Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carageniuncllem2 Structured version   Visualization version   GIF version

Theorem carageniuncllem2 46551
Description: The Caratheodory's construction is closed under countable union. Step (d) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
carageniuncllem2.o (𝜑𝑂 ∈ OutMeas)
carageniuncllem2.s 𝑆 = (CaraGen‘𝑂)
carageniuncllem2.x 𝑋 = dom 𝑂
carageniuncllem2.a (𝜑𝐴𝑋)
carageniuncllem2.re (𝜑 → (𝑂𝐴) ∈ ℝ)
carageniuncllem2.m (𝜑𝑀 ∈ ℤ)
carageniuncllem2.z 𝑍 = (ℤ𝑀)
carageniuncllem2.e (𝜑𝐸:𝑍𝑆)
carageniuncllem2.y (𝜑𝑌 ∈ ℝ+)
carageniuncllem2.g 𝐺 = (𝑛𝑍 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖))
carageniuncllem2.f 𝐹 = (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑀..^𝑛)(𝐸𝑖)))
Assertion
Ref Expression
carageniuncllem2 (𝜑 → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝐴) + 𝑌))
Distinct variable groups:   𝐴,𝑛   𝑖,𝐸,𝑛   𝑛,𝐹   𝑖,𝑀,𝑛   𝑛,𝑂   𝑆,𝑖   𝑛,𝑋   𝑖,𝑍,𝑛   𝜑,𝑖,𝑛
Allowed substitution hints:   𝐴(𝑖)   𝑆(𝑛)   𝐹(𝑖)   𝐺(𝑖,𝑛)   𝑂(𝑖)   𝑋(𝑖)   𝑌(𝑖,𝑛)

Proof of Theorem carageniuncllem2
Dummy variables 𝑘 𝑧 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 carageniuncllem2.o . . . 4 (𝜑𝑂 ∈ OutMeas)
2 carageniuncllem2.x . . . 4 𝑋 = dom 𝑂
3 carageniuncllem2.a . . . 4 (𝜑𝐴𝑋)
4 carageniuncllem2.re . . . 4 (𝜑 → (𝑂𝐴) ∈ ℝ)
5 inss1 4212 . . . . 5 (𝐴 𝑛𝑍 (𝐸𝑛)) ⊆ 𝐴
65a1i 11 . . . 4 (𝜑 → (𝐴 𝑛𝑍 (𝐸𝑛)) ⊆ 𝐴)
71, 2, 3, 4, 6omessre 46539 . . 3 (𝜑 → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ∈ ℝ)
8 difssd 4112 . . . 4 (𝜑 → (𝐴 𝑛𝑍 (𝐸𝑛)) ⊆ 𝐴)
91, 2, 3, 4, 8omessre 46539 . . 3 (𝜑 → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ∈ ℝ)
10 rexadd 13248 . . 3 (((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ∈ ℝ ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ∈ ℝ) → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) = ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) + (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))))
117, 9, 10syl2anc 584 . 2 (𝜑 → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) = ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) + (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))))
12 carageniuncllem2.z . . . . . . . 8 𝑍 = (ℤ𝑀)
13 ssinss1 4221 . . . . . . . . . . . . 13 (𝐴𝑋 → (𝐴 ∩ (𝐹𝑛)) ⊆ 𝑋)
143, 13syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∩ (𝐹𝑛)) ⊆ 𝑋)
151, 2unidmex 45074 . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ V)
16 ssexg 5293 . . . . . . . . . . . . . . 15 ((𝐴𝑋𝑋 ∈ V) → 𝐴 ∈ V)
173, 15, 16syl2anc 584 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ V)
18 inex1g 5289 . . . . . . . . . . . . . 14 (𝐴 ∈ V → (𝐴 ∩ (𝐹𝑛)) ∈ V)
1917, 18syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐴 ∩ (𝐹𝑛)) ∈ V)
20 elpwg 4578 . . . . . . . . . . . . 13 ((𝐴 ∩ (𝐹𝑛)) ∈ V → ((𝐴 ∩ (𝐹𝑛)) ∈ 𝒫 𝑋 ↔ (𝐴 ∩ (𝐹𝑛)) ⊆ 𝑋))
2119, 20syl 17 . . . . . . . . . . . 12 (𝜑 → ((𝐴 ∩ (𝐹𝑛)) ∈ 𝒫 𝑋 ↔ (𝐴 ∩ (𝐹𝑛)) ⊆ 𝑋))
2214, 21mpbird 257 . . . . . . . . . . 11 (𝜑 → (𝐴 ∩ (𝐹𝑛)) ∈ 𝒫 𝑋)
2322adantr 480 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝐴 ∩ (𝐹𝑛)) ∈ 𝒫 𝑋)
24 eqid 2735 . . . . . . . . . 10 (𝑛𝑍 ↦ (𝐴 ∩ (𝐹𝑛))) = (𝑛𝑍 ↦ (𝐴 ∩ (𝐹𝑛)))
2523, 24fmptd 7104 . . . . . . . . 9 (𝜑 → (𝑛𝑍 ↦ (𝐴 ∩ (𝐹𝑛))):𝑍⟶𝒫 𝑋)
26 fveq2 6876 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
2726ineq2d 4195 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (𝐴 ∩ (𝐹𝑘)) = (𝐴 ∩ (𝐹𝑛)))
