Step | Hyp | Ref
| Expression |
1 | | carageniuncllem2.o |
. . . 4
⊢ (𝜑 → 𝑂 ∈ OutMeas) |
2 | | carageniuncllem2.x |
. . . 4
⊢ 𝑋 = ∪
dom 𝑂 |
3 | | carageniuncllem2.a |
. . . 4
⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
4 | | carageniuncllem2.re |
. . . 4
⊢ (𝜑 → (𝑂‘𝐴) ∈ ℝ) |
5 | | inss1 4136 |
. . . . 5
⊢ (𝐴 ∩ ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) ⊆ 𝐴 |
6 | 5 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) ⊆ 𝐴) |
7 | 1, 2, 3, 4, 6 | omessre 43561 |
. . 3
⊢ (𝜑 → (𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) ∈ ℝ) |
8 | | difssd 4041 |
. . . 4
⊢ (𝜑 → (𝐴 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) ⊆ 𝐴) |
9 | 1, 2, 3, 4, 8 | omessre 43561 |
. . 3
⊢ (𝜑 → (𝑂‘(𝐴 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) ∈ ℝ) |
10 | | rexadd 12680 |
. . 3
⊢ (((𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) ∈ ℝ ∧ (𝑂‘(𝐴 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) ∈ ℝ) → ((𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝐴 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) = ((𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) + (𝑂‘(𝐴 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))))) |
11 | 7, 9, 10 | syl2anc 587 |
. 2
⊢ (𝜑 → ((𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝐴 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) = ((𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) + (𝑂‘(𝐴 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))))) |
12 | | carageniuncllem2.z |
. . . . . . . 8
⊢ 𝑍 =
(ℤ≥‘𝑀) |
13 | | ssinss1 4145 |
. . . . . . . . . . . . 13
⊢ (𝐴 ⊆ 𝑋 → (𝐴 ∩ (𝐹‘𝑛)) ⊆ 𝑋) |
14 | 3, 13 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴 ∩ (𝐹‘𝑛)) ⊆ 𝑋) |
15 | 1, 2 | unidmex 42103 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑋 ∈ V) |
16 | | ssexg 5198 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ V) → 𝐴 ∈ V) |
17 | 3, 15, 16 | syl2anc 587 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ∈ V) |
18 | | inex1g 5194 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ V → (𝐴 ∩ (𝐹‘𝑛)) ∈ V) |
19 | 17, 18 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴 ∩ (𝐹‘𝑛)) ∈ V) |
20 | | elpwg 4501 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∩ (𝐹‘𝑛)) ∈ V → ((𝐴 ∩ (𝐹‘𝑛)) ∈ 𝒫 𝑋 ↔ (𝐴 ∩ (𝐹‘𝑛)) ⊆ 𝑋)) |
21 | 19, 20 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐴 ∩ (𝐹‘𝑛)) ∈ 𝒫 𝑋 ↔ (𝐴 ∩ (𝐹‘𝑛)) ⊆ 𝑋)) |
22 | 14, 21 | mpbird 260 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 ∩ (𝐹‘𝑛)) ∈ 𝒫 𝑋) |
23 | 22 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐴 ∩ (𝐹‘𝑛)) ∈ 𝒫 𝑋) |
24 | | eqid 2759 |
. . . . . . . . . 10
⊢ (𝑛 ∈ 𝑍 ↦ (𝐴 ∩ (𝐹‘𝑛))) = (𝑛 ∈ 𝑍 ↦ (𝐴 ∩ (𝐹‘𝑛))) |
25 | 23, 24 | fmptd 6876 |
. . . . . . . . 9
⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ (𝐴 ∩ (𝐹‘𝑛))):𝑍⟶𝒫 𝑋) |
26 | | fveq2 6664 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑛 → (𝐹‘𝑘) = (𝐹‘𝑛)) |
27 | 26 | ineq2d 4120 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑛 → (𝐴 ∩ (𝐹‘𝑘)) = (𝐴 ∩ (𝐹‘𝑛))) |
28 | 27 | cbvmptv 5140 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ 𝑍 ↦ (𝐴 ∩ (𝐹‘𝑘))) = (𝑛 ∈ 𝑍 ↦ (𝐴 ∩ (𝐹‘𝑛))) |
29 | 28 | feq1i 6495 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ 𝑍 ↦ (𝐴 ∩ (𝐹‘𝑘))):𝑍⟶𝒫 𝑋 ↔ (𝑛 ∈ 𝑍 ↦ (𝐴 ∩ (𝐹‘𝑛))):𝑍⟶𝒫 𝑋) |
30 | 29 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑘 ∈ 𝑍 ↦ (𝐴 ∩ (𝐹‘𝑘))):𝑍⟶𝒫 𝑋 ↔ (𝑛 ∈ 𝑍 ↦ (𝐴 ∩ (𝐹‘𝑛))):𝑍⟶𝒫 𝑋)) |
31 | 25, 30 | mpbird 260 |
. . . . . . . 8
⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝐴 ∩ (𝐹‘𝑘))):𝑍⟶𝒫 𝑋) |
