MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blcld Structured version   Visualization version   GIF version

Theorem blcld 23861
Description: A "closed ball" in a metric space is actually closed. (Contributed by Mario Carneiro, 31-Dec-2013.) (Revised by Mario Carneiro, 24-Aug-2015.)
Hypotheses
Ref Expression
mopni.1 𝐽 = (MetOpen‘𝐷)
blcld.3 𝑆 = {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅}
Assertion
Ref Expression
blcld ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝑆 ∈ (Clsd‘𝐽))
Distinct variable groups:   𝑧,𝐷   𝑧,𝑅   𝑧,𝑃   𝑧,𝑋
Allowed substitution hints:   𝑆(𝑧)   𝐽(𝑧)

Proof of Theorem blcld
Dummy variables 𝑥 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mopni.1 . . . . . 6 𝐽 = (MetOpen‘𝐷)
21mopnuni 23794 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
323ad2ant1 1133 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝑋 = 𝐽)
43difeq1d 4081 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑋𝑆) = ( 𝐽𝑆))
5 difssd 4092 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑋𝑆) ⊆ 𝑋)
6 simpl3 1193 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → 𝑅 ∈ ℝ*)
7 simpl1 1191 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → 𝐷 ∈ (∞Met‘𝑋))
8 simpl2 1192 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → 𝑃𝑋)
9 eldifi 4086 . . . . . . . . 9 (𝑦 ∈ (𝑋𝑆) → 𝑦𝑋)
109adantl 482 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → 𝑦𝑋)
11 xmetcl 23684 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑦𝑋) → (𝑃𝐷𝑦) ∈ ℝ*)
127, 8, 10, 11syl3anc 1371 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → (𝑃𝐷𝑦) ∈ ℝ*)
13 eldif 3920 . . . . . . . . . 10 (𝑦 ∈ (𝑋𝑆) ↔ (𝑦𝑋 ∧ ¬ 𝑦𝑆))
14 oveq2 7365 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → (𝑃𝐷𝑧) = (𝑃𝐷𝑦))
1514breq1d 5115 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → ((𝑃𝐷𝑧) ≤ 𝑅 ↔ (𝑃𝐷𝑦) ≤ 𝑅))
16 blcld.3 . . . . . . . . . . . . 13 𝑆 = {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅}
1715, 16elrab2 3648 . . . . . . . . . . . 12 (𝑦𝑆 ↔ (𝑦𝑋 ∧ (𝑃𝐷𝑦) ≤ 𝑅))
1817simplbi2 501 . . . . . . . . . . 11 (𝑦𝑋 → ((𝑃𝐷𝑦) ≤ 𝑅𝑦𝑆))
1918con3dimp 409 . . . . . . . . . 10 ((𝑦𝑋 ∧ ¬ 𝑦𝑆) → ¬ (𝑃𝐷𝑦) ≤ 𝑅)
2013, 19sylbi 216 . . . . . . . . 9 (𝑦 ∈ (𝑋𝑆) → ¬ (𝑃𝐷𝑦) ≤ 𝑅)
2120adantl 482 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → ¬ (𝑃𝐷𝑦) ≤ 𝑅)
22 xrltnle 11222 . . . . . . . . 9 ((𝑅 ∈ ℝ* ∧ (𝑃𝐷𝑦) ∈ ℝ*) → (𝑅 < (𝑃𝐷𝑦) ↔ ¬ (𝑃𝐷𝑦) ≤ 𝑅))
236, 12, 22syl2anc 584 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → (𝑅 < (𝑃𝐷𝑦) ↔ ¬ (𝑃𝐷𝑦) ≤ 𝑅))
2421, 23mpbird 256 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → 𝑅 < (𝑃𝐷𝑦))
25 qbtwnxr 13119 . . . . . . 7 ((𝑅 ∈ ℝ* ∧ (𝑃𝐷𝑦) ∈ ℝ*𝑅 < (𝑃𝐷𝑦)) → ∃𝑥 ∈ ℚ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))
266, 12, 24, 25syl3anc 1371 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → ∃𝑥 ∈ ℚ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))
27 qre 12878 . . . . . . . 8 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ)
287adantr 481 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝐷 ∈ (∞Met‘𝑋))
2910adantr 481 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑦𝑋)
3012adantr 481 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑃𝐷𝑦) ∈ ℝ*)
31 rexr 11201 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
3231ad2antrl 726 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑥 ∈ ℝ*)
3332xnegcld 13219 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → -𝑒𝑥 ∈ ℝ*)
3430, 33xaddcld 13220 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) ∈ ℝ*)
35 blelrn 23770 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) ∈ ℝ*) → (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∈ ran (ball‘𝐷))
3628, 29, 34, 35syl3anc 1371 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∈ ran (ball‘𝐷))
37 simprrr 780 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑥 < (𝑃𝐷𝑦))
