MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbthlem2 Structured version   Visualization version   GIF version

Theorem sbthlem2 9001
Description: Lemma for sbth 9010. (Contributed by NM, 22-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
Assertion
Ref Expression
sbthlem2 (ran 𝑔𝐴 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐷)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)

Proof of Theorem sbthlem2
StepHypRef Expression
1 sbthlem.1 . . . . . . . . 9 𝐴 ∈ V
2 sbthlem.2 . . . . . . . . 9 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
31, 2sbthlem1 9000 . . . . . . . 8 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
4 imass2 6051 . . . . . . . 8 ( 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) → (𝑓 𝐷) ⊆ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))
5 sscon 4093 . . . . . . . 8 ((𝑓 𝐷) ⊆ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))) → (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))) ⊆ (𝐵 ∖ (𝑓 𝐷)))
63, 4, 5mp2b 10 . . . . . . 7 (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))) ⊆ (𝐵 ∖ (𝑓 𝐷))
7 imass2 6051 . . . . . . 7 ((𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))) ⊆ (𝐵 ∖ (𝑓 𝐷)) → (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
8 sscon 4093 . . . . . . 7 ((𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))))))
96, 7, 8mp2b 10 . . . . . 6 (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))))
10 imassrn 6020 . . . . . . . 8 (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ ran 𝑔
11 sstr2 3941 . . . . . . . 8 ((𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ ran 𝑔 → (ran 𝑔𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ 𝐴))
1210, 11ax-mp 5 . . . . . . 7 (ran 𝑔𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ 𝐴)
13 difss 4086 . . . . . . 7 (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐴
14 ssconb 4092 . . . . . . 7 (((𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ 𝐴 ∧ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐴) → ((𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))) ↔ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))))))
1512, 13, 14sylancl 586 . . . . . 6 (ran 𝑔𝐴 → ((𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))) ↔ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))))))
169, 15mpbiri 258 . . . . 5 (ran 𝑔𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))
1716, 13jctil 519 . . . 4 (ran 𝑔𝐴 → ((𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))))
181difexi 5268 . . . . 5 (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ∈ V
19 sseq1 3960 . . . . . 6 (𝑥 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) → (𝑥𝐴 ↔ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐴))
20 imaeq2 6005 . . . . . . . . 9 (𝑥 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) → (𝑓𝑥) = (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))
2120difeq2d 4076 . . . . . . . 8 (𝑥 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) → (𝐵 ∖ (𝑓𝑥)) = (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))))
2221imaeq2d 6009 . . . . . . 7 (𝑥 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) → (𝑔 “ (𝐵 ∖ (𝑓𝑥))) = (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))))
23 difeq2 4070 . . . . . . 7 (𝑥 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) → (𝐴𝑥) = (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))
2422, 23sseq12d 3968 . . . . . 6 (𝑥 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) → ((𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥) ↔ (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))))
2519, 24anbi12d 632 . . . . 5 (𝑥 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) → ((𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥)) ↔ ((𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))))
2618, 25elab 3635 . . . 4 ((𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ∈ {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))} ↔ ((𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))))
2717, 26sylibr 234 . . 3 (ran 𝑔𝐴 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ∈ {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))})
2827, 2eleqtrrdi 2842 . 2 (ran 𝑔𝐴 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ∈ 𝐷)
29 elssuni 4889 . 2 ((𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ∈ 𝐷 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐷)
3028, 29syl 17 1 (ran 𝑔𝐴 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {cab 2709  Vcvv 3436  cdif 3899  wss 3902   cuni 4859  ran crn 5617  cima 5619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-xp 5622  df-cnv 5624  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629
This theorem is referenced by:  sbthlem3  9002
  Copyright terms: Public domain W3C validator