32 | | simpr 488 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ 𝑍) |
33 | 19 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐴 ∩ (𝐹‘𝑛)) ∈ V) |
34 | 28 | fvmpt2 6776 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ 𝑍 ∧ (𝐴 ∩ (𝐹‘𝑛)) ∈ V) → ((𝑘 ∈ 𝑍 ↦ (𝐴 ∩ (𝐹‘𝑘)))‘𝑛) = (𝐴 ∩ (𝐹‘𝑛))) |
35 | 32, 33, 34 | syl2anc 587 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (𝐴 ∩ (𝐹‘𝑘)))‘𝑛) = (𝐴 ∩ (𝐹‘𝑛))) |
36 | 35 | iuneq2dv 4911 |
. . . . . . . . . 10
⊢ (𝜑 → ∪ 𝑛 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ (𝐴 ∩ (𝐹‘𝑘)))‘𝑛) = ∪ 𝑛 ∈ 𝑍 (𝐴 ∩ (𝐹‘𝑛))) |
37 | 36 | fveq2d 6668 |
. . . . . . . . 9
⊢ (𝜑 → (𝑂‘∪
𝑛 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ (𝐴 ∩ (𝐹‘𝑘)))‘𝑛)) = (𝑂‘∪
𝑛 ∈ 𝑍 (𝐴 ∩ (𝐹‘𝑛)))) |
38 | | nfv 1916 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑛𝜑 |
39 | | carageniuncllem2.e |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐸:𝑍⟶𝑆) |
40 | | carageniuncllem2.f |
. . . . . . . . . . . . . . . 16
⊢ 𝐹 = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑀..^𝑛)(𝐸‘𝑖))) |
41 | 38, 12, 39, 40 | iundjiun 43511 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((∀𝑚 ∈ 𝑍 ∪ 𝑛 ∈ (𝑀...𝑚)(𝐹‘𝑛) = ∪ 𝑛 ∈ (𝑀...𝑚)(𝐸‘𝑛) ∧ ∪
𝑛 ∈ 𝑍 (𝐹‘𝑛) = ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) ∧ Disj 𝑛 ∈ 𝑍 (𝐹‘𝑛))) |
42 | 41 | simplrd 769 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∪ 𝑛 ∈ 𝑍 (𝐹‘𝑛) = ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) |
43 | 42 | eqcomd 2765 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛) = ∪ 𝑛 ∈ 𝑍 (𝐹‘𝑛)) |
44 | 43 | ineq2d 4120 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) = (𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐹‘𝑛))) |
45 | | iunin2 4963 |
. . . . . . . . . . . . . 14
⊢ ∪ 𝑛 ∈ 𝑍 (𝐴 ∩ (𝐹‘𝑛)) = (𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐹‘𝑛)) |
46 | 45 | eqcomi 2768 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∩ ∪ 𝑛 ∈ 𝑍 (𝐹‘𝑛)) = ∪
𝑛 ∈ 𝑍 (𝐴 ∩ (𝐹‘𝑛)) |
47 | 46 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐹‘𝑛)) = ∪
𝑛 ∈ 𝑍 (𝐴 ∩ (𝐹‘𝑛))) |
48 | 44, 47 | eqtrd 2794 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) = ∪
𝑛 ∈ 𝑍 (𝐴 ∩ (𝐹‘𝑛))) |
49 | 48 | fveq2d 6668 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) = (𝑂‘∪
𝑛 ∈ 𝑍 (𝐴 ∩ (𝐹‘𝑛)))) |
50 | 49, 7 | eqeltrrd 2854 |
. . . . . . . . 9
⊢ (𝜑 → (𝑂‘∪
𝑛 ∈ 𝑍 (𝐴 ∩ (𝐹‘𝑛))) ∈ ℝ) |
51 | 37, 50 | eqeltrd 2853 |
. . . . . . . 8
⊢ (𝜑 → (𝑂‘∪
𝑛 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ (𝐴 ∩ (𝐹‘𝑘)))‘𝑛)) ∈ ℝ) |
52 | | carageniuncllem2.y |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈
ℝ+) |
53 | 1, 2, 12, 31, 51, 52 | omeiunltfirp 43570 |
. . . . . . 7
⊢ (𝜑 → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂‘∪
𝑛 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ (𝐴 ∩ (𝐹‘𝑘)))‘𝑛)) < (Σ𝑛 ∈ 𝑧 (𝑂‘((𝑘 ∈ 𝑍 ↦ (𝐴 ∩ (𝐹‘𝑘)))‘𝑛)) + 𝑌)) |
54 | 37 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (𝑂‘∪
𝑛 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ (𝐴 ∩ (𝐹‘𝑘)))‘𝑛)) = (𝑂‘∪
𝑛 ∈ 𝑍 (𝐴 ∩ (𝐹‘𝑛)))) |
55 | | elpwinss 42102 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ (𝒫 𝑍 ∩ Fin) → 𝑧 ⊆ 𝑍) |
56 | 55 | adantr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑛 ∈ 𝑧) → 𝑧 ⊆ 𝑍) |
57 | | simpr 488 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑛 ∈ 𝑧) → 𝑛 ∈ 𝑧) |
58 | 56, 57 | sseldd 3896 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑛 ∈ 𝑧) → 𝑛 ∈ 𝑍) |
59 | 58 | adantll 713 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛 ∈ 𝑧) → 𝑛 ∈ 𝑍) |
60 | 19 | ad2antrr 725 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛 ∈ 𝑧) → (𝐴 ∩ (𝐹‘𝑛)) ∈ V) |
