MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbthlem2 Structured version   Visualization version   GIF version

Theorem sbthlem2 8627
Description: Lemma for sbth 8636. (Contributed by NM, 22-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
Assertion
Ref Expression
sbthlem2 (ran 𝑔𝐴 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐷)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)

Proof of Theorem sbthlem2
StepHypRef Expression
1 sbthlem.1 . . . . . . . . 9 𝐴 ∈ V
2 sbthlem.2 . . . . . . . . 9 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
31, 2sbthlem1 8626 . . . . . . . 8 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
4 imass2 5964 . . . . . . . 8 ( 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) → (𝑓 𝐷) ⊆ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))
5 sscon 4114 . . . . . . . 8 ((𝑓 𝐷) ⊆ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))) → (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))) ⊆ (𝐵 ∖ (𝑓 𝐷)))
63, 4, 5mp2b 10 . . . . . . 7 (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))) ⊆ (𝐵 ∖ (𝑓 𝐷))
7 imass2 5964 . . . . . . 7 ((𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))) ⊆ (𝐵 ∖ (𝑓 𝐷)) → (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
8 sscon 4114 . . . . . . 7 ((𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))))))
96, 7, 8mp2b 10 . . . . . 6 (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))))
10 imassrn 5939 . . . . . . . 8 (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ ran 𝑔
11 sstr2 3973 . . . . . . . 8 ((𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ ran 𝑔 → (ran 𝑔𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ 𝐴))
1210, 11ax-mp 5 . . . . . . 7 (ran 𝑔𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ 𝐴)
13 difss 4107 . . . . . . 7 (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐴
14 ssconb 4113 . . . . . . 7 (((𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ 𝐴 ∧ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐴) → ((𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))) ↔ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))))))
1512, 13, 14sylancl 588 . . . . . 6 (ran 𝑔𝐴 → ((𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))) ↔ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))))))
169, 15mpbiri 260 . . . . 5 (ran 𝑔𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))
1716, 13jctil 522 . . . 4 (ran 𝑔𝐴 → ((𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))))
181difexi 5231 . . . . 5 (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ∈ V
19 sseq1 3991 . . . . . 6 (𝑥 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) → (𝑥𝐴 ↔ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐴))
20 imaeq2 5924 . . . . . . . . 9 (𝑥 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) → (𝑓𝑥) = (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))
2120difeq2d 4098 . . . . . . . 8 (𝑥 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) → (𝐵 ∖ (𝑓𝑥)) = (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))))
2221imaeq2d 5928 . . . . . . 7 (𝑥 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) → (𝑔 “ (𝐵 ∖ (𝑓𝑥))) = (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))))
23 difeq2 4092 . . . . . . 7 (𝑥 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) → (𝐴𝑥) = (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))
2422, 23sseq12d 3999 . . . . . 6 (𝑥 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) → ((𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥) ↔ (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))))
2519, 24anbi12d 632 . . . . 5 (𝑥 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) → ((𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥)) ↔ ((𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))))
2618, 25elab 3666 . . . 4 ((𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ∈ {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))} ↔ ((𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))))
2717, 26sylibr 236 . . 3 (ran 𝑔𝐴 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ∈ {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))})
2827, 2eleqtrrdi 2924 . 2 (ran 𝑔𝐴 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ∈ 𝐷)
29 elssuni 4867 . 2 ((𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ∈ 𝐷 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐷)
3028, 29syl 17 1 (ran 𝑔𝐴 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  {cab 2799  Vcvv 3494  cdif 3932  wss 3935   cuni 4837  ran crn 5555  cima 5557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pr 5329
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-xp 5560  df-cnv 5562  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567
This theorem is referenced by:  sbthlem3  8628
  Copyright terms: Public domain W3C validator