Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carageniuncllem2 Structured version   Visualization version   GIF version

Theorem carageniuncllem2 46523
Description: The Caratheodory's construction is closed under countable union. Step (d) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
carageniuncllem2.o (𝜑𝑂 ∈ OutMeas)
carageniuncllem2.s 𝑆 = (CaraGen‘𝑂)
carageniuncllem2.x 𝑋 = dom 𝑂
carageniuncllem2.a (𝜑𝐴𝑋)
carageniuncllem2.re (𝜑 → (𝑂𝐴) ∈ ℝ)
carageniuncllem2.m (𝜑𝑀 ∈ ℤ)
carageniuncllem2.z 𝑍 = (ℤ𝑀)
carageniuncllem2.e (𝜑𝐸:𝑍𝑆)
carageniuncllem2.y (𝜑𝑌 ∈ ℝ+)
carageniuncllem2.g 𝐺 = (𝑛𝑍 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖))
carageniuncllem2.f 𝐹 = (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑀..^𝑛)(𝐸𝑖)))
Assertion
Ref Expression
carageniuncllem2 (𝜑 → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝐴) + 𝑌))
Distinct variable groups:   𝐴,𝑛   𝑖,𝐸,𝑛   𝑛,𝐹   𝑖,𝑀,𝑛   𝑛,𝑂   𝑆,𝑖   𝑛,𝑋   𝑖,𝑍,𝑛   𝜑,𝑖,𝑛
Allowed substitution hints:   𝐴(𝑖)   𝑆(𝑛)   𝐹(𝑖)   𝐺(𝑖,𝑛)   𝑂(𝑖)   𝑋(𝑖)   𝑌(𝑖,𝑛)

Proof of Theorem carageniuncllem2
Dummy variables 𝑘 𝑧 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 carageniuncllem2.o . . . 4 (𝜑𝑂 ∈ OutMeas)
2 carageniuncllem2.x . . . 4 𝑋 = dom 𝑂
3 carageniuncllem2.a . . . 4 (𝜑𝐴𝑋)
4 carageniuncllem2.re . . . 4 (𝜑 → (𝑂𝐴) ∈ ℝ)
5 inss1 4188 . . . . 5 (𝐴 𝑛𝑍 (𝐸𝑛)) ⊆ 𝐴
65a1i 11 . . . 4 (𝜑 → (𝐴 𝑛𝑍 (𝐸𝑛)) ⊆ 𝐴)
71, 2, 3, 4, 6omessre 46511 . . 3 (𝜑 → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ∈ ℝ)
8 difssd 4088 . . . 4 (𝜑 → (𝐴 𝑛𝑍 (𝐸𝑛)) ⊆ 𝐴)
91, 2, 3, 4, 8omessre 46511 . . 3 (𝜑 → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ∈ ℝ)
10 rexadd 13134 . . 3 (((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ∈ ℝ ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ∈ ℝ) → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) = ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) + (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))))
117, 9, 10syl2anc 584 . 2 (𝜑 → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) = ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) + (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))))
12 carageniuncllem2.z . . . . . . . 8 𝑍 = (ℤ𝑀)
13 ssinss1 4197 . . . . . . . . . . . . 13 (𝐴𝑋 → (𝐴 ∩ (𝐹𝑛)) ⊆ 𝑋)
143, 13syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∩ (𝐹𝑛)) ⊆ 𝑋)
151, 2unidmex 45048 . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ V)
16 ssexg 5262 . . . . . . . . . . . . . . 15 ((𝐴𝑋𝑋 ∈ V) → 𝐴 ∈ V)
173, 15, 16syl2anc 584 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ V)
18 inex1g 5258 . . . . . . . . . . . . . 14 (𝐴 ∈ V → (𝐴 ∩ (𝐹𝑛)) ∈ V)
1917, 18syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐴 ∩ (𝐹𝑛)) ∈ V)
20 elpwg 4554 . . . . . . . . . . . . 13 ((𝐴 ∩ (𝐹𝑛)) ∈ V → ((𝐴 ∩ (𝐹𝑛)) ∈ 𝒫 𝑋 ↔ (𝐴 ∩ (𝐹𝑛)) ⊆ 𝑋))
2119, 20syl 17 . . . . . . . . . . . 12 (𝜑 → ((𝐴 ∩ (𝐹𝑛)) ∈ 𝒫 𝑋 ↔ (𝐴 ∩ (𝐹𝑛)) ⊆ 𝑋))
2214, 21mpbird 257 . . . . . . . . . . 11 (𝜑 → (𝐴 ∩ (𝐹𝑛)) ∈ 𝒫 𝑋)
2322adantr 480 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝐴 ∩ (𝐹𝑛)) ∈ 𝒫 𝑋)