2827cbvmptv 5225 . . . . . . . . . . 11 (𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘))) = (𝑛𝑍 ↦ (𝐴 ∩ (𝐹𝑛)))
2928feq1i 6697 . . . . . . . . . 10 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘))):𝑍⟶𝒫 𝑋 ↔ (𝑛𝑍 ↦ (𝐴 ∩ (𝐹𝑛))):𝑍⟶𝒫 𝑋)
3029a1i 11 . . . . . . . . 9 (𝜑 → ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘))):𝑍⟶𝒫 𝑋 ↔ (𝑛𝑍 ↦ (𝐴 ∩ (𝐹𝑛))):𝑍⟶𝒫 𝑋))
3125, 30mpbird 257 . . . . . . . 8 (𝜑 → (𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘))):𝑍⟶𝒫 𝑋)
32 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → 𝑛𝑍)
3319adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → (𝐴 ∩ (𝐹𝑛)) ∈ V)
3428fvmpt2 6997 . . . . . . . . . . . 12 ((𝑛𝑍 ∧ (𝐴 ∩ (𝐹𝑛)) ∈ V) → ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛) = (𝐴 ∩ (𝐹𝑛)))
3532, 33, 34syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛) = (𝐴 ∩ (𝐹𝑛)))
3635iuneq2dv 4992 . . . . . . . . . 10 (𝜑 𝑛𝑍 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛) = 𝑛𝑍 (𝐴 ∩ (𝐹𝑛)))
3736fveq2d 6880 . . . . . . . . 9 (𝜑 → (𝑂 𝑛𝑍 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) = (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))))
38 nfv 1914 . . . . . . . . . . . . . . . 16 𝑛𝜑
39 carageniuncllem2.e . . . . . . . . . . . . . . . 16 (𝜑𝐸:𝑍𝑆)
40 carageniuncllem2.f . . . . . . . . . . . . . . . 16 𝐹 = (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑀..^𝑛)(𝐸𝑖)))
4138, 12, 39, 40iundjiun 46489 . . . . . . . . . . . . . . 15 (𝜑 → ((∀𝑚𝑍 𝑛 ∈ (𝑀...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑀...𝑚)(𝐸𝑛) ∧ 𝑛𝑍 (𝐹𝑛) = 𝑛𝑍 (𝐸𝑛)) ∧ Disj 𝑛𝑍 (𝐹𝑛)))
4241simplrd 769 . . . . . . . . . . . . . 14 (𝜑 𝑛𝑍 (𝐹𝑛) = 𝑛𝑍 (𝐸𝑛))
4342eqcomd 2741 . . . . . . . . . . . . 13 (𝜑 𝑛𝑍 (𝐸𝑛) = 𝑛𝑍 (𝐹𝑛))
4443ineq2d 4195 . . . . . . . . . . . 12 (𝜑 → (𝐴 𝑛𝑍 (𝐸𝑛)) = (𝐴 𝑛𝑍 (𝐹𝑛)))
45 iunin2 5047 . . . . . . . . . . . . . 14 𝑛𝑍 (𝐴 ∩ (𝐹𝑛)) = (𝐴 𝑛𝑍 (𝐹𝑛))
4645eqcomi 2744 . . . . . . . . . . . . 13 (𝐴 𝑛𝑍 (𝐹𝑛)) = 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))
4746a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐴 𝑛𝑍 (𝐹𝑛)) = 𝑛𝑍 (𝐴 ∩ (𝐹𝑛)))
4844, 47eqtrd 2770 . . . . . . . . . . 11 (𝜑 → (𝐴 𝑛𝑍 (𝐸𝑛)) = 𝑛𝑍 (𝐴 ∩ (𝐹𝑛)))
4948fveq2d 6880 . . . . . . . . . 10 (𝜑 → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) = (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))))
5049, 7eqeltrrd 2835 . . . . . . . . 9 (𝜑 → (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
5137, 50eqeltrd 2834 . . . . . . . 8 (𝜑 → (𝑂 𝑛𝑍 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) ∈ ℝ)
52 carageniuncllem2.y . . . . . . . 8 (𝜑𝑌 ∈ ℝ+)
531, 2, 12, 31, 51, 52omeiunltfirp 46548 . . . . . . 7 (𝜑 → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) < (Σ𝑛𝑧 (𝑂‘((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) + 𝑌))
5437adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (𝑂 𝑛𝑍 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) = (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))))
55 elpwinss 45073 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (𝒫 𝑍 ∩ Fin) → 𝑧𝑍)
5655adantr 480 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑛𝑧) → 𝑧𝑍)
57 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑛𝑧) → 𝑛𝑧)
5856, 57sseldd 3959 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑛𝑧) → 𝑛𝑍)
5958adantll 714 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → 𝑛𝑍)
6019ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝐴 ∩ (𝐹𝑛)) ∈ V)
6159, 60, 34syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛) = (𝐴 ∩ (𝐹𝑛)))
