MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blcld Structured version   Visualization version   GIF version

Theorem blcld 24334
Description: A "closed ball" in a metric space is actually closed. (Contributed by Mario Carneiro, 31-Dec-2013.) (Revised by Mario Carneiro, 24-Aug-2015.)
Hypotheses
Ref Expression
mopni.1 𝐽 = (MetOpen‘𝐷)
blcld.3 𝑆 = {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅}
Assertion
Ref Expression
blcld ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝑆 ∈ (Clsd‘𝐽))
Distinct variable groups:   𝑧,𝐷   𝑧,𝑅   𝑧,𝑃   𝑧,𝑋
Allowed substitution hints:   𝑆(𝑧)   𝐽(𝑧)

Proof of Theorem blcld
Dummy variables 𝑥 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mopni.1 . . . . . 6 𝐽 = (MetOpen‘𝐷)
21mopnuni 24267 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
323ad2ant1 1132 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝑋 = 𝐽)
43difeq1d 4121 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑋𝑆) = ( 𝐽𝑆))
5 difssd 4132 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑋𝑆) ⊆ 𝑋)
6 simpl3 1192 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → 𝑅 ∈ ℝ*)
7 simpl1 1190 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → 𝐷 ∈ (∞Met‘𝑋))
8 simpl2 1191 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → 𝑃𝑋)
9 eldifi 4126 . . . . . . . . 9 (𝑦 ∈ (𝑋𝑆) → 𝑦𝑋)
109adantl 481 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → 𝑦𝑋)
11 xmetcl 24157 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑦𝑋) → (𝑃𝐷𝑦) ∈ ℝ*)
127, 8, 10, 11syl3anc 1370 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → (𝑃𝐷𝑦) ∈ ℝ*)
13 eldif 3958 . . . . . . . . . 10 (𝑦 ∈ (𝑋𝑆) ↔ (𝑦𝑋 ∧ ¬ 𝑦𝑆))
14 oveq2 7420 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → (𝑃𝐷𝑧) = (𝑃𝐷𝑦))
1514breq1d 5158 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → ((𝑃𝐷𝑧) ≤ 𝑅 ↔ (𝑃𝐷𝑦) ≤ 𝑅))
16 blcld.3 . . . . . . . . . . . . 13 𝑆 = {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅}
1715, 16elrab2 3686 . . . . . . . . . . . 12 (𝑦𝑆 ↔ (𝑦𝑋 ∧ (𝑃𝐷𝑦) ≤ 𝑅))
1817simplbi2 500 . . . . . . . . . . 11 (𝑦𝑋 → ((𝑃𝐷𝑦) ≤ 𝑅𝑦𝑆))
1918con3dimp 408 . . . . . . . . . 10 ((𝑦𝑋 ∧ ¬ 𝑦𝑆) → ¬ (𝑃𝐷𝑦) ≤ 𝑅)
2013, 19sylbi 216 . . . . . . . . 9 (𝑦 ∈ (𝑋𝑆) → ¬ (𝑃𝐷𝑦) ≤ 𝑅)
2120adantl 481 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → ¬ (𝑃𝐷𝑦) ≤ 𝑅)
22 xrltnle 11288 . . . . . . . . 9 ((𝑅 ∈ ℝ* ∧ (𝑃𝐷𝑦) ∈ ℝ*) → (𝑅 < (𝑃𝐷𝑦) ↔ ¬ (𝑃𝐷𝑦) ≤ 𝑅))
236, 12, 22syl2anc 583 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → (𝑅 < (𝑃𝐷𝑦) ↔ ¬ (𝑃𝐷𝑦) ≤ 𝑅))
2421, 23mpbird 257 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → 𝑅 < (𝑃𝐷𝑦))
25 qbtwnxr 13186 . . . . . . 7 ((𝑅 ∈ ℝ* ∧ (𝑃𝐷𝑦) ∈ ℝ*𝑅 < (𝑃𝐷𝑦)) → ∃𝑥 ∈ ℚ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))
266, 12, 24, 25syl3anc 1370 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → ∃𝑥 ∈ ℚ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))
27 qre 12944 . . . . . . . 8 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ)
287adantr 480 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝐷 ∈ (∞Met‘𝑋))
2910adantr 480 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑦𝑋)
3012adantr 480 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑃𝐷𝑦) ∈ ℝ*)
31 rexr 11267 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
3231ad2antrl 725 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑥 ∈ ℝ*)
3332xnegcld 13286 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → -𝑒𝑥 ∈ ℝ*)
3430, 33xaddcld 13287 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) ∈ ℝ*)
35 blelrn 24243 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) ∈ ℝ*) → (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∈ ran (ball‘𝐷))
3628, 29, 34, 35syl3anc 1370 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∈ ran (ball‘𝐷))
37 simprrr 779 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑥 < (𝑃𝐷𝑦))
38 xposdif 13248 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑦) ∈ ℝ*) → (𝑥 < (𝑃𝐷𝑦) ↔ 0 < ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)))