24 eqid 2729 . . . . . . . . . 10 (𝑛𝑍 ↦ (𝐴 ∩ (𝐹𝑛))) = (𝑛𝑍 ↦ (𝐴 ∩ (𝐹𝑛)))
2523, 24fmptd 7048 . . . . . . . . 9 (𝜑 → (𝑛𝑍 ↦ (𝐴 ∩ (𝐹𝑛))):𝑍⟶𝒫 𝑋)
26 fveq2 6822 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
2726ineq2d 4171 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (𝐴 ∩ (𝐹𝑘)) = (𝐴 ∩ (𝐹𝑛)))
2827cbvmptv 5196 . . . . . . . . . . 11 (𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘))) = (𝑛𝑍 ↦ (𝐴 ∩ (𝐹𝑛)))
2928feq1i 6643 . . . . . . . . . 10 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘))):𝑍⟶𝒫 𝑋 ↔ (𝑛𝑍 ↦ (𝐴 ∩ (𝐹𝑛))):𝑍⟶𝒫 𝑋)
3029a1i 11 . . . . . . . . 9 (𝜑 → ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘))):𝑍⟶𝒫 𝑋 ↔ (𝑛𝑍 ↦ (𝐴 ∩ (𝐹𝑛))):𝑍⟶𝒫 𝑋))
3125, 30mpbird 257 . . . . . . . 8 (𝜑 → (𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘))):𝑍⟶𝒫 𝑋)
32 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → 𝑛𝑍)
3319adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → (𝐴 ∩ (𝐹𝑛)) ∈ V)
3428fvmpt2 6941 . . . . . . . . . . . 12 ((𝑛𝑍 ∧ (𝐴 ∩ (𝐹𝑛)) ∈ V) → ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛) = (𝐴 ∩ (𝐹𝑛)))
3532, 33, 34syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛) = (𝐴 ∩ (𝐹𝑛)))
3635iuneq2dv 4966 . . . . . . . . . 10 (𝜑 𝑛𝑍 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛) = 𝑛𝑍 (𝐴 ∩ (𝐹𝑛)))
3736fveq2d 6826 . . . . . . . . 9 (𝜑 → (𝑂 𝑛𝑍 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) = (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))))
38 nfv 1914 . . . . . . . . . . . . . . . 16 𝑛𝜑
39 carageniuncllem2.e . . . . . . . . . . . . . . . 16 (𝜑𝐸:𝑍𝑆)
40 carageniuncllem2.f . . . . . . . . . . . . . . . 16 𝐹 = (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑀..^𝑛)(𝐸𝑖)))
4138, 12, 39, 40iundjiun 46461 . . . . . . . . . . . . . . 15 (𝜑 → ((∀𝑚𝑍 𝑛 ∈ (𝑀...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑀...𝑚)(𝐸𝑛) ∧ 𝑛𝑍 (𝐹𝑛) = 𝑛𝑍 (𝐸𝑛)) ∧ Disj 𝑛𝑍 (𝐹𝑛)))
4241simplrd 769 . . . . . . . . . . . . . 14 (𝜑 𝑛𝑍 (𝐹𝑛) = 𝑛𝑍 (𝐸𝑛))
4342eqcomd 2735 . . . . . . . . . . . . 13 (𝜑 𝑛𝑍 (𝐸𝑛) = 𝑛𝑍 (𝐹𝑛))
4443ineq2d 4171 . . . . . . . . . . . 12 (𝜑 → (𝐴 𝑛𝑍 (𝐸𝑛)) = (𝐴 𝑛𝑍 (𝐹𝑛)))
45 iunin2 5020 . . . . . . . . . . . . . 14 𝑛𝑍 (𝐴 ∩ (𝐹𝑛)) = (𝐴 𝑛𝑍 (𝐹𝑛))
4645eqcomi 2738 . . . . . . . . . . . . 13 (𝐴 𝑛𝑍 (𝐹𝑛)) = 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))
4746a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐴 𝑛𝑍 (𝐹𝑛)) = 𝑛𝑍 (𝐴 ∩ (𝐹𝑛)))
4844, 47eqtrd 2764 . . . . . . . . . . 11 (𝜑 → (𝐴 𝑛𝑍 (𝐸𝑛)) = 𝑛𝑍 (𝐴 ∩ (𝐹𝑛)))
4948fveq2d 6826 . . . . . . . . . 10 (𝜑 → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) = (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))))
5049, 7eqeltrrd 2829 . . . . . . . . 9 (𝜑 → (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
5137, 50eqeltrd 2828 . . . . . . . 8 (𝜑 → (𝑂 𝑛𝑍 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) ∈ ℝ)
52 carageniuncllem2.y . . . . . . . 8 (𝜑𝑌 ∈ ℝ+)
531, 2, 12, 31, 51, 52omeiunltfirp 46520 . . . . . . 7 (𝜑 → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) < (Σ𝑛𝑧 (𝑂‘((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) + 𝑌))
