Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carageniuncllem2 Structured version   Visualization version   GIF version

Theorem carageniuncllem2 45172
Description: The Caratheodory's construction is closed under countable union. Step (d) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
carageniuncllem2.o (𝜑𝑂 ∈ OutMeas)
carageniuncllem2.s 𝑆 = (CaraGen‘𝑂)
carageniuncllem2.x 𝑋 = dom 𝑂
carageniuncllem2.a (𝜑𝐴𝑋)
carageniuncllem2.re (𝜑 → (𝑂𝐴) ∈ ℝ)
carageniuncllem2.m (𝜑𝑀 ∈ ℤ)
carageniuncllem2.z 𝑍 = (ℤ𝑀)
carageniuncllem2.e (𝜑𝐸:𝑍𝑆)
carageniuncllem2.y (𝜑𝑌 ∈ ℝ+)
carageniuncllem2.g 𝐺 = (𝑛𝑍 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖))
carageniuncllem2.f 𝐹 = (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑀..^𝑛)(𝐸𝑖)))
Assertion
Ref Expression
carageniuncllem2 (𝜑 → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝐴) + 𝑌))
Distinct variable groups:   𝐴,𝑛   𝑖,𝐸,𝑛   𝑛,𝐹   𝑖,𝑀,𝑛   𝑛,𝑂   𝑆,𝑖   𝑛,𝑋   𝑖,𝑍,𝑛   𝜑,𝑖,𝑛
Allowed substitution hints:   𝐴(𝑖)   𝑆(𝑛)   𝐹(𝑖)   𝐺(𝑖,𝑛)   𝑂(𝑖)   𝑋(𝑖)   𝑌(𝑖,𝑛)

Proof of Theorem carageniuncllem2
Dummy variables 𝑘 𝑧 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 carageniuncllem2.o . . . 4 (𝜑𝑂 ∈ OutMeas)
2 carageniuncllem2.x . . . 4 𝑋 = dom 𝑂
3 carageniuncllem2.a . . . 4 (𝜑𝐴𝑋)
4 carageniuncllem2.re . . . 4 (𝜑 → (𝑂𝐴) ∈ ℝ)
5 inss1 4226 . . . . 5 (𝐴 𝑛𝑍 (𝐸𝑛)) ⊆ 𝐴
65a1i 11 . . . 4 (𝜑 → (𝐴 𝑛𝑍 (𝐸𝑛)) ⊆ 𝐴)
71, 2, 3, 4, 6omessre 45160 . . 3 (𝜑 → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ∈ ℝ)
8 difssd 4130 . . . 4 (𝜑 → (𝐴 𝑛𝑍 (𝐸𝑛)) ⊆ 𝐴)
91, 2, 3, 4, 8omessre 45160 . . 3 (𝜑 → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ∈ ℝ)
10 rexadd 13206 . . 3 (((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ∈ ℝ ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ∈ ℝ) → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) = ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) + (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))))
117, 9, 10syl2anc 585 . 2 (𝜑 → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) = ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) + (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))))
12 carageniuncllem2.z . . . . . . . 8 𝑍 = (ℤ𝑀)
13 ssinss1 4235 . . . . . . . . . . . . 13 (𝐴𝑋 → (𝐴 ∩ (𝐹𝑛)) ⊆ 𝑋)
143, 13syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∩ (𝐹𝑛)) ⊆ 𝑋)
151, 2unidmex 43669 . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ V)
16 ssexg 5321 . . . . . . . . . . . . . . 15 ((𝐴𝑋𝑋 ∈ V) → 𝐴 ∈ V)
173, 15, 16syl2anc 585 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ V)
18 inex1g 5317 . . . . . . . . . . . . . 14 (𝐴 ∈ V → (𝐴 ∩ (𝐹𝑛)) ∈ V)
1917, 18syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐴 ∩ (𝐹𝑛)) ∈ V)
20 elpwg 4603 . . . . . . . . . . . . 13 ((𝐴 ∩ (𝐹𝑛)) ∈ V → ((𝐴 ∩ (𝐹𝑛)) ∈ 𝒫 𝑋 ↔ (𝐴 ∩ (𝐹𝑛)) ⊆ 𝑋))
2119, 20syl 17 . . . . . . . . . . . 12 (𝜑 → ((𝐴 ∩ (𝐹𝑛)) ∈ 𝒫 𝑋 ↔ (𝐴 ∩ (𝐹𝑛)) ⊆ 𝑋))
2214, 21mpbird 257 . . . . . . . . . . 11 (𝜑 → (𝐴 ∩ (𝐹𝑛)) ∈ 𝒫 𝑋)
2322adantr 482 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝐴 ∩ (𝐹𝑛)) ∈ 𝒫 𝑋)
24 eqid 2733 . . . . . . . . . 10 (𝑛𝑍 ↦ (𝐴 ∩ (𝐹𝑛))) = (𝑛𝑍 ↦ (𝐴 ∩ (𝐹𝑛)))