6261fveq2d 6880 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂‘((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) = (𝑂‘(𝐴 ∩ (𝐹𝑛))))
6362sumeq2dv 15718 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑛𝑧 (𝑂‘((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) = Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))))
6463oveq1d 7420 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ𝑛𝑧 (𝑂‘((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) + 𝑌) = (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
6554, 64breq12d 5132 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → ((𝑂 𝑛𝑍 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) < (Σ𝑛𝑧 (𝑂‘((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) + 𝑌) ↔ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)))
6665biimpd 229 . . . . . . . 8 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → ((𝑂 𝑛𝑍 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) < (Σ𝑛𝑧 (𝑂‘((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) + 𝑌) → (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)))
6766reximdva 3153 . . . . . . 7 (𝜑 → (∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) < (Σ𝑛𝑧 (𝑂‘((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) + 𝑌) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)))
6853, 67mpd 15 . . . . . 6 (𝜑 → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
69 carageniuncllem2.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
7069adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑀 ∈ ℤ)
7155adantl 481 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑧𝑍)
72 elinel2 4177 . . . . . . . . . . 11 (𝑧 ∈ (𝒫 𝑍 ∩ Fin) → 𝑧 ∈ Fin)
7372adantl 481 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑧 ∈ Fin)
7470, 12, 71, 73uzfissfz 45353 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → ∃𝑘𝑍 𝑧 ⊆ (𝑀...𝑘))
7574adantr 480 . . . . . . . 8 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → ∃𝑘𝑍 𝑧 ⊆ (𝑀...𝑘))
7650ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) ∧ 𝑧 ⊆ (𝑀...𝑘)) → (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
77 fzfid 13991 . . . . . . . . . . . . . . . 16 (𝑧 ⊆ (𝑀...𝑘) → (𝑀...𝑘) ∈ Fin)
78 id 22 . . . . . . . . . . . . . . . 16 (𝑧 ⊆ (𝑀...𝑘) → 𝑧 ⊆ (𝑀...𝑘))
79 ssfi 9187 . . . . . . . . . . . . . . . 16 (((𝑀...𝑘) ∈ Fin ∧ 𝑧 ⊆ (𝑀...𝑘)) → 𝑧 ∈ Fin)
8077, 78, 79syl2anc 584 . . . . . . . . . . . . . . 15 (𝑧 ⊆ (𝑀...𝑘) → 𝑧 ∈ Fin)
8180adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → 𝑧 ∈ Fin)
821ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ⊆ (𝑀...𝑘)) ∧ 𝑛𝑧) → 𝑂 ∈ OutMeas)
833ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ⊆ (𝑀...𝑘)) ∧ 𝑛𝑧) → 𝐴𝑋)
844ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ⊆ (𝑀...𝑘)) ∧ 𝑛𝑧) → (𝑂𝐴) ∈ ℝ)
85 inss1 4212 . . . . . . . . . . . . . . . 16 (𝐴 ∩ (𝐹𝑛)) ⊆ 𝐴
8685a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ⊆ (𝑀...𝑘)) ∧ 𝑛𝑧) → (𝐴 ∩ (𝐹𝑛)) ⊆ 𝐴)
8782, 2, 83, 84, 86omessre 46539 . . . . . . . . . . . . . 14 (((𝜑𝑧 ⊆ (𝑀...𝑘)) ∧ 𝑛𝑧) → (𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
8881, 87fsumrecl 15750 . . . . . . . . . . . . 13 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
8952rpred 13051 . . . . . . . . . . . . . 14 (𝜑𝑌 ∈ ℝ)
9089adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → 𝑌 ∈ ℝ)
9188, 90readdcld 11264 . . . . . . . . . . . 12 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) ∈ ℝ)
