Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carageniuncllem2 Structured version   Visualization version   GIF version

Theorem carageniuncllem2 46478
Description: The Caratheodory's construction is closed under countable union. Step (d) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
carageniuncllem2.o (𝜑𝑂 ∈ OutMeas)
carageniuncllem2.s 𝑆 = (CaraGen‘𝑂)
carageniuncllem2.x 𝑋 = dom 𝑂
carageniuncllem2.a (𝜑𝐴𝑋)
carageniuncllem2.re (𝜑 → (𝑂𝐴) ∈ ℝ)
carageniuncllem2.m (𝜑𝑀 ∈ ℤ)
carageniuncllem2.z 𝑍 = (ℤ𝑀)
carageniuncllem2.e (𝜑𝐸:𝑍𝑆)
carageniuncllem2.y (𝜑𝑌 ∈ ℝ+)
carageniuncllem2.g 𝐺 = (𝑛𝑍 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖))
carageniuncllem2.f 𝐹 = (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑀..^𝑛)(𝐸𝑖)))
Assertion
Ref Expression
carageniuncllem2 (𝜑 → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝐴) + 𝑌))
Distinct variable groups:   𝐴,𝑛   𝑖,𝐸,𝑛   𝑛,𝐹   𝑖,𝑀,𝑛   𝑛,𝑂   𝑆,𝑖   𝑛,𝑋   𝑖,𝑍,𝑛   𝜑,𝑖,𝑛
Allowed substitution hints:   𝐴(𝑖)   𝑆(𝑛)   𝐹(𝑖)   𝐺(𝑖,𝑛)   𝑂(𝑖)   𝑋(𝑖)   𝑌(𝑖,𝑛)

Proof of Theorem carageniuncllem2
Dummy variables 𝑘 𝑧 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 carageniuncllem2.o . . . 4 (𝜑𝑂 ∈ OutMeas)
2 carageniuncllem2.x . . . 4 𝑋 = dom 𝑂
3 carageniuncllem2.a . . . 4 (𝜑𝐴𝑋)
4 carageniuncllem2.re . . . 4 (𝜑 → (𝑂𝐴) ∈ ℝ)
5 inss1 4245 . . . . 5 (𝐴 𝑛𝑍 (𝐸𝑛)) ⊆ 𝐴
65a1i 11 . . . 4 (𝜑 → (𝐴 𝑛𝑍 (𝐸𝑛)) ⊆ 𝐴)
71, 2, 3, 4, 6omessre 46466 . . 3 (𝜑 → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ∈ ℝ)
8 difssd 4147 . . . 4 (𝜑 → (𝐴 𝑛𝑍 (𝐸𝑛)) ⊆ 𝐴)
91, 2, 3, 4, 8omessre 46466 . . 3 (𝜑 → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ∈ ℝ)
10 rexadd 13271 . . 3 (((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ∈ ℝ ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ∈ ℝ) → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) = ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) + (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))))
117, 9, 10syl2anc 584 . 2 (𝜑 → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) = ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) + (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))))
12 carageniuncllem2.z . . . . . . . 8 𝑍 = (ℤ𝑀)
13 ssinss1 4254 . . . . . . . . . . . . 13 (𝐴𝑋 → (𝐴 ∩ (𝐹𝑛)) ⊆ 𝑋)
143, 13syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∩ (𝐹𝑛)) ⊆ 𝑋)
151, 2unidmex 44990 . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ V)
16 ssexg 5329 . . . . . . . . . . . . . . 15 ((𝐴𝑋𝑋 ∈ V) → 𝐴 ∈ V)
173, 15, 16syl2anc 584 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ V)
18 inex1g 5325 . . . . . . . . . . . . . 14 (𝐴 ∈ V → (𝐴 ∩ (𝐹𝑛)) ∈ V)
1917, 18syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐴 ∩ (𝐹𝑛)) ∈ V)
20 elpwg 4608 . . . . . . . . . . . . 13 ((𝐴 ∩ (𝐹𝑛)) ∈ V → ((𝐴 ∩ (𝐹𝑛)) ∈ 𝒫 𝑋 ↔ (𝐴 ∩ (𝐹𝑛)) ⊆ 𝑋))
2119, 20syl 17 . . . . . . . . . . . 12 (𝜑 → ((𝐴 ∩ (𝐹𝑛)) ∈ 𝒫 𝑋 ↔ (𝐴 ∩ (𝐹𝑛)) ⊆ 𝑋))
2214, 21mpbird 257 . . . . . . . . . . 11 (𝜑 → (𝐴 ∩ (𝐹𝑛)) ∈ 𝒫 𝑋)
2322adantr 480 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝐴 ∩ (𝐹𝑛)) ∈ 𝒫 𝑋)
24 eqid 2735 . . . . . . . . . 10 (𝑛𝑍 ↦ (𝐴 ∩ (𝐹𝑛))) = (𝑛𝑍 ↦ (𝐴 ∩ (𝐹𝑛)))
2523, 24fmptd 7134 . . . . . . . . 9 (𝜑 → (𝑛𝑍 ↦ (𝐴 ∩ (𝐹𝑛))):𝑍⟶𝒫 𝑋)
26 fveq2 6907 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
2726ineq2d 4228 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (𝐴 ∩ (𝐹𝑘)) = (𝐴 ∩ (𝐹𝑛)))