2523, 24fmptd 7108 . . . . . . . . 9 (𝜑 → (𝑛𝑍 ↦ (𝐴 ∩ (𝐹𝑛))):𝑍⟶𝒫 𝑋)
26 fveq2 6887 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
2726ineq2d 4210 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (𝐴 ∩ (𝐹𝑘)) = (𝐴 ∩ (𝐹𝑛)))
2827cbvmptv 5259 . . . . . . . . . . 11 (𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘))) = (𝑛𝑍 ↦ (𝐴 ∩ (𝐹𝑛)))
2928feq1i 6704 . . . . . . . . . 10 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘))):𝑍⟶𝒫 𝑋 ↔ (𝑛𝑍 ↦ (𝐴 ∩ (𝐹𝑛))):𝑍⟶𝒫 𝑋)
3029a1i 11 . . . . . . . . 9 (𝜑 → ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘))):𝑍⟶𝒫 𝑋 ↔ (𝑛𝑍 ↦ (𝐴 ∩ (𝐹𝑛))):𝑍⟶𝒫 𝑋))
3125, 30mpbird 257 . . . . . . . 8 (𝜑 → (𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘))):𝑍⟶𝒫 𝑋)
32 simpr 486 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → 𝑛𝑍)
3319adantr 482 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → (𝐴 ∩ (𝐹𝑛)) ∈ V)
3428fvmpt2 7004 . . . . . . . . . . . 12 ((𝑛𝑍 ∧ (𝐴 ∩ (𝐹𝑛)) ∈ V) → ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛) = (𝐴 ∩ (𝐹𝑛)))
3532, 33, 34syl2anc 585 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛) = (𝐴 ∩ (𝐹𝑛)))
3635iuneq2dv 5019 . . . . . . . . . 10 (𝜑 𝑛𝑍 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛) = 𝑛𝑍 (𝐴 ∩ (𝐹𝑛)))
3736fveq2d 6891 . . . . . . . . 9 (𝜑 → (𝑂 𝑛𝑍 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) = (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))))
38 nfv 1918 . . . . . . . . . . . . . . . 16 𝑛𝜑
39 carageniuncllem2.e . . . . . . . . . . . . . . . 16 (𝜑𝐸:𝑍𝑆)
40 carageniuncllem2.f . . . . . . . . . . . . . . . 16 𝐹 = (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑀..^𝑛)(𝐸𝑖)))
4138, 12, 39, 40iundjiun 45110 . . . . . . . . . . . . . . 15 (𝜑 → ((∀𝑚𝑍 𝑛 ∈ (𝑀...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑀...𝑚)(𝐸𝑛) ∧ 𝑛𝑍 (𝐹𝑛) = 𝑛𝑍 (𝐸𝑛)) ∧ Disj 𝑛𝑍 (𝐹𝑛)))
4241simplrd 769 . . . . . . . . . . . . . 14 (𝜑 𝑛𝑍 (𝐹𝑛) = 𝑛𝑍 (𝐸𝑛))
4342eqcomd 2739 . . . . . . . . . . . . 13 (𝜑 𝑛𝑍 (𝐸𝑛) = 𝑛𝑍 (𝐹𝑛))
4443ineq2d 4210 . . . . . . . . . . . 12 (𝜑 → (𝐴 𝑛𝑍 (𝐸𝑛)) = (𝐴 𝑛𝑍 (𝐹𝑛)))
45 iunin2 5072 . . . . . . . . . . . . . 14 𝑛𝑍 (𝐴 ∩ (𝐹𝑛)) = (𝐴 𝑛𝑍 (𝐹𝑛))
4645eqcomi 2742 . . . . . . . . . . . . 13 (𝐴 𝑛𝑍 (𝐹𝑛)) = 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))
4746a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐴 𝑛𝑍 (𝐹𝑛)) = 𝑛𝑍 (𝐴 ∩ (𝐹𝑛)))
4844, 47eqtrd 2773 . . . . . . . . . . 11 (𝜑 → (𝐴 𝑛𝑍 (𝐸𝑛)) = 𝑛𝑍 (𝐴 ∩ (𝐹𝑛)))
4948fveq2d 6891 . . . . . . . . . 10 (𝜑 → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) = (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))))
5049, 7eqeltrrd 2835 . . . . . . . . 9 (𝜑 → (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
5137, 50eqeltrd 2834 . . . . . . . 8 (𝜑 → (𝑂 𝑛𝑍 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) ∈ ℝ)
52 carageniuncllem2.y . . . . . . . 8 (𝜑𝑌 ∈ ℝ+)
531, 2, 12, 31, 51, 52omeiunltfirp 45169 . . . . . . 7 (𝜑 → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) < (Σ𝑛𝑧 (𝑂‘((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) + 𝑌))
5437adantr 482 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (𝑂 𝑛𝑍 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) = (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))))