9291ad4ant14 752 . . . . . . . . . . 11 ((((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) ∧ 𝑧 ⊆ (𝑀...𝑘)) → (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) ∈ ℝ)
93 fzfid 13991 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀...𝑘) ∈ Fin)
9485a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 ∩ (𝐹𝑛)) ⊆ 𝐴)
951, 2, 3, 4, 94omessre 46539 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
9695adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (𝑀...𝑘)) → (𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
9793, 96fsumrecl 15750 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
9897adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
9989adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑌 ∈ ℝ)
10098, 99readdcld 11264 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) ∈ ℝ)
101100ad2antrr 726 . . . . . . . . . . 11 ((((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) ∧ 𝑧 ⊆ (𝑀...𝑘)) → (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) ∈ ℝ)
102 simplr 768 . . . . . . . . . . 11 ((((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) ∧ 𝑧 ⊆ (𝑀...𝑘)) → (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
10397adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
104 fzfid 13991 . . . . . . . . . . . . . 14 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → (𝑀...𝑘) ∈ Fin)
10596adantlr 715 . . . . . . . . . . . . . 14 (((𝜑𝑧 ⊆ (𝑀...𝑘)) ∧ 𝑛 ∈ (𝑀...𝑘)) → (𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
106 0xr 11282 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ*
107106a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (𝑀...𝑘)) → 0 ∈ ℝ*)
108 pnfxr 11289 . . . . . . . . . . . . . . . . 17 +∞ ∈ ℝ*
109108a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (𝑀...𝑘)) → +∞ ∈ ℝ*)
1101, 2, 14omecl 46532 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ (0[,]+∞))
111110adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (𝑀...𝑘)) → (𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ (0[,]+∞))
112 iccgelb 13419 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ (0[,]+∞)) → 0 ≤ (𝑂‘(𝐴 ∩ (𝐹𝑛))))
113107, 109, 111, 112syl3anc 1373 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (𝑀...𝑘)) → 0 ≤ (𝑂‘(𝐴 ∩ (𝐹𝑛))))
114113adantlr 715 . . . . . . . . . . . . . 14 (((𝜑𝑧 ⊆ (𝑀...𝑘)) ∧ 𝑛 ∈ (𝑀...𝑘)) → 0 ≤ (𝑂‘(𝐴 ∩ (𝐹𝑛))))
115 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → 𝑧 ⊆ (𝑀...𝑘))
116104, 105, 114, 115fsumless 15812 . . . . . . . . . . . . 13 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) ≤ Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))))
11788, 103, 90, 116leadd1dd 11851 . . . . . . . . . . . 12 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) ≤ (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
118117ad4ant14 752 . . . . . . . . . . 11 ((((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) ∧ 𝑧 ⊆ (𝑀...𝑘)) → (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) ≤ (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
11976, 92, 101, 102, 118ltletrd 11395 . . . . . . . . . 10 ((((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) ∧ 𝑧 ⊆ (𝑀...𝑘)) → (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
120119ex 412 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → (𝑧 ⊆ (𝑀...𝑘) → (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)))
121120reximdv 3155 . . . . . . . 8 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → (∃𝑘𝑍 𝑧 ⊆ (𝑀...𝑘) → ∃𝑘𝑍 (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)))