2827cbvmptv 5261 . . . . . . . . . . 11 (𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘))) = (𝑛𝑍 ↦ (𝐴 ∩ (𝐹𝑛)))
2928feq1i 6728 . . . . . . . . . 10 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘))):𝑍⟶𝒫 𝑋 ↔ (𝑛𝑍 ↦ (𝐴 ∩ (𝐹𝑛))):𝑍⟶𝒫 𝑋)
3029a1i 11 . . . . . . . . 9 (𝜑 → ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘))):𝑍⟶𝒫 𝑋 ↔ (𝑛𝑍 ↦ (𝐴 ∩ (𝐹𝑛))):𝑍⟶𝒫 𝑋))
3125, 30mpbird 257 . . . . . . . 8 (𝜑 → (𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘))):𝑍⟶𝒫 𝑋)
32 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → 𝑛𝑍)
3319adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → (𝐴 ∩ (𝐹𝑛)) ∈ V)
3428fvmpt2 7027 . . . . . . . . . . . 12 ((𝑛𝑍 ∧ (𝐴 ∩ (𝐹𝑛)) ∈ V) → ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛) = (𝐴 ∩ (𝐹𝑛)))
3532, 33, 34syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛) = (𝐴 ∩ (𝐹𝑛)))
3635iuneq2dv 5021 . . . . . . . . . 10 (𝜑 𝑛𝑍 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛) = 𝑛𝑍 (𝐴 ∩ (𝐹𝑛)))
3736fveq2d 6911 . . . . . . . . 9 (𝜑 → (𝑂 𝑛𝑍 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) = (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))))
38 nfv 1912 . . . . . . . . . . . . . . . 16 𝑛𝜑
39 carageniuncllem2.e . . . . . . . . . . . . . . . 16 (𝜑𝐸:𝑍𝑆)
40 carageniuncllem2.f . . . . . . . . . . . . . . . 16 𝐹 = (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑀..^𝑛)(𝐸𝑖)))
4138, 12, 39, 40iundjiun 46416 . . . . . . . . . . . . . . 15 (𝜑 → ((∀𝑚𝑍 𝑛 ∈ (𝑀...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑀...𝑚)(𝐸𝑛) ∧ 𝑛𝑍 (𝐹𝑛) = 𝑛𝑍 (𝐸𝑛)) ∧ Disj 𝑛𝑍 (𝐹𝑛)))
4241simplrd 770 . . . . . . . . . . . . . 14 (𝜑 𝑛𝑍 (𝐹𝑛) = 𝑛𝑍 (𝐸𝑛))
4342eqcomd 2741 . . . . . . . . . . . . 13 (𝜑 𝑛𝑍 (𝐸𝑛) = 𝑛𝑍 (𝐹𝑛))
4443ineq2d 4228 . . . . . . . . . . . 12 (𝜑 → (𝐴 𝑛𝑍 (𝐸𝑛)) = (𝐴 𝑛𝑍 (𝐹𝑛)))
45 iunin2 5076 . . . . . . . . . . . . . 14 𝑛𝑍 (𝐴 ∩ (𝐹𝑛)) = (𝐴 𝑛𝑍 (𝐹𝑛))
4645eqcomi 2744 . . . . . . . . . . . . 13 (𝐴 𝑛𝑍 (𝐹𝑛)) = 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))
4746a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐴 𝑛𝑍 (𝐹𝑛)) = 𝑛𝑍 (𝐴 ∩ (𝐹𝑛)))
4844, 47eqtrd 2775 . . . . . . . . . . 11 (𝜑 → (𝐴 𝑛𝑍 (𝐸𝑛)) = 𝑛𝑍 (𝐴 ∩ (𝐹𝑛)))
4948fveq2d 6911 . . . . . . . . . 10 (𝜑 → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) = (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))))
5049, 7eqeltrrd 2840 . . . . . . . . 9 (𝜑 → (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
5137, 50eqeltrd 2839 . . . . . . . 8 (𝜑 → (𝑂 𝑛𝑍 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) ∈ ℝ)
52 carageniuncllem2.y . . . . . . . 8 (𝜑𝑌 ∈ ℝ+)
531, 2, 12, 31, 51, 52omeiunltfirp 46475 . . . . . . 7 (𝜑 → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) < (Σ𝑛𝑧 (𝑂‘((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) + 𝑌))
5437adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (𝑂 𝑛𝑍 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) = (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))))
55 elpwinss 44989 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (𝒫 𝑍 ∩ Fin) → 𝑧𝑍)
5655adantr 480 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑛𝑧) → 𝑧𝑍)
57 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑛𝑧) → 𝑛𝑧)
5856, 57sseldd 3996 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑛𝑧) → 𝑛𝑍)
5958adantll 714 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → 𝑛𝑍)
6019ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝐴 ∩ (𝐹𝑛)) ∈ V)
6159, 60, 34syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛) = (𝐴 ∩ (𝐹𝑛)))
