MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbthlem2 Structured version   Visualization version   GIF version

Theorem sbthlem2 8340
Description: Lemma for sbth 8349. (Contributed by NM, 22-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
Assertion
Ref Expression
sbthlem2 (ran 𝑔𝐴 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐷)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)

Proof of Theorem sbthlem2
StepHypRef Expression
1 sbthlem.1 . . . . . . . . 9 𝐴 ∈ V
2 sbthlem.2 . . . . . . . . 9 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
31, 2sbthlem1 8339 . . . . . . . 8 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
4 imass2 5742 . . . . . . . 8 ( 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) → (𝑓 𝐷) ⊆ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))
5 sscon 3971 . . . . . . . 8 ((𝑓 𝐷) ⊆ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))) → (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))) ⊆ (𝐵 ∖ (𝑓 𝐷)))
63, 4, 5mp2b 10 . . . . . . 7 (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))) ⊆ (𝐵 ∖ (𝑓 𝐷))
7 imass2 5742 . . . . . . 7 ((𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))) ⊆ (𝐵 ∖ (𝑓 𝐷)) → (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
8 sscon 3971 . . . . . . 7 ((𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))))))
96, 7, 8mp2b 10 . . . . . 6 (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))))
10 imassrn 5718 . . . . . . . 8 (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ ran 𝑔
11 sstr2 3834 . . . . . . . 8 ((𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ ran 𝑔 → (ran 𝑔𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ 𝐴))
1210, 11ax-mp 5 . . . . . . 7 (ran 𝑔𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ 𝐴)
13 difss 3964 . . . . . . 7 (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐴
14 ssconb 3970 . . . . . . 7 (((𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ 𝐴 ∧ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐴) → ((𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))) ↔ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))))))
1512, 13, 14sylancl 582 . . . . . 6 (ran 𝑔𝐴 → ((𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))) ↔ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))))))
169, 15mpbiri 250 . . . . 5 (ran 𝑔𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))
1716, 13jctil 517 . . . 4 (ran 𝑔𝐴 → ((𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))))
181, 13ssexi 5028 . . . . 5 (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ∈ V
19 sseq1 3851 . . . . . 6 (𝑥 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) → (𝑥𝐴 ↔ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐴))
20 imaeq2 5703 . . . . . . . . 9 (𝑥 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) → (𝑓𝑥) = (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))
2120difeq2d 3955 . . . . . . . 8 (𝑥 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) → (𝐵 ∖ (𝑓𝑥)) = (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))))
2221imaeq2d 5707 . . . . . . 7 (𝑥 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) → (𝑔 “ (𝐵 ∖ (𝑓𝑥))) = (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))))
23 difeq2 3949 . . . . . . 7 (𝑥 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) → (𝐴𝑥) = (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))
2422, 23sseq12d 3859 . . . . . 6 (𝑥 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) → ((𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥) ↔ (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))))
2519, 24anbi12d 626 . . . . 5 (𝑥 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) → ((𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥)) ↔ ((𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))))
2618, 25elab 3571 . . . 4 ((𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ∈ {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))} ↔ ((𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))) ⊆ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))))
2717, 26sylibr 226 . . 3 (ran 𝑔𝐴 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ∈ {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))})
2827, 2syl6eleqr 2917 . 2 (ran 𝑔𝐴 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ∈ 𝐷)
29 elssuni 4689 . 2 ((𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ∈ 𝐷 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐷)
3028, 29syl 17 1 (ran 𝑔𝐴 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1658  wcel 2166  {cab 2811  Vcvv 3414  cdif 3795  wss 3798   cuni 4658  ran crn 5343  cima 5345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pr 5127
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-opab 4936  df-xp 5348  df-cnv 5350  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355
This theorem is referenced by:  sbthlem3  8341
  Copyright terms: Public domain W3C validator