5437adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (𝑂 𝑛𝑍 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) = (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))))
55 elpwinss 45047 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (𝒫 𝑍 ∩ Fin) → 𝑧𝑍)
5655adantr 480 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑛𝑧) → 𝑧𝑍)
57 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑛𝑧) → 𝑛𝑧)
5856, 57sseldd 3936 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑛𝑧) → 𝑛𝑍)
5958adantll 714 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → 𝑛𝑍)
6019ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝐴 ∩ (𝐹𝑛)) ∈ V)
6159, 60, 34syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛) = (𝐴 ∩ (𝐹𝑛)))
6261fveq2d 6826 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑛𝑧) → (𝑂‘((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) = (𝑂‘(𝐴 ∩ (𝐹𝑛))))
6362sumeq2dv 15609 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑛𝑧 (𝑂‘((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) = Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))))
6463oveq1d 7364 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ𝑛𝑧 (𝑂‘((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) + 𝑌) = (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
6554, 64breq12d 5105 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → ((𝑂 𝑛𝑍 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) < (Σ𝑛𝑧 (𝑂‘((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) + 𝑌) ↔ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)))
6665biimpd 229 . . . . . . . 8 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → ((𝑂 𝑛𝑍 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) < (Σ𝑛𝑧 (𝑂‘((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) + 𝑌) → (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)))
6766reximdva 3142 . . . . . . 7 (𝜑 → (∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 ((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) < (Σ𝑛𝑧 (𝑂‘((𝑘𝑍 ↦ (𝐴 ∩ (𝐹𝑘)))‘𝑛)) + 𝑌) → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)))
6853, 67mpd 15 . . . . . 6 (𝜑 → ∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
69 carageniuncllem2.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
7069adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑀 ∈ ℤ)
7155adantl 481 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑧𝑍)
72 elinel2 4153 . . . . . . . . . . 11 (𝑧 ∈ (𝒫 𝑍 ∩ Fin) → 𝑧 ∈ Fin)
7372adantl 481 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑧 ∈ Fin)
7470, 12, 71, 73uzfissfz 45326 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → ∃𝑘𝑍 𝑧 ⊆ (𝑀...𝑘))
7574adantr 480 . . . . . . . 8 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → ∃𝑘𝑍 𝑧 ⊆ (𝑀...𝑘))
7650ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) ∧ 𝑧 ⊆ (𝑀...𝑘)) → (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
77 fzfid 13880 . . . . . . . . . . . . . . . 16 (𝑧 ⊆ (𝑀...𝑘) → (𝑀...𝑘) ∈ Fin)
78 id 22 . . . . . . . . . . . . . . . 16 (𝑧 ⊆ (𝑀...𝑘) → 𝑧 ⊆ (𝑀...𝑘))