6261fveq2d 6911 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂‘((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) = (𝑂‘(𝐴 ∩ (𝐹𝑛))))
6362sumeq2dv 15735 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑛𝑧 (𝑂‘((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) = Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))))
6463oveq1d 7446 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ𝑛𝑧 (𝑂‘((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) + 𝑌) = (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
6554, 64breq12d 5161 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → ((𝑂 𝑛𝑍 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) < (Σ𝑛𝑧 (𝑂‘((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) + 𝑌) ↔ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)))
6665biimpd 229 . . . . . . . 8 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → ((𝑂 𝑛𝑍 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) < (Σ𝑛𝑧 (𝑂‘((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) + 𝑌) → (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)))
6766reximdva 3166 . . . . . . 7 (𝜑 → (∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) < (Σ𝑛𝑧 (𝑂‘((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) + 𝑌) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)))
6853, 67mpd 15 . . . . . 6 (𝜑 → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
69 carageniuncllem2.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
7069adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑀 ∈ ℤ)
7155adantl 481 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑧𝑍)
72 elinel2 4212 . . . . . . . . . . 11 (𝑧 ∈ (𝒫 𝑍 ∩ Fin) → 𝑧 ∈ Fin)
7372adantl 481 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑧 ∈ Fin)
7470, 12, 71, 73uzfissfz 45276 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → ∃𝑘𝑍 𝑧 ⊆ (𝑀...𝑘))
7574adantr 480 . . . . . . . 8 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → ∃𝑘𝑍 𝑧 ⊆ (𝑀...𝑘))
7650ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) ∧ 𝑧 ⊆ (𝑀...𝑘)) → (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
77 fzfid 14011 . . . . . . . . . . . . . . . 16 (𝑧 ⊆ (𝑀...𝑘) → (𝑀...𝑘) ∈ Fin)
78 id 22 . . . . . . . . . . . . . . . 16 (𝑧 ⊆ (𝑀...𝑘) → 𝑧 ⊆ (𝑀...𝑘))
79 ssfi 9212 . . . . . . . . . . . . . . . 16 (((𝑀...𝑘) ∈ Fin ∧ 𝑧 ⊆ (𝑀...𝑘)) → 𝑧 ∈ Fin)
8077, 78, 79syl2anc 584 . . . . . . . . . . . . . . 15 (𝑧 ⊆ (𝑀...𝑘) → 𝑧 ∈ Fin)
8180adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → 𝑧 ∈ Fin)
821ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ⊆ (𝑀...𝑘)) ∧ 𝑛𝑧) → 𝑂 ∈ OutMeas)
833ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ⊆ (𝑀...𝑘)) ∧ 𝑛𝑧) → 𝐴𝑋)
844ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ⊆ (𝑀...𝑘)) ∧ 𝑛𝑧) → (𝑂𝐴) ∈ ℝ)
85 inss1 4245 . . . . . . . . . . . . . . . 16 (𝐴 ∩ (𝐹𝑛)) ⊆ 𝐴
8685a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ⊆ (𝑀...𝑘)) ∧ 𝑛𝑧) → (𝐴 ∩ (𝐹𝑛)) ⊆ 𝐴)
8782, 2, 83, 84, 86omessre 46466 . . . . . . . . . . . . . 14 (((𝜑𝑧 ⊆ (𝑀...𝑘)) ∧ 𝑛𝑧) → (𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
8881, 87fsumrecl 15767 . . . . . . . . . . . . 13 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
8952rpred 13075 . . . . . . . . . . . . . 14 (𝜑𝑌 ∈ ℝ)
9089adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → 𝑌 ∈ ℝ)
9188, 90readdcld 11288 . . . . . . . . . . . 12 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) ∈ ℝ)