55 elpwinss 43668 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (𝒫 𝑍 ∩ Fin) → 𝑧𝑍)
5655adantr 482 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑛𝑧) → 𝑧𝑍)
57 simpr 486 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑛𝑧) → 𝑛𝑧)
5856, 57sseldd 3981 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑛𝑧) → 𝑛𝑍)
5958adantll 713 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → 𝑛𝑍)
6019ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝐴 ∩ (𝐹𝑛)) ∈ V)
6159, 60, 34syl2anc 585 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛) = (𝐴 ∩ (𝐹𝑛)))
6261fveq2d 6891 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂‘((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) = (𝑂‘(𝐴 ∩ (𝐹𝑛))))
6362sumeq2dv 15644 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑛𝑧 (𝑂‘((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) = Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))))
6463oveq1d 7418 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ𝑛𝑧 (𝑂‘((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) + 𝑌) = (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
6554, 64breq12d 5159 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → ((𝑂 𝑛𝑍 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) < (Σ𝑛𝑧 (𝑂‘((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) + 𝑌) ↔ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)))
6665biimpd 228 . . . . . . . 8 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → ((𝑂 𝑛𝑍 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) < (Σ𝑛𝑧 (𝑂‘((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) + 𝑌) → (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)))
6766reximdva 3169 . . . . . . 7 (𝜑 → (∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) < (Σ𝑛𝑧 (𝑂‘((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) + 𝑌) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)))
6853, 67mpd 15 . . . . . 6 (𝜑 → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
69 carageniuncllem2.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
7069adantr 482 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑀 ∈ ℤ)
7155adantl 483 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑧𝑍)
72 elinel2 4194 . . . . . . . . . . 11 (𝑧 ∈ (𝒫 𝑍 ∩ Fin) → 𝑧 ∈ Fin)
7372adantl 483 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑧 ∈ Fin)
7470, 12, 71, 73uzfissfz 43970 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → ∃𝑘𝑍 𝑧 ⊆ (𝑀...𝑘))
7574adantr 482 . . . . . . . 8 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → ∃𝑘𝑍 𝑧 ⊆ (𝑀...𝑘))
7650ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) ∧ 𝑧 ⊆ (𝑀...𝑘)) → (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
77 fzfid 13933 . . . . . . . . . . . . . . . 16 (𝑧 ⊆ (𝑀...𝑘) → (𝑀...𝑘) ∈ Fin)
78 id 22 . . . . . . . . . . . . . . . 16 (𝑧 ⊆ (𝑀...𝑘) → 𝑧 ⊆ (𝑀...𝑘))
79 ssfi 9168 . . . . . . . . . . . . . . . 16 (((𝑀...𝑘) ∈ Fin ∧ 𝑧 ⊆ (𝑀...𝑘)) → 𝑧 ∈ Fin)
8077, 78, 79syl2anc 585 . . . . . . . . . . . . . . 15 (𝑧 ⊆ (𝑀...𝑘) → 𝑧 ∈ Fin)
8180adantl 483 . . . . . . . . . . . . . 14 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → 𝑧 ∈ Fin)
821ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ⊆ (𝑀...𝑘)) ∧ 𝑛𝑧) → 𝑂 ∈ OutMeas)
833ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ⊆ (𝑀...𝑘)) ∧ 𝑛𝑧) → 𝐴𝑋)
844ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ⊆ (𝑀...𝑘)) ∧ 𝑛𝑧) → (𝑂𝐴) ∈ ℝ)
85 inss1 4226 . . . . . . . . . . . . . . . 16 (𝐴 ∩ (𝐹𝑛)) ⊆ 𝐴
8685a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ⊆ (𝑀...𝑘)) ∧ 𝑛𝑧) → (𝐴 ∩ (𝐹𝑛)) ⊆ 𝐴)
8782, 2, 83, 84, 86omessre 45160 . . . . . . . . . . . . . 14 (((𝜑𝑧 ⊆ (𝑀...𝑘)) ∧ 𝑛𝑧) → (𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
8881, 87fsumrecl 15675 . . . . . . . . . . . . 13 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
8952rpred 13011 . . . . . . . . . . . . . 14 (𝜑𝑌 ∈ ℝ)
9089adantr 482 . . . . . . . . . . . . 13 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → 𝑌 ∈ ℝ)
9188, 90readdcld 11238 . . . . . . . . . . . 12 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) ∈ ℝ)
9291ad4ant14 751 . . . . . . . . . . 11 ((((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) ∧ 𝑧 ⊆ (𝑀...𝑘)) → (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) ∈ ℝ)
93 fzfid 13933 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀...𝑘) ∈ Fin)
9485a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 ∩ (𝐹𝑛)) ⊆ 𝐴)
951, 2, 3, 4, 94omessre 45160 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
9695adantr 482 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (𝑀...𝑘)) → (𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
9793, 96fsumrecl 15675 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
9897adantr 482 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
9989adantr 482 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑌 ∈ ℝ)
10098, 99readdcld 11238 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) ∈ ℝ)
101100ad2antrr 725 . . . . . . . . . . 11 ((((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) ∧ 𝑧 ⊆ (𝑀...𝑘)) → (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) ∈ ℝ)
102 simplr 768 . . . . . . . . . . 11 ((((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) ∧ 𝑧 ⊆ (𝑀...𝑘)) → (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
10397adantr 482 . . . . . . . . . . . . 13 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
104 fzfid 13933 . . . . . . . . . . . . . 14 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → (𝑀...𝑘) ∈ Fin)
10596adantlr 714 . . . . . . . . . . . . . 14 (((𝜑𝑧 ⊆ (𝑀...𝑘)) ∧ 𝑛 ∈ (𝑀...𝑘)) → (𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
106 0xr 11256 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ*
107106a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (𝑀...𝑘)) → 0 ∈ ℝ*)
108 pnfxr 11263 . . . . . . . . . . . . . . . . 17 +∞ ∈ ℝ*
109108a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (𝑀...𝑘)) → +∞ ∈ ℝ*)
1101, 2, 14omecl 45153 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ (0[,]+∞))
111110adantr 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (𝑀...𝑘)) → (𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ (0[,]+∞))
112 iccgelb 13375 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ (0[,]+∞)) → 0 ≤ (𝑂‘(𝐴 ∩ (𝐹𝑛))))