12275, 121mpd 15 . . . . . . 7 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → ∃𝑘𝑍 (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
123122rexlimdva2 3143 . . . . . 6 (𝜑 → (∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) → ∃𝑘𝑍 (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)))
12468, 123mpd 15 . . . . 5 (𝜑 → ∃𝑘𝑍 (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
12549ad2antrr 726 . . . . . . . 8 (((𝜑𝑘𝑍) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) = (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))))
126 simpr 484 . . . . . . . 8 (((𝜑𝑘𝑍) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
127125, 126eqbrtrd 5141 . . . . . . 7 (((𝜑𝑘𝑍) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
128127ex 412 . . . . . 6 ((𝜑𝑘𝑍) → ((𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)))
129128reximdva 3153 . . . . 5 (𝜑 → (∃𝑘𝑍 (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) → ∃𝑘𝑍 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)))
130124, 129mpd 15 . . . 4 (𝜑 → ∃𝑘𝑍 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
131 simpr 484 . . . . . . 7 (((𝜑𝑘𝑍) ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
1321adantr 480 . . . . . . . . . 10 ((𝜑𝑘𝑍) → 𝑂 ∈ OutMeas)
133 carageniuncllem2.s . . . . . . . . . 10 𝑆 = (CaraGen‘𝑂)
1343adantr 480 . . . . . . . . . 10 ((𝜑𝑘𝑍) → 𝐴𝑋)
1354adantr 480 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (𝑂𝐴) ∈ ℝ)
13639adantr 480 . . . . . . . . . 10 ((𝜑𝑘𝑍) → 𝐸:𝑍𝑆)
137 carageniuncllem2.g . . . . . . . . . 10 𝐺 = (𝑛𝑍 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖))
138 simpr 484 . . . . . . . . . 10 ((𝜑𝑘𝑍) → 𝑘𝑍)
139132, 133, 2, 134, 135, 12, 136, 137, 40, 138carageniuncllem1 46550 . . . . . . . . 9 ((𝜑𝑘𝑍) → Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) = (𝑂‘(𝐴 ∩ (𝐺𝑘))))
140139oveq1d 7420 . . . . . . . 8 ((𝜑𝑘𝑍) → (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) = ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌))
141140adantr 480 . . . . . . 7 (((𝜑𝑘𝑍) ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) = ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌))
142131, 141breqtrd 5145 . . . . . 6 (((𝜑𝑘𝑍) ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌))
143142ex 412 . . . . 5 ((𝜑𝑘𝑍) → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)))
144143reximdva 3153 . . . 4 (𝜑 → (∃𝑘𝑍 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) → ∃𝑘𝑍 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)))
145130, 144mpd 15 . . 3 (𝜑 → ∃𝑘𝑍 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌))
14673ad2ant1 1133 . . . . . . 7 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ∈ ℝ)
14793ad2ant1 1133 . . . . . . 7 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ∈ ℝ)
148 inss1 4212 . . . . . . . . . . 11 (𝐴 ∩ (𝐺𝑘)) ⊆ 𝐴
149148a1i 11 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (𝐴 ∩ (𝐺𝑘)) ⊆ 𝐴)
150132, 2, 134, 135, 149omessre 46539 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝑂‘(𝐴 ∩ (𝐺𝑘))) ∈ ℝ)
15189adantr 480 . . . . . . . . 9 ((𝜑𝑘𝑍) → 𝑌 ∈ ℝ)
152150, 151readdcld 11264 . . . . . . . 8 ((𝜑𝑘𝑍) → ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌) ∈ ℝ)
1531523adant3 1132 . . . . . . 7 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌) ∈ ℝ)
154 difssd 4112 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐴 ∖ (𝐺𝑘)) ⊆ 𝐴)