38 xposdif 13181 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑦) ∈ ℝ*) → (𝑥 < (𝑃𝐷𝑦) ↔ 0 < ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)))
3932, 30, 38syl2anc 584 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑥 < (𝑃𝐷𝑦) ↔ 0 < ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)))
4037, 39mpbid 231 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 0 < ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥))
41 xblcntr 23764 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ (((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) ∈ ℝ* ∧ 0 < ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥))) → 𝑦 ∈ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)))
4228, 29, 34, 40, 41syl112anc 1374 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑦 ∈ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)))
43 incom 4161 . . . . . . . . . . . . 13 ((𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∩ (𝑃(ball‘𝐷)𝑥)) = ((𝑃(ball‘𝐷)𝑥) ∩ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)))
448adantr 481 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑃𝑋)
45 xaddcom 13159 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ* ∧ ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) ∈ ℝ*) → (𝑥 +𝑒 ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) = (((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) +𝑒 𝑥))
4632, 34, 45syl2anc 584 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑥 +𝑒 ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) = (((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) +𝑒 𝑥))
47 simprl 769 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑥 ∈ ℝ)
48 xnpcan 13171 . . . . . . . . . . . . . . . . 17 (((𝑃𝐷𝑦) ∈ ℝ*𝑥 ∈ ℝ) → (((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) +𝑒 𝑥) = (𝑃𝐷𝑦))
4930, 47, 48syl2anc 584 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) +𝑒 𝑥) = (𝑃𝐷𝑦))
5046, 49eqtrd 2776 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑥 +𝑒 ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) = (𝑃𝐷𝑦))
5130xrleidd 13071 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑃𝐷𝑦) ≤ (𝑃𝐷𝑦))
5250, 51eqbrtrd 5127 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑥 +𝑒 ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ≤ (𝑃𝐷𝑦))
53 bldisj 23751 . . . . . . . . . . . . . 14 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑦𝑋) ∧ (𝑥 ∈ ℝ* ∧ ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) ∈ ℝ* ∧ (𝑥 +𝑒 ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ≤ (𝑃𝐷𝑦))) → ((𝑃(ball‘𝐷)𝑥) ∩ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥))) = ∅)
5428, 44, 29, 32, 34, 52, 53syl33anc 1385 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → ((𝑃(ball‘𝐷)𝑥) ∩ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥))) = ∅)
5543, 54eqtrid 2788 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → ((𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∩ (𝑃(ball‘𝐷)𝑥)) = ∅)
56 blssm 23771 . . . . . . . . . . . . . 14 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) ∈ ℝ*) → (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ 𝑋)
5728, 29, 34, 56syl3anc 1371 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ 𝑋)
58 reldisj 4411 . . . . . . . . . . . . 13 ((𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ 𝑋 → (((𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∩ (𝑃(ball‘𝐷)𝑥)) = ∅ ↔ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ (𝑋 ∖ (𝑃(ball‘𝐷)𝑥))))
5957, 58syl 17 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (((𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∩ (𝑃(ball‘𝐷)𝑥)) = ∅ ↔ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ (𝑋 ∖ (𝑃(ball‘𝐷)𝑥))))
6055, 59mpbid 231 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ (𝑋 ∖ (𝑃(ball‘𝐷)𝑥)))
616adantr 481 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑅 ∈ ℝ*)