3932, 30, 38syl2anc 583 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑥 < (𝑃𝐷𝑦) ↔ 0 < ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)))
4037, 39mpbid 231 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 0 < ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥))
41 xblcntr 24237 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ (((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) ∈ ℝ* ∧ 0 < ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥))) → 𝑦 ∈ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)))
4228, 29, 34, 40, 41syl112anc 1373 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑦 ∈ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)))
43 incom 4201 . . . . . . . . . . . . 13 ((𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∩ (𝑃(ball‘𝐷)𝑥)) = ((𝑃(ball‘𝐷)𝑥) ∩ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)))
448adantr 480 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑃𝑋)
45 xaddcom 13226 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ* ∧ ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) ∈ ℝ*) → (𝑥 +𝑒 ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) = (((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) +𝑒 𝑥))
4632, 34, 45syl2anc 583 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑥 +𝑒 ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) = (((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) +𝑒 𝑥))
47 simprl 768 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑥 ∈ ℝ)
48 xnpcan 13238 . . . . . . . . . . . . . . . . 17 (((𝑃𝐷𝑦) ∈ ℝ*𝑥 ∈ ℝ) → (((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) +𝑒 𝑥) = (𝑃𝐷𝑦))
4930, 47, 48syl2anc 583 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) +𝑒 𝑥) = (𝑃𝐷𝑦))
5046, 49eqtrd 2771 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑥 +𝑒 ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) = (𝑃𝐷𝑦))
5130xrleidd 13138 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑃𝐷𝑦) ≤ (𝑃𝐷𝑦))
5250, 51eqbrtrd 5170 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑥 +𝑒 ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ≤ (𝑃𝐷𝑦))
53 bldisj 24224 . . . . . . . . . . . . . 14 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑦𝑋) ∧ (𝑥 ∈ ℝ* ∧ ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) ∈ ℝ* ∧ (𝑥 +𝑒 ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ≤ (𝑃𝐷𝑦))) → ((𝑃(ball‘𝐷)𝑥) ∩ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥))) = ∅)
5428, 44, 29, 32, 34, 52, 53syl33anc 1384 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → ((𝑃(ball‘𝐷)𝑥) ∩ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥))) = ∅)
5543, 54eqtrid 2783 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → ((𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∩ (𝑃(ball‘𝐷)𝑥)) = ∅)
56 blssm 24244 . . . . . . . . . . . . . 14 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) ∈ ℝ*) → (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ 𝑋)
5728, 29, 34, 56syl3anc 1370 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ 𝑋)
58 reldisj 4451 . . . . . . . . . . . . 13 ((𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ 𝑋 → (((𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∩ (𝑃(ball‘𝐷)𝑥)) = ∅ ↔ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ (𝑋 ∖ (𝑃(ball‘𝐷)𝑥))))
5957, 58syl 17 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (((𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∩ (𝑃(ball‘𝐷)𝑥)) = ∅ ↔ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ (𝑋 ∖ (𝑃(ball‘𝐷)𝑥))))
6055, 59mpbid 231 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ (𝑋 ∖ (𝑃(ball‘𝐷)𝑥)))
616adantr 480 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑅 ∈ ℝ*)
62 simprrl 778 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑅 < 𝑥)
631, 16blsscls2 24333 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑥 ∈ ℝ*𝑅 < 𝑥)) → 𝑆 ⊆ (𝑃(ball‘𝐷)𝑥))
6428, 44, 61, 32, 62, 63syl23anc 1376 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑆 ⊆ (𝑃(ball‘𝐷)𝑥))