61 | 59, 60, 34 | syl2anc 587 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛 ∈ 𝑧) → ((𝑘 ∈ 𝑍 ↦ (𝐴 ∩ (𝐹‘𝑘)))‘𝑛) = (𝐴 ∩ (𝐹‘𝑛))) |
62 | 61 | fveq2d 6668 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛 ∈ 𝑧) → (𝑂‘((𝑘 ∈ 𝑍 ↦ (𝐴 ∩ (𝐹‘𝑘)))‘𝑛)) = (𝑂‘(𝐴 ∩ (𝐹‘𝑛)))) |
63 | 62 | sumeq2dv 15122 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑛 ∈ 𝑧 (𝑂‘((𝑘 ∈ 𝑍 ↦ (𝐴 ∩ (𝐹‘𝑘)))‘𝑛)) = Σ𝑛 ∈ 𝑧 (𝑂‘(𝐴 ∩ (𝐹‘𝑛)))) |
64 | 63 | oveq1d 7172 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ𝑛 ∈ 𝑧 (𝑂‘((𝑘 ∈ 𝑍 ↦ (𝐴 ∩ (𝐹‘𝑘)))‘𝑛)) + 𝑌) = (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌)) |
65 | 54, 64 | breq12d 5050 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → ((𝑂‘∪
𝑛 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ (𝐴 ∩ (𝐹‘𝑘)))‘𝑛)) < (Σ𝑛 ∈ 𝑧 (𝑂‘((𝑘 ∈ 𝑍 ↦ (𝐴 ∩ (𝐹‘𝑘)))‘𝑛)) + 𝑌) ↔ (𝑂‘∪
𝑛 ∈ 𝑍 (𝐴 ∩ (𝐹‘𝑛))) < (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌))) |
66 | 65 | biimpd 232 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → ((𝑂‘∪
𝑛 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ (𝐴 ∩ (𝐹‘𝑘)))‘𝑛)) < (Σ𝑛 ∈ 𝑧 (𝑂‘((𝑘 ∈ 𝑍 ↦ (𝐴 ∩ (𝐹‘𝑘)))‘𝑛)) + 𝑌) → (𝑂‘∪
𝑛 ∈ 𝑍 (𝐴 ∩ (𝐹‘𝑛))) < (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌))) |
67 | 66 | reximdva 3199 |
. . . . . . 7
⊢ (𝜑 → (∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂‘∪
𝑛 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ (𝐴 ∩ (𝐹‘𝑘)))‘𝑛)) < (Σ𝑛 ∈ 𝑧 (𝑂‘((𝑘 ∈ 𝑍 ↦ (𝐴 ∩ (𝐹‘𝑘)))‘𝑛)) + 𝑌) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂‘∪
𝑛 ∈ 𝑍 (𝐴 ∩ (𝐹‘𝑛))) < (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌))) |
68 | 53, 67 | mpd 15 |
. . . . . 6
⊢ (𝜑 → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂‘∪
𝑛 ∈ 𝑍 (𝐴 ∩ (𝐹‘𝑛))) < (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌)) |
69 | | carageniuncllem2.m |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℤ) |
70 | 69 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑀 ∈ ℤ) |
71 | 55 | adantl 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑧 ⊆ 𝑍) |
72 | | elinel2 4104 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ (𝒫 𝑍 ∩ Fin) → 𝑧 ∈ Fin) |
73 | 72 | adantl 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑧 ∈ Fin) |
74 | 70, 12, 71, 73 | uzfissfz 42372 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → ∃𝑘 ∈ 𝑍 𝑧 ⊆ (𝑀...𝑘)) |
75 | 74 | adantr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂‘∪
𝑛 ∈ 𝑍 (𝐴 ∩ (𝐹‘𝑛))) < (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌)) → ∃𝑘 ∈ 𝑍 𝑧 ⊆ (𝑀...𝑘)) |
76 | 50 | ad3antrrr 729 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂‘∪
𝑛 ∈ 𝑍 (𝐴 ∩ (𝐹‘𝑛))) < (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌)) ∧ 𝑧 ⊆ (𝑀...𝑘)) → (𝑂‘∪
𝑛 ∈ 𝑍 (𝐴 ∩ (𝐹‘𝑛))) ∈ ℝ) |
77 | | fzfid 13404 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ⊆ (𝑀...𝑘) → (𝑀...𝑘) ∈ Fin) |
78 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ⊆ (𝑀...𝑘) → 𝑧 ⊆ (𝑀...𝑘)) |
79 | | ssfi 8756 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑀...𝑘) ∈ Fin ∧ 𝑧 ⊆ (𝑀...𝑘)) → 𝑧 ∈ Fin) |
80 | 77, 78, 79 | syl2anc 587 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ⊆ (𝑀...𝑘) → 𝑧 ∈ Fin) |
81 | 80 | adantl 485 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ⊆ (𝑀...𝑘)) → 𝑧 ∈ Fin) |
82 | 1 | ad2antrr 725 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ⊆ (𝑀...𝑘)) ∧ 𝑛 ∈ 𝑧) → 𝑂 ∈ OutMeas) |
83 | 3 | ad2antrr 725 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ⊆ (𝑀...𝑘)) ∧ 𝑛 ∈ 𝑧) → 𝐴 ⊆ 𝑋) |
84 | 4 | ad2antrr 725 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ⊆ (𝑀...𝑘)) ∧ 𝑛 ∈ 𝑧) → (𝑂‘𝐴) ∈ ℝ) |