79 ssfi 9087 . . . . . . . . . . . . . . . 16 (((𝑀...𝑘) ∈ Fin ∧ 𝑧 ⊆ (𝑀...𝑘)) → 𝑧 ∈ Fin)
8077, 78, 79syl2anc 584 . . . . . . . . . . . . . . 15 (𝑧 ⊆ (𝑀...𝑘) → 𝑧 ∈ Fin)
8180adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → 𝑧 ∈ Fin)
821ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ⊆ (𝑀...𝑘)) ∧ 𝑛𝑧) → 𝑂 ∈ OutMeas)
833ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ⊆ (𝑀...𝑘)) ∧ 𝑛𝑧) → 𝐴𝑋)
844ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ⊆ (𝑀...𝑘)) ∧ 𝑛𝑧) → (𝑂𝐴) ∈ ℝ)
85 inss1 4188 . . . . . . . . . . . . . . . 16 (𝐴 ∩ (𝐹𝑛)) ⊆ 𝐴
8685a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ⊆ (𝑀...𝑘)) ∧ 𝑛𝑧) → (𝐴 ∩ (𝐹𝑛)) ⊆ 𝐴)
8782, 2, 83, 84, 86omessre 46511 . . . . . . . . . . . . . 14 (((𝜑𝑧 ⊆ (𝑀...𝑘)) ∧ 𝑛𝑧) → (𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
8881, 87fsumrecl 15641 . . . . . . . . . . . . 13 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
8952rpred 12937 . . . . . . . . . . . . . 14 (𝜑𝑌 ∈ ℝ)
9089adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → 𝑌 ∈ ℝ)
9188, 90readdcld 11144 . . . . . . . . . . . 12 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) ∈ ℝ)
9291ad4ant14 752 . . . . . . . . . . 11 ((((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) ∧ 𝑧 ⊆ (𝑀...𝑘)) → (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) ∈ ℝ)
93 fzfid 13880 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀...𝑘) ∈ Fin)
9485a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 ∩ (𝐹𝑛)) ⊆ 𝐴)
951, 2, 3, 4, 94omessre 46511 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
9695adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (𝑀...𝑘)) → (𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
9793, 96fsumrecl 15641 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
9897adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
9989adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑌 ∈ ℝ)
10098, 99readdcld 11144 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) → (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) ∈ ℝ)
101100ad2antrr 726 . . . . . . . . . . 11 ((((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) ∧ 𝑧 ⊆ (𝑀...𝑘)) → (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) ∈ ℝ)
102 simplr 768 . . . . . . . . . . 11 ((((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) ∧ 𝑧 ⊆ (𝑀...𝑘)) → (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
10397adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
104 fzfid 13880 . . . . . . . . . . . . . 14 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → (𝑀...𝑘) ∈ Fin)
10596adantlr 715 . . . . . . . . . . . . . 14 (((𝜑𝑧 ⊆ (𝑀...𝑘)) ∧ 𝑛 ∈ (𝑀...𝑘)) → (𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ ℝ)
106 0xr 11162 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ*
107106a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (𝑀...𝑘)) → 0 ∈ ℝ*)
108 pnfxr 11169 . . . . . . . . . . . . . . . . 17 +∞ ∈ ℝ*
109108a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (𝑀...𝑘)) → +∞ ∈ ℝ*)
1101, 2, 14omecl 46504 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ (0[,]+∞))