6564sscond 4141 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑋 ∖ (𝑃(ball‘𝐷)𝑥)) ⊆ (𝑋𝑆))
6660, 65sstrd 3992 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ (𝑋𝑆))
67 eleq2 2821 . . . . . . . . . . . 12 (𝑤 = (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) → (𝑦𝑤𝑦 ∈ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥))))
68 sseq1 4007 . . . . . . . . . . . 12 (𝑤 = (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) → (𝑤 ⊆ (𝑋𝑆) ↔ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ (𝑋𝑆)))
6967, 68anbi12d 630 . . . . . . . . . . 11 (𝑤 = (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) → ((𝑦𝑤𝑤 ⊆ (𝑋𝑆)) ↔ (𝑦 ∈ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∧ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ (𝑋𝑆))))
7069rspcev 3612 . . . . . . . . . 10 (((𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∈ ran (ball‘𝐷) ∧ (𝑦 ∈ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∧ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ (𝑋𝑆))) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆)))
7136, 42, 66, 70syl12anc 834 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆)))
7271expr 456 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ 𝑥 ∈ ℝ) → ((𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆))))
7327, 72sylan2 592 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ 𝑥 ∈ ℚ) → ((𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆))))
7473rexlimdva 3154 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → (∃𝑥 ∈ ℚ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆))))
7526, 74mpd 15 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆)))
7675ralrimiva 3145 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → ∀𝑦 ∈ (𝑋𝑆)∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆)))
771elmopn 24268 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → ((𝑋𝑆) ∈ 𝐽 ↔ ((𝑋𝑆) ⊆ 𝑋 ∧ ∀𝑦 ∈ (𝑋𝑆)∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆)))))
78773ad2ant1 1132 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → ((𝑋𝑆) ∈ 𝐽 ↔ ((𝑋𝑆) ⊆ 𝑋 ∧ ∀𝑦 ∈ (𝑋𝑆)∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆)))))
795, 76, 78mpbir2and 710 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑋𝑆) ∈ 𝐽)
804, 79eqeltrrd 2833 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → ( 𝐽𝑆) ∈ 𝐽)
811mopntop 24266 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
82813ad2ant1 1132 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝐽 ∈ Top)
8316ssrab3 4080 . . . 4 𝑆𝑋
8483, 3sseqtrid 4034 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝑆 𝐽)
85 eqid 2731 . . . 4 𝐽 = 𝐽
8685iscld2 22852 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → (𝑆 ∈ (Clsd‘𝐽) ↔ ( 𝐽𝑆) ∈ 𝐽))
8782, 84, 86syl2anc 583 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑆 ∈ (Clsd‘𝐽) ↔ ( 𝐽𝑆) ∈ 𝐽))
8880, 87mpbird 257 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝑆 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  wral 3060  wrex 3069  {crab 3431  cdif 3945  cin 3947  wss 3948  c0 4322   cuni 4908   class class class wbr 5148  ran crn 5677  cfv 6543  (class class class)co 7412  cr 11115  0cc0 11116  *cxr 11254   < clt 11255  cle 11256  cq 12939  -𝑒cxne 13096   +𝑒 cxad 13097  ∞Metcxmet 21218  ballcbl 21220  MetOpencmopn 21223  Topctop 22715  Clsdccld 22840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-er 8709  df-map 8828  df-en 8946  df-dom 8947  df-sdom 8948  df-sup 9443  df-inf 9444  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-n0 12480  df-z 12566  df-uz 12830  df-q 12940  df-rp 12982  df-xneg 13099  df-xadd 13100  df-xmul 13101  df-topgen 17396  df-psmet 21225  df-xmet 21226  df-bl 21228  df-mopn 21229  df-top 22716  df-topon 22733  df-bases 22769  df-cld 22843
This theorem is referenced by:  blcls  24335  lmle  25149  minveclem4  25280  lhop1lem  25866  ftalem3  26920  ubthlem1  30556
  Copyright terms: Public domain W3C validator