85 | | inss1 4136 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∩ (𝐹‘𝑛)) ⊆ 𝐴 |
86 | 85 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ⊆ (𝑀...𝑘)) ∧ 𝑛 ∈ 𝑧) → (𝐴 ∩ (𝐹‘𝑛)) ⊆ 𝐴) |
87 | 82, 2, 83, 84, 86 | omessre 43561 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ⊆ (𝑀...𝑘)) ∧ 𝑛 ∈ 𝑧) → (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) ∈ ℝ) |
88 | 81, 87 | fsumrecl 15153 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ⊆ (𝑀...𝑘)) → Σ𝑛 ∈ 𝑧 (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) ∈ ℝ) |
89 | 52 | rpred 12486 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑌 ∈ ℝ) |
90 | 89 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ⊆ (𝑀...𝑘)) → 𝑌 ∈ ℝ) |
91 | 88, 90 | readdcld 10722 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ⊆ (𝑀...𝑘)) → (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌) ∈ ℝ) |
92 | 91 | ad4ant14 751 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂‘∪
𝑛 ∈ 𝑍 (𝐴 ∩ (𝐹‘𝑛))) < (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌)) ∧ 𝑧 ⊆ (𝑀...𝑘)) → (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌) ∈ ℝ) |
93 | | fzfid 13404 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑀...𝑘) ∈ Fin) |
94 | 85 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐴 ∩ (𝐹‘𝑛)) ⊆ 𝐴) |
95 | 1, 2, 3, 4, 94 | omessre 43561 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) ∈ ℝ) |
96 | 95 | adantr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝑘)) → (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) ∈ ℝ) |
97 | 93, 96 | fsumrecl 15153 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) ∈ ℝ) |
98 | 97 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) ∈ ℝ) |
99 | 89 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑌 ∈ ℝ) |
100 | 98, 99 | readdcld 10722 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌) ∈ ℝ) |
101 | 100 | ad2antrr 725 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂‘∪
𝑛 ∈ 𝑍 (𝐴 ∩ (𝐹‘𝑛))) < (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌)) ∧ 𝑧 ⊆ (𝑀...𝑘)) → (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌) ∈ ℝ) |
102 | | simplr 768 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂‘∪
𝑛 ∈ 𝑍 (𝐴 ∩ (𝐹‘𝑛))) < (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌)) ∧ 𝑧 ⊆ (𝑀...𝑘)) → (𝑂‘∪
𝑛 ∈ 𝑍 (𝐴 ∩ (𝐹‘𝑛))) < (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌)) |
103 | 97 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ⊆ (𝑀...𝑘)) → Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) ∈ ℝ) |
104 | | fzfid 13404 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ⊆ (𝑀...𝑘)) → (𝑀...𝑘) ∈ Fin) |
105 | 96 | adantlr 714 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ⊆ (𝑀...𝑘)) ∧ 𝑛 ∈ (𝑀...𝑘)) → (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) ∈ ℝ) |
106 | | 0xr 10740 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
ℝ* |
107 | 106 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝑘)) → 0 ∈
ℝ*) |
108 | | pnfxr 10747 |
. . . . . . . . . . . . . . . . 17
⊢ +∞
∈ ℝ* |
109 | 108 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝑘)) → +∞ ∈
ℝ*) |
110 | 1, 2, 14 | omecl 43554 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) ∈ (0[,]+∞)) |
111 | 110 | adantr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝑘)) → (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) ∈ (0[,]+∞)) |
112 | | iccgelb 12849 |
. . . . . . . . . . . . . . . 16
⊢ ((0
∈ ℝ* ∧ +∞ ∈ ℝ* ∧
(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) ∈ (0[,]+∞)) → 0 ≤