155132, 2, 134, 135, 154omessre 46539 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝑂‘(𝐴 ∖ (𝐺𝑘))) ∈ ℝ)
1561553adant3 1132 . . . . . . 7 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → (𝑂‘(𝐴 ∖ (𝐺𝑘))) ∈ ℝ)
157 simp3 1138 . . . . . . . 8 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌))
158146, 153, 157ltled 11383 . . . . . . 7 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ≤ ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌))
159134ssdifssd 4122 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐴 ∖ (𝐺𝑘)) ⊆ 𝑋)
160 oveq2 7413 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝑀...𝑛) = (𝑀...𝑘))
161160iuneq1d 4995 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖) = 𝑖 ∈ (𝑀...𝑘)(𝐸𝑖))
162 ovex 7438 . . . . . . . . . . . . . . 15 (𝑀...𝑘) ∈ V
163 fvex 6889 . . . . . . . . . . . . . . 15 (𝐸𝑖) ∈ V
164162, 163iunex 7967 . . . . . . . . . . . . . 14 𝑖 ∈ (𝑀...𝑘)(𝐸𝑖) ∈ V
165161, 137, 164fvmpt 6986 . . . . . . . . . . . . 13 (𝑘𝑍 → (𝐺𝑘) = 𝑖 ∈ (𝑀...𝑘)(𝐸𝑖))
166 fveq2 6876 . . . . . . . . . . . . . . 15 (𝑖 = 𝑛 → (𝐸𝑖) = (𝐸𝑛))
167166cbviunv 5016 . . . . . . . . . . . . . 14 𝑖 ∈ (𝑀...𝑘)(𝐸𝑖) = 𝑛 ∈ (𝑀...𝑘)(𝐸𝑛)
168167a1i 11 . . . . . . . . . . . . 13 (𝑘𝑍 𝑖 ∈ (𝑀...𝑘)(𝐸𝑖) = 𝑛 ∈ (𝑀...𝑘)(𝐸𝑛))
169165, 168eqtrd 2770 . . . . . . . . . . . 12 (𝑘𝑍 → (𝐺𝑘) = 𝑛 ∈ (𝑀...𝑘)(𝐸𝑛))
170 elfzuz 13537 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (𝑀...𝑘) → 𝑖 ∈ (ℤ𝑀))
17112eqcomi 2744 . . . . . . . . . . . . . . . . 17 (ℤ𝑀) = 𝑍
172171a1i 11 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (𝑀...𝑘) → (ℤ𝑀) = 𝑍)
173170, 172eleqtrd 2836 . . . . . . . . . . . . . . 15 (𝑖 ∈ (𝑀...𝑘) → 𝑖𝑍)
174173ssriv 3962 . . . . . . . . . . . . . 14 (𝑀...𝑘) ⊆ 𝑍
175 iunss1 4982 . . . . . . . . . . . . . 14 ((𝑀...𝑘) ⊆ 𝑍 𝑛 ∈ (𝑀...𝑘)(𝐸𝑛) ⊆ 𝑛𝑍 (𝐸𝑛))
176174, 175ax-mp 5 . . . . . . . . . . . . 13 𝑛 ∈ (𝑀...𝑘)(𝐸𝑛) ⊆ 𝑛𝑍 (𝐸𝑛)
177176a1i 11 . . . . . . . . . . . 12 (𝑘𝑍 𝑛 ∈ (𝑀...𝑘)(𝐸𝑛) ⊆ 𝑛𝑍 (𝐸𝑛))
178169, 177eqsstrd 3993 . . . . . . . . . . 11 (𝑘𝑍 → (𝐺𝑘) ⊆ 𝑛𝑍 (𝐸𝑛))
179178adantl 481 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (𝐺𝑘) ⊆ 𝑛𝑍 (𝐸𝑛))
180179sscond 4121 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐴 𝑛𝑍 (𝐸𝑛)) ⊆ (𝐴 ∖ (𝐺𝑘)))
181132, 2, 159, 180omessle 46527 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ≤ (𝑂‘(𝐴 ∖ (𝐺𝑘))))
1821813adant3 1132 . . . . . . 7 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ≤ (𝑂‘(𝐴 ∖ (𝐺𝑘))))
183146, 147, 153, 156, 158, 182le2addd 11856 . . . . . 6 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) + (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) ≤ (((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))))
184150recnd 11263 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝑂‘(𝐴 ∩ (𝐺𝑘))) ∈ ℂ)
18589recnd 11263 . . . . . . . . . 10 (𝜑𝑌 ∈ ℂ)
186185adantr 480 . . . . . . . . 9 ((𝜑𝑘𝑍) → 𝑌 ∈ ℂ)
187155recnd 11263 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝑂‘(𝐴 ∖ (𝐺𝑘))) ∈ ℂ)
188184, 186, 187add32d 11463 . . . . . . . 8 ((𝜑𝑘𝑍) → (((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))) = (((𝑂‘(𝐴 ∩ (𝐺𝑘))) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))) + 𝑌))
189 rexadd 13248 . . . . . . . . . . . 12 (((𝑂‘(𝐴 ∩ (𝐺𝑘))) ∈ ℝ ∧ (𝑂‘(𝐴 ∖ (𝐺𝑘))) ∈ ℝ) → ((𝑂‘(𝐴 ∩ (𝐺𝑘))) +𝑒 (𝑂‘(𝐴 ∖ (𝐺𝑘)))) = ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))))
190150, 155, 189syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → ((𝑂‘(𝐴 ∩ (𝐺𝑘))) +𝑒 (𝑂‘(𝐴 ∖ (𝐺𝑘)))) = ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))))