113107, 109, 111, 112syl3anc 1372 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (𝑀...𝑘)) → 0 ≤ (𝑂‘(𝐴 ∩ (𝐹𝑛))))
114113adantlr 714 . . . . . . . . . . . . . 14 (((𝜑𝑧 ⊆ (𝑀...𝑘)) ∧ 𝑛 ∈ (𝑀...𝑘)) → 0 ≤ (𝑂‘(𝐴 ∩ (𝐹𝑛))))
115 simpr 486 . . . . . . . . . . . . . 14 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → 𝑧 ⊆ (𝑀...𝑘))
116104, 105, 114, 115fsumless 15737 . . . . . . . . . . . . 13 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) ≤ Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))))
11788, 103, 90, 116leadd1dd 11823 . . . . . . . . . . . 12 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) ≤ (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
118117ad4ant14 751 . . . . . . . . . . 11 ((((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) ∧ 𝑧 ⊆ (𝑀...𝑘)) → (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) ≤ (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
11976, 92, 101, 102, 118ltletrd 11369 . . . . . . . . . 10 ((((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) ∧ 𝑧 ⊆ (𝑀...𝑘)) → (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
120119ex 414 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → (𝑧 ⊆ (𝑀...𝑘) → (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)))
121120reximdv 3171 . . . . . . . 8 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → (∃𝑘𝑍 𝑧 ⊆ (𝑀...𝑘) → ∃𝑘𝑍 (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)))
12275, 121mpd 15 . . . . . . 7 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → ∃𝑘𝑍 (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
123122rexlimdva2 3158 . . . . . 6 (𝜑 → (∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) → ∃𝑘𝑍 (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)))
12468, 123mpd 15 . . . . 5 (𝜑 → ∃𝑘𝑍 (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
12549ad2antrr 725 . . . . . . . 8 (((𝜑𝑘𝑍) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) = (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))))
126 simpr 486 . . . . . . . 8 (((𝜑𝑘𝑍) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
127125, 126eqbrtrd 5168 . . . . . . 7 (((𝜑𝑘𝑍) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
128127ex 414 . . . . . 6 ((𝜑𝑘𝑍) → ((𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)))
129128reximdva 3169 . . . . 5 (𝜑 → (∃𝑘𝑍 (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) → ∃𝑘𝑍 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)))
130124, 129mpd 15 . . . 4 (𝜑 → ∃𝑘𝑍 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
131 simpr 486 . . . . . . 7 (((𝜑𝑘𝑍) ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
1321adantr 482 . . . . . . . . . 10 ((𝜑𝑘𝑍) → 𝑂 ∈ OutMeas)
133 carageniuncllem2.s . . . . . . . . . 10 𝑆 = (CaraGen‘𝑂)
1343adantr 482 . . . . . . . . . 10 ((𝜑𝑘𝑍) → 𝐴𝑋)
1354adantr 482 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (𝑂𝐴) ∈ ℝ)
13639adantr 482 . . . . . . . . . 10 ((𝜑𝑘𝑍) → 𝐸:𝑍𝑆)
137 carageniuncllem2.g . . . . . . . . . 10 𝐺 = (𝑛𝑍 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖))
138 simpr 486 . . . . . . . . . 10 ((𝜑𝑘𝑍) → 𝑘𝑍)
139132, 133, 2, 134, 135, 12, 136, 137, 40, 138carageniuncllem1 45171 . . . . . . . . 9 ((𝜑𝑘𝑍) → Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) = (𝑂‘(𝐴 ∩ (𝐺𝑘))))