(𝑂‘(𝐴 ∩ (𝐹‘𝑛)))) |
113 | 107, 109,
111, 112 | syl3anc 1369 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝑘)) → 0 ≤ (𝑂‘(𝐴 ∩ (𝐹‘𝑛)))) |
114 | 113 | adantlr 714 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ⊆ (𝑀...𝑘)) ∧ 𝑛 ∈ (𝑀...𝑘)) → 0 ≤ (𝑂‘(𝐴 ∩ (𝐹‘𝑛)))) |
115 | | simpr 488 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ⊆ (𝑀...𝑘)) → 𝑧 ⊆ (𝑀...𝑘)) |
116 | 104, 105,
114, 115 | fsumless 15213 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ⊆ (𝑀...𝑘)) → Σ𝑛 ∈ 𝑧 (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) ≤ Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛)))) |
117 | 88, 103, 90, 116 | leadd1dd 11306 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ⊆ (𝑀...𝑘)) → (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌) ≤ (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌)) |
118 | 117 | ad4ant14 751 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂‘∪
𝑛 ∈ 𝑍 (𝐴 ∩ (𝐹‘𝑛))) < (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌)) ∧ 𝑧 ⊆ (𝑀...𝑘)) → (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌) ≤ (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌)) |
119 | 76, 92, 101, 102, 118 | ltletrd 10852 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂‘∪
𝑛 ∈ 𝑍 (𝐴 ∩ (𝐹‘𝑛))) < (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌)) ∧ 𝑧 ⊆ (𝑀...𝑘)) → (𝑂‘∪
𝑛 ∈ 𝑍 (𝐴 ∩ (𝐹‘𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌)) |
120 | 119 | ex 416 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂‘∪
𝑛 ∈ 𝑍 (𝐴 ∩ (𝐹‘𝑛))) < (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌)) → (𝑧 ⊆ (𝑀...𝑘) → (𝑂‘∪
𝑛 ∈ 𝑍 (𝐴 ∩ (𝐹‘𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌))) |
121 | 120 | reximdv 3198 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂‘∪
𝑛 ∈ 𝑍 (𝐴 ∩ (𝐹‘𝑛))) < (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌)) → (∃𝑘 ∈ 𝑍 𝑧 ⊆ (𝑀...𝑘) → ∃𝑘 ∈ 𝑍 (𝑂‘∪
𝑛 ∈ 𝑍 (𝐴 ∩ (𝐹‘𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌))) |
122 | 75, 121 | mpd 15 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂‘∪
𝑛 ∈ 𝑍 (𝐴 ∩ (𝐹‘𝑛))) < (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌)) → ∃𝑘 ∈ 𝑍 (𝑂‘∪
𝑛 ∈ 𝑍 (𝐴 ∩ (𝐹‘𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌)) |
123 | 122 | rexlimdva2 3212 |
. . . . . 6
⊢ (𝜑 → (∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂‘∪
𝑛 ∈ 𝑍 (𝐴 ∩ (𝐹‘𝑛))) < (Σ𝑛 ∈ 𝑧 (𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌) → ∃𝑘 ∈ 𝑍 (𝑂‘∪
𝑛 ∈ 𝑍 (𝐴 ∩ (𝐹‘𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌))) |
124 | 68, 123 | mpd 15 |
. . . . 5
⊢ (𝜑 → ∃𝑘 ∈ 𝑍 (𝑂‘∪
𝑛 ∈ 𝑍 (𝐴 ∩ (𝐹‘𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌)) |
125 | 49 | ad2antrr 725 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ (𝑂‘∪
𝑛 ∈ 𝑍 (𝐴 ∩ (𝐹‘𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌)) → (𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) = (𝑂‘∪
𝑛 ∈ 𝑍 (𝐴 ∩ (𝐹‘𝑛)))) |
126 | | simpr 488 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ (𝑂‘∪
𝑛 ∈ 𝑍 (𝐴 ∩ (𝐹‘𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌)) → (𝑂‘∪
𝑛 ∈ 𝑍 (𝐴 ∩ (𝐹‘𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌)) |
127 | 125, 126 | eqbrtrd 5059 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ (𝑂‘∪
𝑛 ∈ 𝑍 (𝐴 ∩ (𝐹‘𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌)) → (𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌)) |
128 | 127 | ex 416 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑂‘∪
𝑛 ∈ 𝑍 (𝐴 ∩ (𝐹‘𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌) → (𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌))) |