9291ad4ant14 752 . . . . . . . . . . 11 ((((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) ∧ 𝑧 ⊆ (𝑀...𝑘)) → (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) ∈ ℝ)
93 fzfid 14011 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀...𝑘) ∈ Fin)
9485a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 ∩ (𝐹𝑛)) ⊆ 𝐴)
951, 2, 3, 4, 94omessre 46466 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
9695adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (𝑀...𝑘)) → (𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
9793, 96fsumrecl 15767 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
9897adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
9989adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑌 ∈ ℝ)
10098, 99readdcld 11288 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) ∈ ℝ)
101100ad2antrr 726 . . . . . . . . . . 11 ((((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) ∧ 𝑧 ⊆ (𝑀...𝑘)) → (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) ∈ ℝ)
102 simplr 769 . . . . . . . . . . 11 ((((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) ∧ 𝑧 ⊆ (𝑀...𝑘)) → (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
10397adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
104 fzfid 14011 . . . . . . . . . . . . . 14 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → (𝑀...𝑘) ∈ Fin)
10596adantlr 715 . . . . . . . . . . . . . 14 (((𝜑𝑧 ⊆ (𝑀...𝑘)) ∧ 𝑛 ∈ (𝑀...𝑘)) → (𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
106 0xr 11306 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ*
107106a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (𝑀...𝑘)) → 0 ∈ ℝ*)
108 pnfxr 11313 . . . . . . . . . . . . . . . . 17 +∞ ∈ ℝ*
109108a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (𝑀...𝑘)) → +∞ ∈ ℝ*)
1101, 2, 14omecl 46459 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ (0[,]+∞))
111110adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (𝑀...𝑘)) → (𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ (0[,]+∞))
112 iccgelb 13440 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ (0[,]+∞)) → 0 ≤ (𝑂‘(𝐴 ∩ (𝐹𝑛))))
113107, 109, 111, 112syl3anc 1370 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (𝑀...𝑘)) → 0 ≤ (𝑂‘(𝐴 ∩ (𝐹𝑛))))
114113adantlr 715 . . . . . . . . . . . . . 14 (((𝜑𝑧 ⊆ (𝑀...𝑘)) ∧ 𝑛 ∈ (𝑀...𝑘)) → 0 ≤ (𝑂‘(𝐴 ∩ (𝐹𝑛))))
115 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → 𝑧 ⊆ (𝑀...𝑘))
116104, 105, 114, 115fsumless 15829 . . . . . . . . . . . . 13 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) ≤ Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))))
11788, 103, 90, 116leadd1dd 11875 . . . . . . . . . . . 12 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) ≤ (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
118117ad4ant14 752 . . . . . . . . . . 11 ((((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) ∧ 𝑧 ⊆ (𝑀...𝑘)) → (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) ≤ (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
11976, 92, 101, 102, 118ltletrd 11419 . . . . . . . . . 10 ((((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) ∧ 𝑧 ⊆ (𝑀...𝑘)) → (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
120119ex 412 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → (𝑧 ⊆ (𝑀...𝑘) → (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)))
121120reximdv 3168 . . . . . . . 8 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → (∃𝑘𝑍 𝑧 ⊆ (𝑀...𝑘) → ∃𝑘𝑍 (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)))