140139oveq1d 7418 . . . . . . . 8 ((𝜑𝑘𝑍) → (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) = ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌))
141140adantr 482 . . . . . . 7 (((𝜑𝑘𝑍) ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) = ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌))
142131, 141breqtrd 5172 . . . . . 6 (((𝜑𝑘𝑍) ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌))
143142ex 414 . . . . 5 ((𝜑𝑘𝑍) → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)))
144143reximdva 3169 . . . 4 (𝜑 → (∃𝑘𝑍 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) → ∃𝑘𝑍 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)))
145130, 144mpd 15 . . 3 (𝜑 → ∃𝑘𝑍 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌))
14673ad2ant1 1134 . . . . . . 7 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ∈ ℝ)
14793ad2ant1 1134 . . . . . . 7 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ∈ ℝ)
148 inss1 4226 . . . . . . . . . . 11 (𝐴 ∩ (𝐺𝑘)) ⊆ 𝐴
149148a1i 11 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (𝐴 ∩ (𝐺𝑘)) ⊆ 𝐴)
150132, 2, 134, 135, 149omessre 45160 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝑂‘(𝐴 ∩ (𝐺𝑘))) ∈ ℝ)
15189adantr 482 . . . . . . . . 9 ((𝜑𝑘𝑍) → 𝑌 ∈ ℝ)
152150, 151readdcld 11238 . . . . . . . 8 ((𝜑𝑘𝑍) → ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌) ∈ ℝ)
1531523adant3 1133 . . . . . . 7 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌) ∈ ℝ)
154 difssd 4130 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐴 ∖ (𝐺𝑘)) ⊆ 𝐴)
155132, 2, 134, 135, 154omessre 45160 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝑂‘(𝐴 ∖ (𝐺𝑘))) ∈ ℝ)
1561553adant3 1133 . . . . . . 7 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → (𝑂‘(𝐴 ∖ (𝐺𝑘))) ∈ ℝ)
157 simp3 1139 . . . . . . . 8 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌))
158146, 153, 157ltled 11357 . . . . . . 7 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ≤ ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌))
159134ssdifssd 4140 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐴 ∖ (𝐺𝑘)) ⊆ 𝑋)
160 oveq2 7411 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝑀...𝑛) = (𝑀...𝑘))
161160iuneq1d 5022 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖) = 𝑖 ∈ (𝑀...𝑘)(𝐸𝑖))
162 ovex 7436 . . . . . . . . . . . . . . 15 (𝑀...𝑘) ∈ V
163 fvex 6900 . . . . . . . . . . . . . . 15 (𝐸𝑖) ∈ V
164162, 163iunex 7949 . . . . . . . . . . . . . 14 𝑖 ∈ (𝑀...𝑘)(𝐸𝑖) ∈ V
165161, 137, 164fvmpt 6993 . . . . . . . . . . . . 13 (𝑘𝑍 → (𝐺𝑘) = 𝑖 ∈ (𝑀...𝑘)(𝐸𝑖))
166 fveq2 6887 . . . . . . . . . . . . . . 15 (𝑖 = 𝑛 → (𝐸𝑖) = (𝐸𝑛))
167166cbviunv 5041 . . . . . . . . . . . . . 14 𝑖 ∈ (𝑀...𝑘)(𝐸𝑖) = 𝑛 ∈ (𝑀...𝑘)(𝐸𝑛)
168167a1i 11 . . . . . . . . . . . . 13 (𝑘𝑍 𝑖 ∈ (𝑀...𝑘)(𝐸𝑖) = 𝑛 ∈ (𝑀...𝑘)(𝐸𝑛))
169165, 168eqtrd 2773 . . . . . . . . . . . 12 (𝑘𝑍 → (𝐺𝑘) = 𝑛 ∈ (𝑀...𝑘)(𝐸𝑛))
170 elfzuz 13492 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (𝑀...𝑘) → 𝑖 ∈ (ℤ𝑀))
17112eqcomi 2742 . . . . . . . . . . . . . . . . 17 (ℤ𝑀) = 𝑍
172171a1i 11 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (𝑀...𝑘) → (ℤ𝑀) = 𝑍)
