼) = 𝐼) | 
| 128 | 124, 127 | eqtr2id 2790 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → 𝐼 = ({𝑥} ∪ (𝐼 ∖ {𝑥}))) | 
| 129 | 32, 3, 101, 33, 120, 87, 65, 42, 121, 123, 128 | gsumzsplit 19945 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝐺 Σg 𝑓) = ((𝐺 Σg (𝑓 ↾ {𝑥}))(+g‘𝐺)(𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥}))))) | 
| 130 | 65, 125 | feqresmpt 6978 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝑓 ↾ {𝑥}) = (𝑘 ∈ {𝑥} ↦ (𝑓‘𝑘))) | 
| 131 | 130 | oveq2d 7447 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝐺 Σg (𝑓 ↾ {𝑥})) = (𝐺 Σg (𝑘 ∈ {𝑥} ↦ (𝑓‘𝑘)))) | 
| 132 | 65, 15 | ffvelcdmd 7105 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝑓‘𝑥) ∈ (Base‘𝐺)) | 
| 133 |  | fveq2 6906 | . . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑥 → (𝑓‘𝑘) = (𝑓‘𝑥)) | 
| 134 | 32, 133 | gsumsn 19972 | . . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐼 ∧ (𝑓‘𝑥) ∈ (Base‘𝐺)) → (𝐺 Σg (𝑘 ∈ {𝑥} ↦ (𝑓‘𝑘))) = (𝑓‘𝑥)) | 
| 135 | 120, 15, 132, 134 | syl3anc 1373 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝐺 Σg (𝑘 ∈ {𝑥} ↦ (𝑓‘𝑘))) = (𝑓‘𝑥)) | 
| 136 | 131, 135 | eqtrd 2777 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝐺 Σg (𝑓 ↾ {𝑥})) = (𝑓‘𝑥)) | 
| 137 | 136 | oveq1d 7446 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → ((𝐺 Σg (𝑓 ↾ {𝑥}))(+g‘𝐺)(𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥})))) = ((𝑓‘𝑥)(+g‘𝐺)(𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥}))))) | 
| 138 | 119, 129,
137 | 3eqtrd 2781 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → 𝐴 = ((𝑓‘𝑥)(+g‘𝐺)(𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥}))))) | 
| 139 | 12, 13, 15, 102 | dpjlsm 20074 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝐺 DProd 𝑆) = ((𝑆‘𝑥)(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))) | 
| 140 | 17, 139 | eleqtrd 2843 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → 𝐴 ∈ ((𝑆‘𝑥)(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))) | 
| 141 | 4, 10, 11, 24 | dprdfcl 20033 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝑓‘𝑥) ∈ (𝑆‘𝑥)) | 
| 142 | 101, 102,
3, 33, 103, 105, 106, 107, 27, 140, 141, 98 | pj1eq 19718 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (𝐴 = ((𝑓‘𝑥)(+g‘𝐺)(𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥})))) ↔ ((((𝑆‘𝑥)(proj1‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴) = (𝑓‘𝑥) ∧ (((𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))(proj1‘𝐺)(𝑆‘𝑥))‘𝐴) = (𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥})))))) | 
| 143 | 138, 142 | mpbid 232 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → ((((𝑆‘𝑥)(proj1‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴) = (𝑓‘𝑥) ∧ (((𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))(proj1‘𝐺)(𝑆‘𝑥))‘𝐴) = (𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥}))))) | 
| 144 | 143 | simpld 494 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → (((𝑆‘𝑥)(proj1‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴) = (𝑓‘𝑥)) | 
| 145 | 29, 144 | eqtrd 2777 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ 𝐼) → ((𝑃‘𝑥)‘𝐴) = (𝑓‘𝑥)) | 
| 146 | 145 | mpteq2dva 5242 | . . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) → (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)) = (𝑥 ∈ 𝐼 ↦ (𝑓‘𝑥))) | 
| 147 | 118, 146 | eqtr4d 2780 | . . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) → 𝑓 = (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴))) | 
| 148 | 147 | oveq2d 7447 | . . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) → (𝐺 Σg 𝑓) = (𝐺 Σg (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)))) | 
| 149 | 117, 148 | eqtrd 2777 | . . 3
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) → 𝐴 = (𝐺 Σg (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)))) | 
| 150 | 116, 149 | jca 511 | . 2
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg 𝑓))) → ((𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)) ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴))))) | 
| 151 | 8, 150 | rexlimddv 3161 | 1
⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴)) ∈ 𝑊 ∧ 𝐴 = (𝐺 Σg (𝑥 ∈ 𝐼 ↦ ((𝑃‘𝑥)‘𝐴))))) |