12275, 121mpd 15 . . . . . . 7 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → ∃𝑘𝑍 (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
123122rexlimdva2 3155 . . . . . 6 (𝜑 → (∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) → ∃𝑘𝑍 (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)))
12468, 123mpd 15 . . . . 5 (𝜑 → ∃𝑘𝑍 (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
12549ad2antrr 726 . . . . . . . 8 (((𝜑𝑘𝑍) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) = (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))))
126 simpr 484 . . . . . . . 8 (((𝜑𝑘𝑍) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
127125, 126eqbrtrd 5170 . . . . . . 7 (((𝜑𝑘𝑍) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
128127ex 412 . . . . . 6 ((𝜑𝑘𝑍) → ((𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)))
129128reximdva 3166 . . . . 5 (𝜑 → (∃𝑘𝑍 (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) → ∃𝑘𝑍 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)))
130124, 129mpd 15 . . . 4 (𝜑 → ∃𝑘𝑍 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
131 simpr 484 . . . . . . 7 (((𝜑𝑘𝑍) ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
1321adantr 480 . . . . . . . . . 10 ((𝜑𝑘𝑍) → 𝑂 ∈ OutMeas)
133 carageniuncllem2.s . . . . . . . . . 10 𝑆 = (CaraGen‘𝑂)
1343adantr 480 . . . . . . . . . 10 ((𝜑𝑘𝑍) → 𝐴𝑋)
1354adantr 480 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (𝑂𝐴) ∈ ℝ)
13639adantr 480 . . . . . . . . . 10 ((𝜑𝑘𝑍) → 𝐸:𝑍𝑆)
137 carageniuncllem2.g . . . . . . . . . 10 𝐺 = (𝑛𝑍 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖))
138 simpr 484 . . . . . . . . . 10 ((𝜑𝑘𝑍) → 𝑘𝑍)
139132, 133, 2, 134, 135, 12, 136, 137, 40, 138carageniuncllem1 46477 . . . . . . . . 9 ((𝜑𝑘𝑍) → Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) = (𝑂‘(𝐴 ∩ (𝐺𝑘))))
140139oveq1d 7446 . . . . . . . 8 ((𝜑𝑘𝑍) → (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) = ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌))
141140adantr 480 . . . . . . 7 (((𝜑𝑘𝑍) ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) = ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌))
142131, 141breqtrd 5174 . . . . . 6 (((𝜑𝑘𝑍) ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌))
143142ex 412 . . . . 5 ((𝜑𝑘𝑍) → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)))
144143reximdva 3166 . . . 4 (𝜑 → (∃𝑘𝑍 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) → ∃𝑘𝑍 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)))
145130, 144mpd 15 . . 3 (𝜑 → ∃𝑘𝑍 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌))
14673ad2ant1 1132 . . . . . . 7 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ∈ ℝ)
14793ad2ant1 1132 . . . . . . 7 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ∈ ℝ)
148 inss1 4245 . . . . . . . . . . 11 (𝐴 ∩ (𝐺𝑘)) ⊆ 𝐴
149148a1i 11 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (𝐴 ∩ (𝐺𝑘)) ⊆ 𝐴)
150132, 2, 134, 135, 149omessre 46466 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝑂‘(𝐴 ∩ (𝐺𝑘))) ∈ ℝ)
15189adantr 480 . . . . . . . . 9 ((𝜑𝑘𝑍) → 𝑌 ∈ ℝ)
152150, 151readdcld 11288 . . . . . . . 8 ((𝜑𝑘𝑍) → ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌) ∈ ℝ)
1531523adant3 1131 . . . . . . 7 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌) ∈ ℝ)
154 difssd 4147 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐴 ∖ (𝐺𝑘)) ⊆ 𝐴)