111110adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (𝑀...𝑘)) → (𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ (0[,]+∞))
112 iccgelb 13305 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝑂‘(𝐴 ∩ (𝐹𝑛))) ∈ (0[,]+∞)) → 0 ≤ (𝑂‘(𝐴 ∩ (𝐹𝑛))))
113107, 109, 111, 112syl3anc 1373 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (𝑀...𝑘)) → 0 ≤ (𝑂‘(𝐴 ∩ (𝐹𝑛))))
114113adantlr 715 . . . . . . . . . . . . . 14 (((𝜑𝑧 ⊆ (𝑀...𝑘)) ∧ 𝑛 ∈ (𝑀...𝑘)) → 0 ≤ (𝑂‘(𝐴 ∩ (𝐹𝑛))))
115 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → 𝑧 ⊆ (𝑀...𝑘))
116104, 105, 114, 115fsumless 15703 . . . . . . . . . . . . 13 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) ≤ Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))))
11788, 103, 90, 116leadd1dd 11734 . . . . . . . . . . . 12 ((𝜑𝑧 ⊆ (𝑀...𝑘)) → (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) ≤ (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
118117ad4ant14 752 . . . . . . . . . . 11 ((((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) ∧ 𝑧 ⊆ (𝑀...𝑘)) → (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) ≤ (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
11976, 92, 101, 102, 118ltletrd 11276 . . . . . . . . . 10 ((((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) ∧ 𝑧 ⊆ (𝑀...𝑘)) → (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
120119ex 412 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → (𝑧 ⊆ (𝑀...𝑘) → (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)))
121120reximdv 3144 . . . . . . . 8 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → (∃𝑘𝑍 𝑧 ⊆ (𝑀...𝑘) → ∃𝑘𝑍 (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)))
12275, 121mpd 15 . . . . . . 7 (((𝜑𝑧 ∈ (𝒫 𝑍 ∩ Fin)) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → ∃𝑘𝑍 (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
123122rexlimdva2 3132 . . . . . 6 (𝜑 → (∃𝑧 ∈ (𝒫 𝑍 ∩ Fin)(𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛𝑧 (𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) → ∃𝑘𝑍 (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)))
12468, 123mpd 15 . . . . 5 (𝜑 → ∃𝑘𝑍 (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
12549ad2antrr 726 . . . . . . . 8 (((𝜑𝑘𝑍) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) = (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))))
126 simpr 484 . . . . . . . 8 (((𝜑𝑘𝑍) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
127125, 126eqbrtrd 5114 . . . . . . 7 (((𝜑𝑘𝑍) ∧ (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
128127ex 412 . . . . . 6 ((𝜑𝑘𝑍) → ((𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)))
129128reximdva 3142 . . . . 5 (𝜑 → (∃𝑘𝑍 (𝑂 𝑛𝑍 (𝐴 ∩ (𝐹𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) → ∃𝑘𝑍 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)))
130124, 129mpd 15 . . . 4 (𝜑 → ∃𝑘𝑍 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
131 simpr 484 . . . . . . 7 (((𝜑𝑘𝑍) ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌))
1321adantr 480 . . . . . . . . . 10 ((𝜑𝑘𝑍) → 𝑂 ∈ OutMeas)