129 | 128 | reximdva 3199 |
. . . . 5
⊢ (𝜑 → (∃𝑘 ∈ 𝑍 (𝑂‘∪
𝑛 ∈ 𝑍 (𝐴 ∩ (𝐹‘𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌) → ∃𝑘 ∈ 𝑍 (𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌))) |
130 | 124, 129 | mpd 15 |
. . . 4
⊢ (𝜑 → ∃𝑘 ∈ 𝑍 (𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌)) |
131 | | simpr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ (𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌)) → (𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌)) |
132 | 1 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑂 ∈ OutMeas) |
133 | | carageniuncllem2.s |
. . . . . . . . . 10
⊢ 𝑆 = (CaraGen‘𝑂) |
134 | 3 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ⊆ 𝑋) |
135 | 4 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑂‘𝐴) ∈ ℝ) |
136 | 39 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐸:𝑍⟶𝑆) |
137 | | carageniuncllem2.g |
. . . . . . . . . 10
⊢ 𝐺 = (𝑛 ∈ 𝑍 ↦ ∪
𝑖 ∈ (𝑀...𝑛)(𝐸‘𝑖)) |
138 | | simpr 488 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) |
139 | 132, 133,
2, 134, 135, 12, 136, 137, 40, 138 | carageniuncllem1 43572 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) = (𝑂‘(𝐴 ∩ (𝐺‘𝑘)))) |
140 | 139 | oveq1d 7172 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌) = ((𝑂‘(𝐴 ∩ (𝐺‘𝑘))) + 𝑌)) |
141 | 140 | adantr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ (𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌)) → (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌) = ((𝑂‘(𝐴 ∩ (𝐺‘𝑘))) + 𝑌)) |
142 | 131, 141 | breqtrd 5063 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ (𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌)) → (𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺‘𝑘))) + 𝑌)) |
143 | 142 | ex 416 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌) → (𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺‘𝑘))) + 𝑌))) |
144 | 143 | reximdva 3199 |
. . . 4
⊢ (𝜑 → (∃𝑘 ∈ 𝑍 (𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹‘𝑛))) + 𝑌) → ∃𝑘 ∈ 𝑍 (𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺‘𝑘))) + 𝑌))) |
145 | 130, 144 | mpd 15 |
. . 3
⊢ (𝜑 → ∃𝑘 ∈ 𝑍 (𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺‘𝑘))) + 𝑌)) |
146 | 7 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺‘𝑘))) + 𝑌)) → (𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) ∈ ℝ) |
147 | 9 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺‘𝑘))) + 𝑌)) → (𝑂‘(𝐴 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) ∈ ℝ) |
148 | | inss1 4136 |
. . . . . . . . . . 11
⊢ (𝐴 ∩ (𝐺‘𝑘)) ⊆ 𝐴 |
149 | 148 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐴 ∩ (𝐺‘𝑘)) ⊆ 𝐴) |
150 | 132, 2, 134, 135, 149 | omessre 43561 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑂‘(𝐴 ∩ (𝐺‘𝑘))) ∈ ℝ) |
151 | 89 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑌 ∈ ℝ) |
152 | 150, 151 | readdcld 10722 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑂‘(𝐴 ∩ (𝐺‘𝑘))) + 𝑌) ∈ ℝ) |
153 | 152 | 3adant3 1130 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺‘𝑘))) + 𝑌)) → ((𝑂‘(𝐴 ∩ (𝐺‘𝑘))) + 𝑌) ∈ ℝ) |
154 | | difssd 4041 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐴 ∖ (𝐺‘𝑘)) ⊆ 𝐴) |
155 | 132, 2, 134, 135, 154 | omessre 43561 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑂‘(𝐴 ∖ (𝐺‘𝑘))) ∈ ℝ) |
156 | 155 | 3adant3 1130 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺‘𝑘))) + 𝑌)) → (𝑂‘(𝐴 ∖ (𝐺‘𝑘))) ∈ ℝ) |