155132, 2, 134, 135, 154omessre 46466 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝑂‘(𝐴 ∖ (𝐺𝑘))) ∈ ℝ)
1561553adant3 1131 . . . . . . 7 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → (𝑂‘(𝐴 ∖ (𝐺𝑘))) ∈ ℝ)
157 simp3 1137 . . . . . . . 8 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌))
158146, 153, 157ltled 11407 . . . . . . 7 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ≤ ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌))
159134ssdifssd 4157 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐴 ∖ (𝐺𝑘)) ⊆ 𝑋)
160 oveq2 7439 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝑀...𝑛) = (𝑀...𝑘))
161160iuneq1d 5024 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖) = 𝑖 ∈ (𝑀...𝑘)(𝐸𝑖))
162 ovex 7464 . . . . . . . . . . . . . . 15 (𝑀...𝑘) ∈ V
163 fvex 6920 . . . . . . . . . . . . . . 15 (𝐸𝑖) ∈ V
164162, 163iunex 7992 . . . . . . . . . . . . . 14 𝑖 ∈ (𝑀...𝑘)(𝐸𝑖) ∈ V
165161, 137, 164fvmpt 7016 . . . . . . . . . . . . 13 (𝑘𝑍 → (𝐺𝑘) = 𝑖 ∈ (𝑀...𝑘)(𝐸𝑖))
166 fveq2 6907 . . . . . . . . . . . . . . 15 (𝑖 = 𝑛 → (𝐸𝑖) = (𝐸𝑛))
167166cbviunv 5045 . . . . . . . . . . . . . 14 𝑖 ∈ (𝑀...𝑘)(𝐸𝑖) = 𝑛 ∈ (𝑀...𝑘)(𝐸𝑛)
168167a1i 11 . . . . . . . . . . . . 13 (𝑘𝑍 𝑖 ∈ (𝑀...𝑘)(𝐸𝑖) = 𝑛 ∈ (𝑀...𝑘)(𝐸𝑛))
169165, 168eqtrd 2775 . . . . . . . . . . . 12 (𝑘𝑍 → (𝐺𝑘) = 𝑛 ∈ (𝑀...𝑘)(𝐸𝑛))
170 elfzuz 13557 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (𝑀...𝑘) → 𝑖 ∈ (ℤ𝑀))
17112eqcomi 2744 . . . . . . . . . . . . . . . . 17 (ℤ𝑀) = 𝑍
172171a1i 11 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (𝑀...𝑘) → (ℤ𝑀) = 𝑍)
173170, 172eleqtrd 2841 . . . . . . . . . . . . . . 15 (𝑖 ∈ (𝑀...𝑘) → 𝑖𝑍)
174173ssriv 3999 . . . . . . . . . . . . . 14 (𝑀...𝑘) ⊆ 𝑍
175 iunss1 5011 . . . . . . . . . . . . . 14 ((𝑀...𝑘) ⊆ 𝑍 𝑛 ∈ (𝑀...𝑘)(𝐸𝑛) ⊆ 𝑛𝑍 (𝐸𝑛))
176174, 175ax-mp 5 . . . . . . . . . . . . 13 𝑛 ∈ (𝑀...𝑘)(𝐸𝑛) ⊆ 𝑛𝑍 (𝐸𝑛)
177176a1i 11 . . . . . . . . . . . 12 (𝑘𝑍 𝑛 ∈ (𝑀...𝑘)(𝐸𝑛) ⊆ 𝑛𝑍 (𝐸𝑛))
178169, 177eqsstrd 4034 . . . . . . . . . . 11 (𝑘𝑍 → (𝐺𝑘) ⊆ 𝑛𝑍 (𝐸𝑛))
179178adantl 481 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (𝐺𝑘) ⊆ 𝑛𝑍 (𝐸𝑛))
180179sscond 4156 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐴 𝑛𝑍 (𝐸𝑛)) ⊆ (𝐴 ∖ (𝐺𝑘)))
181132, 2, 159, 180omessle 46454 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ≤ (𝑂‘(𝐴 ∖ (𝐺𝑘))))
1821813adant3 1131 . . . . . . 7 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ≤ (𝑂‘(𝐴 ∖ (𝐺𝑘))))
183146, 147, 153, 156, 158, 182le2addd 11880 . . . . . 6 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) + (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) ≤ (((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))))
184150recnd 11287 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝑂‘(𝐴 ∩ (𝐺𝑘))) ∈ ℂ)
18589recnd 11287 . . . . . . . . . 10 (𝜑𝑌 ∈ ℂ)
186185adantr 480 . . . . . . . . 9 ((𝜑𝑘𝑍) → 𝑌 ∈ ℂ)
187155recnd 11287 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝑂‘(𝐴 ∖ (𝐺𝑘))) ∈ ℂ)
188184, 186, 187add32d 11487 . . . . . . . 8 ((𝜑𝑘𝑍) → (((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))) = (((𝑂‘(𝐴 ∩ (𝐺𝑘))) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))) + 𝑌))
189 rexadd 13271 . . . . . . . . . . . 12 (((𝑂‘(𝐴 ∩ (𝐺𝑘))) ∈ ℝ ∧ (𝑂‘(𝐴 ∖ (𝐺𝑘))) ∈ ℝ) → ((𝑂‘(𝐴 ∩ (𝐺𝑘))) +𝑒 (𝑂‘(𝐴 ∖ (𝐺𝑘)))) = ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))))
190150, 155, 189syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → ((𝑂‘(𝐴 ∩ (𝐺𝑘))) +𝑒 (𝑂‘(𝐴 ∖ (𝐺𝑘)))) = ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))))