133 carageniuncllem2.s . . . . . . . . . 10 𝑆 = (CaraGen‘𝑂)
1343adantr 480 . . . . . . . . . 10 ((𝜑𝑘𝑍) → 𝐴𝑋)
1354adantr 480 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (𝑂𝐴) ∈ ℝ)
13639adantr 480 . . . . . . . . . 10 ((𝜑𝑘𝑍) → 𝐸:𝑍𝑆)
137 carageniuncllem2.g . . . . . . . . . 10 𝐺 = (𝑛𝑍 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖))
138 simpr 484 . . . . . . . . . 10 ((𝜑𝑘𝑍) → 𝑘𝑍)
139132, 133, 2, 134, 135, 12, 136, 137, 40, 138carageniuncllem1 46522 . . . . . . . . 9 ((𝜑𝑘𝑍) → Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) = (𝑂‘(𝐴 ∩ (𝐺𝑘))))
140139oveq1d 7364 . . . . . . . 8 ((𝜑𝑘𝑍) → (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) = ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌))
141140adantr 480 . . . . . . 7 (((𝜑𝑘𝑍) ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) = ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌))
142131, 141breqtrd 5118 . . . . . 6 (((𝜑𝑘𝑍) ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌))
143142ex 412 . . . . 5 ((𝜑𝑘𝑍) → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)))
144143reximdva 3142 . . . 4 (𝜑 → (∃𝑘𝑍 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < (Σ𝑛 ∈ (𝑀...𝑘)(𝑂‘(𝐴 ∩ (𝐹𝑛))) + 𝑌) → ∃𝑘𝑍 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)))
145130, 144mpd 15 . . 3 (𝜑 → ∃𝑘𝑍 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌))
14673ad2ant1 1133 . . . . . . 7 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ∈ ℝ)
14793ad2ant1 1133 . . . . . . 7 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ∈ ℝ)
148 inss1 4188 . . . . . . . . . . 11 (𝐴 ∩ (𝐺𝑘)) ⊆ 𝐴
149148a1i 11 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (𝐴 ∩ (𝐺𝑘)) ⊆ 𝐴)
150132, 2, 134, 135, 149omessre 46511 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝑂‘(𝐴 ∩ (𝐺𝑘))) ∈ ℝ)
15189adantr 480 . . . . . . . . 9 ((𝜑𝑘𝑍) → 𝑌 ∈ ℝ)
152150, 151readdcld 11144 . . . . . . . 8 ((𝜑𝑘𝑍) → ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌) ∈ ℝ)
1531523adant3 1132 . . . . . . 7 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌) ∈ ℝ)
154 difssd 4088 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐴 ∖ (𝐺𝑘)) ⊆ 𝐴)
155132, 2, 134, 135, 154omessre 46511 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝑂‘(𝐴 ∖ (𝐺𝑘))) ∈ ℝ)
1561553adant3 1132 . . . . . . 7 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → (𝑂‘(𝐴 ∖ (𝐺𝑘))) ∈ ℝ)
157 simp3 1138 . . . . . . . 8 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌))
158146, 153, 157ltled 11264 . . . . . . 7 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ≤ ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌))
159134ssdifssd 4098 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐴 ∖ (𝐺𝑘)) ⊆ 𝑋)
160 oveq2 7357 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝑀...𝑛) = (𝑀...𝑘))
161160iuneq1d 4969 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖) = 𝑖 ∈ (𝑀...𝑘)(𝐸𝑖))
162 ovex 7382 . . . . . . . . . . . . . . 15 (𝑀...𝑘) ∈ V
163 fvex 6835 . . . . . . . . . . . . . . 15 (𝐸𝑖) ∈ V
164162, 163iunex 7903 . . . . . . . . . . . . . 14 𝑖 ∈ (𝑀...𝑘)(𝐸𝑖) ∈ V