191190eqcomd 2741 . . . . . . . . . 10 ((𝜑𝑘𝑍) → ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))) = ((𝑂‘(𝐴 ∩ (𝐺𝑘))) +𝑒 (𝑂‘(𝐴 ∖ (𝐺𝑘)))))
192 nfv 1914 . . . . . . . . . . . . . . 15 𝑖𝜑
19339adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (𝑀...𝑘)) → 𝐸:𝑍𝑆)
194173adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (𝑀...𝑘)) → 𝑖𝑍)
195193, 194ffvelcdmd 7075 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (𝑀...𝑘)) → (𝐸𝑖) ∈ 𝑆)
196192, 1, 133, 93, 195caragenfiiuncl 46544 . . . . . . . . . . . . . 14 (𝜑 𝑖 ∈ (𝑀...𝑘)(𝐸𝑖) ∈ 𝑆)
197196adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → 𝑖 ∈ (𝑀...𝑘)(𝐸𝑖) ∈ 𝑆)
198137, 161, 138, 197fvmptd3 7009 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝐺𝑘) = 𝑖 ∈ (𝑀...𝑘)(𝐸𝑖))
199198, 197eqeltrd 2834 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ 𝑆)
200132, 133, 2, 199, 134caragensplit 46529 . . . . . . . . . 10 ((𝜑𝑘𝑍) → ((𝑂‘(𝐴 ∩ (𝐺𝑘))) +𝑒 (𝑂‘(𝐴 ∖ (𝐺𝑘)))) = (𝑂𝐴))
201191, 200eqtrd 2770 . . . . . . . . 9 ((𝜑𝑘𝑍) → ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))) = (𝑂𝐴))
202201oveq1d 7420 . . . . . . . 8 ((𝜑𝑘𝑍) → (((𝑂‘(𝐴 ∩ (𝐺𝑘))) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))) + 𝑌) = ((𝑂𝐴) + 𝑌))
203188, 202eqtrd 2770 . . . . . . 7 ((𝜑𝑘𝑍) → (((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))) = ((𝑂𝐴) + 𝑌))
2042033adant3 1132 . . . . . 6 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → (((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))) = ((𝑂𝐴) + 𝑌))
205183, 204breqtrd 5145 . . . . 5 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) + (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝐴) + 𝑌))
2062053exp 1119 . . . 4 (𝜑 → (𝑘𝑍 → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌) → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) + (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝐴) + 𝑌))))
207206rexlimdv 3139 . . 3 (𝜑 → (∃𝑘𝑍 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌) → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) + (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝐴) + 𝑌)))
208145, 207mpd 15 . 2 (𝜑 → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) + (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝐴) + 𝑌))
20911, 208eqbrtrd 5141 1 (𝜑 → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝐴) + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wrex 3060  Vcvv 3459  cdif 3923  cin 3925  wss 3926  𝒫 cpw 4575   cuni 4883   ciun 4967  Disj wdisj 5086   class class class wbr 5119  cmpt 5201  dom cdm 5654  wf 6527  cfv 6531  (class class class)co 7405  Fincfn 8959  cc 11127  cr 11128  0cc0 11129   + caddc 11132  +∞cpnf 11266  *cxr 11268   < clt 11269  cle 11270  cz 12588  cuz 12852  +crp 13008   +𝑒 cxad 13126  [,]cicc 13365  ...cfz 13524  ..^cfzo 13671  Σcsu 15702  OutMeascome 46518  CaraGenccaragen 46520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-ac2 10477  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-omul 8485  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-oi 9524  df-card 9953  df-acn 9956  df-ac 10130  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-xadd 13129  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703  df-sumge0 46392  df-ome 46519  df-caragen 46521
This theorem is referenced by:  carageniuncl  46552
  Copyright terms: Public domain W3C validator