191190eqcomd 2741 . . . . . . . . . 10 ((𝜑𝑘𝑍) → ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))) = ((𝑂‘(𝐴 ∩ (𝐺𝑘))) +𝑒 (𝑂‘(𝐴 ∖ (𝐺𝑘)))))
192 nfv 1912 . . . . . . . . . . . . . . 15 𝑖𝜑
19339adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (𝑀...𝑘)) → 𝐸:𝑍𝑆)
194173adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (𝑀...𝑘)) → 𝑖𝑍)
195193, 194ffvelcdmd 7105 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (𝑀...𝑘)) → (𝐸𝑖) ∈ 𝑆)
196192, 1, 133, 93, 195caragenfiiuncl 46471 . . . . . . . . . . . . . 14 (𝜑 𝑖 ∈ (𝑀...𝑘)(𝐸𝑖) ∈ 𝑆)
197196adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → 𝑖 ∈ (𝑀...𝑘)(𝐸𝑖) ∈ 𝑆)
198137, 161, 138, 197fvmptd3 7039 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝐺𝑘) = 𝑖 ∈ (𝑀...𝑘)(𝐸𝑖))
199198, 197eqeltrd 2839 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ 𝑆)
200132, 133, 2, 199, 134caragensplit 46456 . . . . . . . . . 10 ((𝜑𝑘𝑍) → ((𝑂‘(𝐴 ∩ (𝐺𝑘))) +𝑒 (𝑂‘(𝐴 ∖ (𝐺𝑘)))) = (𝑂𝐴))
201191, 200eqtrd 2775 . . . . . . . . 9 ((𝜑𝑘𝑍) → ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))) = (𝑂𝐴))
202201oveq1d 7446 . . . . . . . 8 ((𝜑𝑘𝑍) → (((𝑂‘(𝐴 ∩ (𝐺𝑘))) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))) + 𝑌) = ((𝑂𝐴) + 𝑌))
203188, 202eqtrd 2775 . . . . . . 7 ((𝜑𝑘𝑍) → (((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))) = ((𝑂𝐴) + 𝑌))
2042033adant3 1131 . . . . . 6 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → (((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))) = ((𝑂𝐴) + 𝑌))
205183, 204breqtrd 5174 . . . . 5 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) + (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝐴) + 𝑌))
2062053exp 1118 . . . 4 (𝜑 → (𝑘𝑍 → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌) → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) + (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝐴) + 𝑌))))
207206rexlimdv 3151 . . 3 (𝜑 → (∃𝑘𝑍 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌) → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) + (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝐴) + 𝑌)))
208145, 207mpd 15 . 2 (𝜑 → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) + (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝐴) + 𝑌))
20911, 208eqbrtrd 5170 1 (𝜑 → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝐴) + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wrex 3068  Vcvv 3478  cdif 3960  cin 3962  wss 3963  𝒫 cpw 4605   cuni 4912   ciun 4996  Disj wdisj 5115   class class class wbr 5148  cmpt 5231  dom cdm 5689  wf 6559  cfv 6563  (class class class)co 7431  Fincfn 8984  cc 11151  cr 11152  0cc0 11153   + caddc 11156  +∞cpnf 11290  *cxr 11292   < clt 11293  cle 11294  cz 12611  cuz 12876  +crp 13032   +𝑒 cxad 13150  [,]cicc 13387  ...cfz 13544  ..^cfzo 13691  Σcsu 15719  OutMeascome 46445  CaraGenccaragen 46447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-ac2 10501  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-omul 8510  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-oi 9548  df-card 9977  df-acn 9980  df-ac 10154  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-xadd 13153  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-sumge0 46319  df-ome 46446  df-caragen 46448
This theorem is referenced by:  carageniuncl  46479
  Copyright terms: Public domain W3C validator