165161, 137, 164fvmpt 6930 . . . . . . . . . . . . 13 (𝑘𝑍 → (𝐺𝑘) = 𝑖 ∈ (𝑀...𝑘)(𝐸𝑖))
166 fveq2 6822 . . . . . . . . . . . . . . 15 (𝑖 = 𝑛 → (𝐸𝑖) = (𝐸𝑛))
167166cbviunv 4989 . . . . . . . . . . . . . 14 𝑖 ∈ (𝑀...𝑘)(𝐸𝑖) = 𝑛 ∈ (𝑀...𝑘)(𝐸𝑛)
168167a1i 11 . . . . . . . . . . . . 13 (𝑘𝑍 𝑖 ∈ (𝑀...𝑘)(𝐸𝑖) = 𝑛 ∈ (𝑀...𝑘)(𝐸𝑛))
169165, 168eqtrd 2764 . . . . . . . . . . . 12 (𝑘𝑍 → (𝐺𝑘) = 𝑛 ∈ (𝑀...𝑘)(𝐸𝑛))
170 elfzuz 13423 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (𝑀...𝑘) → 𝑖 ∈ (ℤ𝑀))
17112eqcomi 2738 . . . . . . . . . . . . . . . . 17 (ℤ𝑀) = 𝑍
172171a1i 11 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (𝑀...𝑘) → (ℤ𝑀) = 𝑍)
173170, 172eleqtrd 2830 . . . . . . . . . . . . . . 15 (𝑖 ∈ (𝑀...𝑘) → 𝑖𝑍)
174173ssriv 3939 . . . . . . . . . . . . . 14 (𝑀...𝑘) ⊆ 𝑍
175 iunss1 4956 . . . . . . . . . . . . . 14 ((𝑀...𝑘) ⊆ 𝑍 𝑛 ∈ (𝑀...𝑘)(𝐸𝑛) ⊆ 𝑛𝑍 (𝐸𝑛))
176174, 175ax-mp 5 . . . . . . . . . . . . 13 𝑛 ∈ (𝑀...𝑘)(𝐸𝑛) ⊆ 𝑛𝑍 (𝐸𝑛)
177176a1i 11 . . . . . . . . . . . 12 (𝑘𝑍 𝑛 ∈ (𝑀...𝑘)(𝐸𝑛) ⊆ 𝑛𝑍 (𝐸𝑛))
178169, 177eqsstrd 3970 . . . . . . . . . . 11 (𝑘𝑍 → (𝐺𝑘) ⊆ 𝑛𝑍 (𝐸𝑛))
179178adantl 481 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (𝐺𝑘) ⊆ 𝑛𝑍 (𝐸𝑛))
180179sscond 4097 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐴 𝑛𝑍 (𝐸𝑛)) ⊆ (𝐴 ∖ (𝐺𝑘)))
181132, 2, 159, 180omessle 46499 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ≤ (𝑂‘(𝐴 ∖ (𝐺𝑘))))
1821813adant3 1132 . . . . . . 7 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) ≤ (𝑂‘(𝐴 ∖ (𝐺𝑘))))
183146, 147, 153, 156, 158, 182le2addd 11739 . . . . . 6 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) + (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) ≤ (((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))))
184150recnd 11143 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝑂‘(𝐴 ∩ (𝐺𝑘))) ∈ ℂ)
18589recnd 11143 . . . . . . . . . 10 (𝜑𝑌 ∈ ℂ)
186185adantr 480 . . . . . . . . 9 ((𝜑𝑘𝑍) → 𝑌 ∈ ℂ)
187155recnd 11143 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝑂‘(𝐴 ∖ (𝐺𝑘))) ∈ ℂ)
188184, 186, 187add32d 11344 . . . . . . . 8 ((𝜑𝑘𝑍) → (((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))) = (((𝑂‘(𝐴 ∩ (𝐺𝑘))) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))) + 𝑌))
189 rexadd 13134 . . . . . . . . . . . 12 (((𝑂‘(𝐴 ∩ (𝐺𝑘))) ∈ ℝ ∧ (𝑂‘(𝐴 ∖ (𝐺𝑘))) ∈ ℝ) → ((𝑂‘(𝐴 ∩ (𝐺𝑘))) +𝑒 (𝑂‘(𝐴 ∖ (𝐺𝑘)))) = ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))))
190150, 155, 189syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → ((𝑂‘(𝐴 ∩ (𝐺𝑘))) +𝑒 (𝑂‘(𝐴 ∖ (𝐺𝑘)))) = ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))))
191190eqcomd 2735 . . . . . . . . . 10 ((𝜑𝑘𝑍) → ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))) = ((𝑂‘(𝐴 ∩ (𝐺𝑘))) +𝑒 (𝑂‘(𝐴 ∖ (𝐺𝑘)))))
192 nfv 1914 . . . . . . . . . . . . . . 15 𝑖𝜑
19339adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (𝑀...𝑘)) → 𝐸:𝑍𝑆)
194173adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (𝑀...𝑘)) → 𝑖𝑍)
195193, 194ffvelcdmd 7019 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (𝑀...𝑘)) → (𝐸𝑖) ∈ 𝑆)
196192, 1, 133, 93, 195caragenfiiuncl 46516 . . . . . . . . . . . . . 14 (𝜑 𝑖 ∈ (𝑀...𝑘)(𝐸𝑖) ∈ 𝑆)