173170, 172eleqtrd 2836 . . . . . . . . . . . . . . 15 (𝑖 ∈ (𝑀...𝑘) → 𝑖𝑍)
174173ssriv 3984 . . . . . . . . . . . . . 14 (𝑀...𝑘) ⊆ 𝑍
175 iunss1 5009 . . . . . . . . . . . . . 14 ((𝑀...𝑘) ⊆ 𝑍 𝑛 ∈ (𝑀...𝑘)(𝐸𝑛) ⊆ 𝑛𝑍 (𝐸𝑛))
176174, 175ax-mp 5 . . . . . . . . . . . . 13 𝑛 ∈ (𝑀...𝑘)(𝐸𝑛) ⊆ 𝑛𝑍 (𝐸𝑛)
177176a1i 11 . . . . . . . . . . . 12 (𝑘𝑍 𝑛 ∈ (𝑀...𝑘)(𝐸𝑛) ⊆ 𝑛𝑍 (𝐸𝑛))
178169, 177eqsstrd 4018 . . . . . . . . . . 11 (𝑘𝑍 → (𝐺𝑘) ⊆ 𝑛𝑍 (𝐸𝑛))
179178adantl 483 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (𝐺𝑘) ⊆ 𝑛𝑍 (𝐸𝑛))
180179sscond 4139 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐴 𝑛𝑍 (𝐸𝑛)) ⊆ (𝐴 ∖ (𝐺𝑘)))
181132, 2, 159, 180omessle 45148 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ≤ (𝑂‘(𝐴 ∖ (𝐺𝑘))))
1821813adant3 1133 . . . . . . 7 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ≤ (𝑂‘(𝐴 ∖ (𝐺𝑘))))
183146, 147, 153, 156, 158, 182le2addd 11828 . . . . . 6 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) + (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) ≤ (((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))))
184150recnd 11237 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝑂‘(𝐴 ∩ (𝐺𝑘))) ∈ ℂ)
18589recnd 11237 . . . . . . . . . 10 (𝜑𝑌 ∈ ℂ)
186185adantr 482 . . . . . . . . 9 ((𝜑𝑘𝑍) → 𝑌 ∈ ℂ)
187155recnd 11237 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝑂‘(𝐴 ∖ (𝐺𝑘))) ∈ ℂ)
188184, 186, 187add32d 11436 . . . . . . . 8 ((𝜑𝑘𝑍) → (((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))) = (((𝑂‘(𝐴 ∩ (𝐺𝑘))) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))) + 𝑌))
189 rexadd 13206 . . . . . . . . . . . 12 (((𝑂‘(𝐴 ∩ (𝐺𝑘))) ∈ ℝ ∧ (𝑂‘(𝐴 ∖ (𝐺𝑘))) ∈ ℝ) → ((𝑂‘(𝐴 ∩ (𝐺𝑘))) +𝑒 (𝑂‘(𝐴 ∖ (𝐺𝑘)))) = ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))))
190150, 155, 189syl2anc 585 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → ((𝑂‘(𝐴 ∩ (𝐺𝑘))) +𝑒 (𝑂‘(𝐴 ∖ (𝐺𝑘)))) = ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))))
191190eqcomd 2739 . . . . . . . . . 10 ((𝜑𝑘𝑍) → ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))) = ((𝑂‘(𝐴 ∩ (𝐺𝑘))) +𝑒 (𝑂‘(𝐴 ∖ (𝐺𝑘)))))
192 nfv 1918 . . . . . . . . . . . . . . 15 𝑖𝜑
19339adantr 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (𝑀...𝑘)) → 𝐸:𝑍𝑆)
194173adantl 483 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (𝑀...𝑘)) → 𝑖𝑍)
195193, 194ffvelcdmd 7082 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (𝑀...𝑘)) → (𝐸𝑖) ∈ 𝑆)
196192, 1, 133, 93, 195caragenfiiuncl 45165 . . . . . . . . . . . . . 14 (𝜑 𝑖 ∈ (𝑀...𝑘)(𝐸𝑖) ∈ 𝑆)
197196adantr 482 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → 𝑖 ∈ (𝑀...𝑘)(𝐸𝑖) ∈ 𝑆)
198137, 161, 138, 197fvmptd3 7016 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝐺𝑘) = 𝑖 ∈ (𝑀...𝑘)(𝐸𝑖))
199198, 197eqeltrd 2834 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ 𝑆)
200132, 133, 2, 199, 134caragensplit 45150 . . . . . . . . . 10 ((𝜑𝑘𝑍) → ((𝑂‘(𝐴 ∩ (𝐺𝑘))) +𝑒 (𝑂‘(𝐴 ∖ (𝐺𝑘)))) = (𝑂𝐴))
201191, 200eqtrd 2773 . . . . . . . . 9 ((𝜑𝑘𝑍) → ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))) = (𝑂𝐴))
202201oveq1d 7418 . . . . . . . 8 ((𝜑𝑘𝑍) → (((𝑂‘(𝐴 ∩ (𝐺𝑘))) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))) + 𝑌) = ((𝑂𝐴) + 𝑌))