62 simprrl 779 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑅 < 𝑥)
631, 16blsscls2 23860 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑥 ∈ ℝ*𝑅 < 𝑥)) → 𝑆 ⊆ (𝑃(ball‘𝐷)𝑥))
6428, 44, 61, 32, 62, 63syl23anc 1377 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑆 ⊆ (𝑃(ball‘𝐷)𝑥))
6564sscond 4101 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑋 ∖ (𝑃(ball‘𝐷)𝑥)) ⊆ (𝑋𝑆))
6660, 65sstrd 3954 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ (𝑋𝑆))
67 eleq2 2826 . . . . . . . . . . . 12 (𝑤 = (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) → (𝑦𝑤𝑦 ∈ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥))))
68 sseq1 3969 . . . . . . . . . . . 12 (𝑤 = (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) → (𝑤 ⊆ (𝑋𝑆) ↔ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ (𝑋𝑆)))
6967, 68anbi12d 631 . . . . . . . . . . 11 (𝑤 = (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) → ((𝑦𝑤𝑤 ⊆ (𝑋𝑆)) ↔ (𝑦 ∈ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∧ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ (𝑋𝑆))))
7069rspcev 3581 . . . . . . . . . 10 (((𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∈ ran (ball‘𝐷) ∧ (𝑦 ∈ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∧ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ (𝑋𝑆))) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆)))
7136, 42, 66, 70syl12anc 835 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆)))
7271expr 457 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ 𝑥 ∈ ℝ) → ((𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆))))
7327, 72sylan2 593 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ 𝑥 ∈ ℚ) → ((𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆))))
7473rexlimdva 3152 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → (∃𝑥 ∈ ℚ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆))))
7526, 74mpd 15 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆)))
7675ralrimiva 3143 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → ∀𝑦 ∈ (𝑋𝑆)∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆)))
771elmopn 23795 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → ((𝑋𝑆) ∈ 𝐽 ↔ ((𝑋𝑆) ⊆ 𝑋 ∧ ∀𝑦 ∈ (𝑋𝑆)∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆)))))
78773ad2ant1 1133 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → ((𝑋𝑆) ∈ 𝐽 ↔ ((𝑋𝑆) ⊆ 𝑋 ∧ ∀𝑦 ∈ (𝑋𝑆)∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆)))))
795, 76, 78mpbir2and 711 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑋𝑆) ∈ 𝐽)
804, 79eqeltrrd 2839 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → ( 𝐽𝑆) ∈ 𝐽)
811mopntop 23793 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
82813ad2ant1 1133 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝐽 ∈ Top)
8316ssrab3 4040 . . . 4 𝑆𝑋
8483, 3sseqtrid 3996 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝑆 𝐽)
85 eqid 2736 . . . 4 𝐽 = 𝐽
8685iscld2 22379 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → (𝑆 ∈ (Clsd‘𝐽) ↔ ( 𝐽𝑆) ∈ 𝐽))
8782, 84, 86syl2anc 584 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑆 ∈ (Clsd‘𝐽) ↔ ( 𝐽𝑆) ∈ 𝐽))
8880, 87mpbird 256 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝑆 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  wrex 3073  {crab 3407  cdif 3907  cin 3909  wss 3910  c0 4282   cuni 4865   class class class wbr 5105  ran crn 5634  cfv 6496  (class class class)co 7357  cr 11050  0cc0 11051  *cxr 11188   < clt 11189  cle 11190  cq 12873  -𝑒cxne 13030   +𝑒 cxad 13031  ∞Metcxmet 20781  ballcbl 20783  MetOpencmopn 20786  Topctop 22242  Clsdccld 22367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-bl 20791  df-mopn 20792  df-top 22243  df-topon 22260  df-bases 22296  df-cld 22370
This theorem is referenced by:  blcls  23862  lmle  24665  minveclem4  24796  lhop1lem  25377  ftalem3  26424  ubthlem1  29812
  Copyright terms: Public domain W3C validator