197196adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → 𝑖 ∈ (𝑀...𝑘)(𝐸𝑖) ∈ 𝑆)
198137, 161, 138, 197fvmptd3 6953 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝐺𝑘) = 𝑖 ∈ (𝑀...𝑘)(𝐸𝑖))
199198, 197eqeltrd 2828 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ 𝑆)
200132, 133, 2, 199, 134caragensplit 46501 . . . . . . . . . 10 ((𝜑𝑘𝑍) → ((𝑂‘(𝐴 ∩ (𝐺𝑘))) +𝑒 (𝑂‘(𝐴 ∖ (𝐺𝑘)))) = (𝑂𝐴))
201191, 200eqtrd 2764 . . . . . . . . 9 ((𝜑𝑘𝑍) → ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))) = (𝑂𝐴))
202201oveq1d 7364 . . . . . . . 8 ((𝜑𝑘𝑍) → (((𝑂‘(𝐴 ∩ (𝐺𝑘))) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))) + 𝑌) = ((𝑂𝐴) + 𝑌))
203188, 202eqtrd 2764 . . . . . . 7 ((𝜑𝑘𝑍) → (((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))) = ((𝑂𝐴) + 𝑌))
2042033adant3 1132 . . . . . 6 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → (((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌) + (𝑂‘(𝐴 ∖ (𝐺𝑘)))) = ((𝑂𝐴) + 𝑌))
205183, 204breqtrd 5118 . . . . 5 ((𝜑𝑘𝑍 ∧ (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌)) → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) + (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝐴) + 𝑌))
2062053exp 1119 . . . 4 (𝜑 → (𝑘𝑍 → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌) → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) + (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝐴) + 𝑌))))
207206rexlimdv 3128 . . 3 (𝜑 → (∃𝑘𝑍 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) < ((𝑂‘(𝐴 ∩ (𝐺𝑘))) + 𝑌) → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) + (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝐴) + 𝑌)))
208145, 207mpd 15 . 2 (𝜑 → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) + (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝐴) + 𝑌))
20911, 208eqbrtrd 5114 1 (𝜑 → ((𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝐴 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝐴) + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3436  cdif 3900  cin 3902  wss 3903  𝒫 cpw 4551   cuni 4858   ciun 4941  Disj wdisj 5059   class class class wbr 5092  cmpt 5173  dom cdm 5619  wf 6478  cfv 6482  (class class class)co 7349  Fincfn 8872  cc 11007  cr 11008  0cc0 11009   + caddc 11012  +∞cpnf 11146  *cxr 11148   < clt 11149  cle 11150  cz 12471  cuz 12735  +crp 12893   +𝑒 cxad 13012  [,]cicc 13251  ...cfz 13410  ..^cfzo 13557  Σcsu 15593  OutMeascome 46490  CaraGenccaragen 46492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-ac2 10357  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-disj 5060  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-omul 8393  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-oi 9402  df-card 9835  df-acn 9838  df-ac 10010  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-xadd 13015  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-sumge0 46364  df-ome 46491  df-caragen 46493
This theorem is referenced by:  carageniuncl  46524
  Copyright terms: Public domain W3C validator