203188, 202eqtrd 2773 . . . . . . 7 ((𝜑𝑘𝑍) → (((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))) = ((𝑂𝐴) + 𝑌))
2042033adant3 1133 . . . . . 6 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → (((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))) = ((𝑂𝐴) + 𝑌))
205183, 204breqtrd 5172 . . . . 5 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) + (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝐴) + 𝑌))
2062053exp 1120 . . . 4 (𝜑 → (𝑘𝑍 → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌) → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) + (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝐴) + 𝑌))))
207206rexlimdv 3154 . . 3 (𝜑 → (∃𝑘𝑍 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌) → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) + (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝐴) + 𝑌)))
208145, 207mpd 15 . 2 (𝜑 → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) + (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝐴) + 𝑌))
20911, 208eqbrtrd 5168 1 (𝜑 → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝐴) + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3062  wrex 3071  Vcvv 3475  cdif 3943  cin 3945  wss 3946  𝒫 cpw 4600   cuni 4906   ciun 4995  Disj wdisj 5111   class class class wbr 5146  cmpt 5229  dom cdm 5674  wf 6535  cfv 6539  (class class class)co 7403  Fincfn 8934  cc 11103  cr 11104  0cc0 11105   + caddc 11108  +∞cpnf 11240  *cxr 11242   < clt 11243  cle 11244  cz 12553  cuz 12817  +crp 12969   +𝑒 cxad 13085  [,]cicc 13322  ...cfz 13479  ..^cfzo 13622  Σcsu 15627  OutMeascome 45139  CaraGenccaragen 45141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5283  ax-sep 5297  ax-nul 5304  ax-pow 5361  ax-pr 5425  ax-un 7719  ax-inf2 9631  ax-ac2 10453  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-pre-sup 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4527  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4907  df-int 4949  df-iun 4997  df-disj 5112  df-br 5147  df-opab 5209  df-mpt 5230  df-tr 5264  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6296  df-ord 6363  df-on 6364  df-lim 6365  df-suc 6366  df-iota 6491  df-fun 6541  df-fn 6542  df-f 6543  df-f1 6544  df-fo 6545  df-f1o 6546  df-fv 6547  df-isom 6548  df-riota 7359  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8260  df-wrecs 8291  df-recs 8365  df-rdg 8404  df-1o 8460  df-oadd 8464  df-omul 8465  df-er 8698  df-map 8817  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-sup 9432  df-oi 9500  df-card 9929  df-acn 9932  df-ac 10106  df-pnf 11245  df-mnf 11246  df-xr 11247  df-ltxr 11248  df-le 11249  df-sub 11441  df-neg 11442  df-div 11867  df-nn 12208  df-2 12270  df-3 12271  df-n0 12468  df-z 12554  df-uz 12818  df-rp 12970  df-xadd 13088  df-ico 13325  df-icc 13326  df-fz 13480  df-fzo 13623  df-seq 13962  df-exp 14023  df-hash 14286  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15427  df-sum 15628  df-sumge0 45013  df-ome 45140  df-caragen 45142
This theorem is referenced by:  carageniuncl  45173
  Copyright terms: Public domain W3C validator