157 | | simp3 1136 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺‘𝑘))) + 𝑌)) → (𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺‘𝑘))) + 𝑌)) |
158 | 146, 153,
157 | ltled 10840 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺‘𝑘))) + 𝑌)) → (𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) ≤ ((𝑂‘(𝐴 ∩ (𝐺‘𝑘))) + 𝑌)) |
159 | 134 | ssdifssd 4051 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐴 ∖ (𝐺‘𝑘)) ⊆ 𝑋) |
160 | | oveq2 7165 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑘 → (𝑀...𝑛) = (𝑀...𝑘)) |
161 | 160 | iuneq1d 4914 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑘 → ∪
𝑖 ∈ (𝑀...𝑛)(𝐸‘𝑖) = ∪ 𝑖 ∈ (𝑀...𝑘)(𝐸‘𝑖)) |
162 | | ovex 7190 |
. . . . . . . . . . . . . . 15
⊢ (𝑀...𝑘) ∈ V |
163 | | fvex 6677 |
. . . . . . . . . . . . . . 15
⊢ (𝐸‘𝑖) ∈ V |
164 | 162, 163 | iunex 7680 |
. . . . . . . . . . . . . 14
⊢ ∪ 𝑖 ∈ (𝑀...𝑘)(𝐸‘𝑖) ∈ V |
165 | 161, 137,
164 | fvmpt 6765 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ 𝑍 → (𝐺‘𝑘) = ∪ 𝑖 ∈ (𝑀...𝑘)(𝐸‘𝑖)) |
166 | | fveq2 6664 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑛 → (𝐸‘𝑖) = (𝐸‘𝑛)) |
167 | 166 | cbviunv 4933 |
. . . . . . . . . . . . . 14
⊢ ∪ 𝑖 ∈ (𝑀...𝑘)(𝐸‘𝑖) = ∪ 𝑛 ∈ (𝑀...𝑘)(𝐸‘𝑛) |
168 | 167 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ 𝑍 → ∪
𝑖 ∈ (𝑀...𝑘)(𝐸‘𝑖) = ∪ 𝑛 ∈ (𝑀...𝑘)(𝐸‘𝑛)) |
169 | 165, 168 | eqtrd 2794 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ 𝑍 → (𝐺‘𝑘) = ∪ 𝑛 ∈ (𝑀...𝑘)(𝐸‘𝑛)) |
170 | | elfzuz 12966 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (𝑀...𝑘) → 𝑖 ∈ (ℤ≥‘𝑀)) |
171 | 12 | eqcomi 2768 |
. . . . . . . . . . . . . . . . 17
⊢
(ℤ≥‘𝑀) = 𝑍 |
172 | 171 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (𝑀...𝑘) → (ℤ≥‘𝑀) = 𝑍) |
173 | 170, 172 | eleqtrd 2855 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (𝑀...𝑘) → 𝑖 ∈ 𝑍) |
174 | 173 | ssriv 3899 |
. . . . . . . . . . . . . 14
⊢ (𝑀...𝑘) ⊆ 𝑍 |
175 | | iunss1 4901 |
. . . . . . . . . . . . . 14
⊢ ((𝑀...𝑘) ⊆ 𝑍 → ∪
𝑛 ∈ (𝑀...𝑘)(𝐸‘𝑛) ⊆ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) |
176 | 174, 175 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ ∪ 𝑛 ∈ (𝑀...𝑘)(𝐸‘𝑛) ⊆ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛) |
177 | 176 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ 𝑍 → ∪
𝑛 ∈ (𝑀...𝑘)(𝐸‘𝑛) ⊆ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) |
178 | 169, 177 | eqsstrd 3933 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ 𝑍 → (𝐺‘𝑘) ⊆ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) |
179 | 178 | adantl 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ⊆ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) |
180 | 179 | sscond 4050 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐴 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) ⊆ (𝐴 ∖ (𝐺‘𝑘))) |
181 | 132, 2, 159, 180 | omessle 43549 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑂‘(𝐴 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) ≤ (𝑂‘(𝐴 ∖ (𝐺‘𝑘)))) |
182 | 181 | 3adant3 1130 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺‘𝑘))) + 𝑌)) → (𝑂‘(𝐴 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) ≤ (𝑂‘(𝐴 ∖ (𝐺‘𝑘)))) |
183 | 146, 147,
153, 156, 158, 182 | le2addd 11311 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺‘𝑘))) + 𝑌)) → ((𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) + (𝑂‘(𝐴 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) ≤ (((𝑂‘(𝐴 ∩ (𝐺‘𝑘))) + 𝑌) + (𝑂‘(𝐴 ∖ (𝐺‘𝑘))))) |
184 | 150 | recnd 10721 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑂‘(𝐴 ∩ (𝐺‘𝑘))) ∈ ℂ) |
185 | 89 | recnd 10721 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈ ℂ) |
186 | 185 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑌 ∈ ℂ) |
187 | 155 | recnd 10721 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑂‘(𝐴 ∖ (𝐺‘𝑘))) ∈ ℂ) |
188 | 184, 186,
187 | add32d 10919 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (((𝑂‘(𝐴 ∩ (𝐺‘𝑘))) + 𝑌) + (𝑂‘(𝐴 ∖ (𝐺‘𝑘)))) = (((𝑂‘(𝐴 ∩ (𝐺‘𝑘))) + (𝑂‘(𝐴 ∖ (𝐺‘𝑘)))) + 𝑌)) |
189 | | rexadd 12680 |
. . . . . . . . . . . 12
⊢ (((𝑂‘(𝐴 ∩ (𝐺‘𝑘))) ∈ ℝ ∧ (𝑂‘(𝐴 ∖ (𝐺‘𝑘))) ∈ ℝ) → ((𝑂‘(𝐴 ∩ (𝐺‘𝑘))) +𝑒 (𝑂‘(𝐴 ∖ (𝐺‘𝑘)))) = ((𝑂‘(𝐴 ∩ (𝐺‘𝑘))) + (𝑂‘(𝐴 ∖ (𝐺‘𝑘))))) |
190 | 150, 155,
189 | syl2anc 587 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑂‘(𝐴 ∩ (𝐺‘𝑘))) +𝑒 (𝑂‘(𝐴 ∖ (𝐺‘𝑘)))) = ((𝑂‘(𝐴 ∩ (𝐺‘𝑘))) + (𝑂‘(𝐴 ∖ (𝐺‘𝑘))))) |
191 | 190 | eqcomd 2765 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑂‘(𝐴 ∩ (𝐺‘𝑘))) + (𝑂‘(𝐴 ∖ (𝐺‘𝑘)))) = ((𝑂‘(𝐴 ∩ (𝐺‘𝑘))) +𝑒 (𝑂‘(𝐴 ∖ (𝐺‘𝑘))))) |
192 | | nfv 1916 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑖𝜑 |
193 | 39 | adantr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀...𝑘)) → 𝐸:𝑍⟶𝑆) |
194 | 173 | adantl 485 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀...𝑘)) → 𝑖 ∈ 𝑍) |
195 | 193, 194 | ffvelrnd 6850 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀...𝑘)) → (𝐸‘𝑖) ∈ 𝑆) |
196 | 192, 1, 133, 93, 195 | caragenfiiuncl 43566 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∪ 𝑖 ∈ (𝑀...𝑘)(𝐸‘𝑖) ∈ 𝑆) |
197 | 196 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ∪
𝑖 ∈ (𝑀...𝑘)(𝐸‘𝑖) ∈ 𝑆) |
198 | 137, 161,
138, 197 | fvmptd3 6788 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = ∪ 𝑖 ∈ (𝑀...𝑘)(𝐸‘𝑖)) |
199 | 198, 197 | eqeltrd 2853 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ 𝑆) |
200 | 132, 133,
2, 199, 134 | caragensplit 43551 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑂‘(𝐴 ∩ (𝐺‘𝑘))) +𝑒 (𝑂‘(𝐴 ∖ (𝐺‘𝑘)))) = (𝑂‘𝐴)) |
201 | 191, 200 | eqtrd 2794 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑂‘(𝐴 ∩ (𝐺‘𝑘))) + (𝑂‘(𝐴 ∖ (𝐺‘𝑘)))) = (𝑂‘𝐴)) |
202 | 201 | oveq1d 7172 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (((𝑂‘(𝐴 ∩ (𝐺‘𝑘))) + (𝑂‘(𝐴 ∖ (𝐺‘𝑘)))) + 𝑌) = ((𝑂‘𝐴) + 𝑌)) |
203 | 188, 202 | eqtrd 2794 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (((𝑂‘(𝐴 ∩ (𝐺‘𝑘))) + 𝑌) + (𝑂‘(𝐴 ∖ (𝐺‘𝑘)))) = ((𝑂‘𝐴) + 𝑌)) |
204 | 203 | 3adant3 1130 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺‘𝑘))) + 𝑌)) → (((𝑂‘(𝐴 ∩ (𝐺‘𝑘))) + 𝑌) + (𝑂‘(𝐴 ∖ (𝐺‘𝑘)))) = ((𝑂‘𝐴) + 𝑌)) |
205 | 183, 204 | breqtrd 5063 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺‘𝑘))) + 𝑌)) → ((𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) + (𝑂‘(𝐴 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) ≤ ((𝑂‘𝐴) + 𝑌)) |
206 | 205 | 3exp 1117 |
. . . 4
⊢ (𝜑 → (𝑘 ∈ 𝑍 → ((𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺‘𝑘))) + 𝑌) → ((𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) + (𝑂‘(𝐴 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) ≤ ((𝑂‘𝐴) + 𝑌)))) |
207 | 206 | rexlimdv 3208 |
. . 3
⊢ (𝜑 → (∃𝑘 ∈ 𝑍 (𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺‘𝑘))) + 𝑌) → ((𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) + (𝑂‘(𝐴 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) ≤ ((𝑂‘𝐴) + 𝑌))) |
208 | 145, 207 | mpd 15 |
. 2
⊢ (𝜑 → ((𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) + (𝑂‘(𝐴 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) ≤ ((𝑂‘𝐴) + 𝑌)) |
209 | 11, 208 | eqbrtrd 5059 |
1
⊢ (𝜑 → ((𝑂‘(𝐴 ∩ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛))) +𝑒 (𝑂‘(𝐴 ∖ ∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)))) ≤ ((𝑂‘𝐴) + 𝑌)) |