MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blcld Structured version   Visualization version   GIF version

Theorem blcld 22687
Description: A "closed ball" in a metric space is actually closed. (Contributed by Mario Carneiro, 31-Dec-2013.) (Revised by Mario Carneiro, 24-Aug-2015.)
Hypotheses
Ref Expression
mopni.1 𝐽 = (MetOpen‘𝐷)
blcld.3 𝑆 = {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅}
Assertion
Ref Expression
blcld ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝑆 ∈ (Clsd‘𝐽))
Distinct variable groups:   𝑧,𝐷   𝑧,𝑅   𝑧,𝑃   𝑧,𝑋
Allowed substitution hints:   𝑆(𝑧)   𝐽(𝑧)

Proof of Theorem blcld
Dummy variables 𝑥 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mopni.1 . . . . . 6 𝐽 = (MetOpen‘𝐷)
21mopnuni 22623 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
323ad2ant1 1167 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝑋 = 𝐽)
43difeq1d 3956 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑋𝑆) = ( 𝐽𝑆))
5 difssd 3967 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑋𝑆) ⊆ 𝑋)
6 simpl3 1250 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → 𝑅 ∈ ℝ*)
7 simpl1 1246 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → 𝐷 ∈ (∞Met‘𝑋))
8 simpl2 1248 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → 𝑃𝑋)
9 eldifi 3961 . . . . . . . . 9 (𝑦 ∈ (𝑋𝑆) → 𝑦𝑋)
109adantl 475 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → 𝑦𝑋)
11 xmetcl 22513 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑦𝑋) → (𝑃𝐷𝑦) ∈ ℝ*)
127, 8, 10, 11syl3anc 1494 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → (𝑃𝐷𝑦) ∈ ℝ*)
13 eldif 3808 . . . . . . . . . 10 (𝑦 ∈ (𝑋𝑆) ↔ (𝑦𝑋 ∧ ¬ 𝑦𝑆))
14 oveq2 6918 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → (𝑃𝐷𝑧) = (𝑃𝐷𝑦))
1514breq1d 4885 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → ((𝑃𝐷𝑧) ≤ 𝑅 ↔ (𝑃𝐷𝑦) ≤ 𝑅))
16 blcld.3 . . . . . . . . . . . . 13 𝑆 = {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅}
1715, 16elrab2 3589 . . . . . . . . . . . 12 (𝑦𝑆 ↔ (𝑦𝑋 ∧ (𝑃𝐷𝑦) ≤ 𝑅))
1817simplbi2 496 . . . . . . . . . . 11 (𝑦𝑋 → ((𝑃𝐷𝑦) ≤ 𝑅𝑦𝑆))
1918con3dimp 399 . . . . . . . . . 10 ((𝑦𝑋 ∧ ¬ 𝑦𝑆) → ¬ (𝑃𝐷𝑦) ≤ 𝑅)
2013, 19sylbi 209 . . . . . . . . 9 (𝑦 ∈ (𝑋𝑆) → ¬ (𝑃𝐷𝑦) ≤ 𝑅)
2120adantl 475 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → ¬ (𝑃𝐷𝑦) ≤ 𝑅)
22 xrltnle 10431 . . . . . . . . 9 ((𝑅 ∈ ℝ* ∧ (𝑃𝐷𝑦) ∈ ℝ*) → (𝑅 < (𝑃𝐷𝑦) ↔ ¬ (𝑃𝐷𝑦) ≤ 𝑅))
236, 12, 22syl2anc 579 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → (𝑅 < (𝑃𝐷𝑦) ↔ ¬ (𝑃𝐷𝑦) ≤ 𝑅))
2421, 23mpbird 249 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → 𝑅 < (𝑃𝐷𝑦))
25 qbtwnxr 12326 . . . . . . 7 ((𝑅 ∈ ℝ* ∧ (𝑃𝐷𝑦) ∈ ℝ*𝑅 < (𝑃𝐷𝑦)) → ∃𝑥 ∈ ℚ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))
266, 12, 24, 25syl3anc 1494 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → ∃𝑥 ∈ ℚ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))
27 qre 12083 . . . . . . . 8 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ)
287adantr 474 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝐷 ∈ (∞Met‘𝑋))
2910adantr 474 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑦𝑋)
3012adantr 474 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑃𝐷𝑦) ∈ ℝ*)
31 rexr 10409 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
3231ad2antrl 719 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑥 ∈ ℝ*)
3332xnegcld 12425 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → -𝑒𝑥 ∈ ℝ*)
3430, 33xaddcld 12426 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) ∈ ℝ*)
35 blelrn 22599 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) ∈ ℝ*) → (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∈ ran (ball‘𝐷))
3628, 29, 34, 35syl3anc 1494 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∈ ran (ball‘𝐷))
37 simprrr 800 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑥 < (𝑃𝐷𝑦))
38 xposdif 12387 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑦) ∈ ℝ*) → (𝑥 < (𝑃𝐷𝑦) ↔ 0 < ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)))
3932, 30, 38syl2anc 579 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑥 < (𝑃𝐷𝑦) ↔ 0 < ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)))
4037, 39mpbid 224 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 0 < ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥))
41 xblcntr 22593 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ (((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) ∈ ℝ* ∧ 0 < ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥))) → 𝑦 ∈ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)))
4228, 29, 34, 40, 41syl112anc 1497 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑦 ∈ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)))
43 incom 4034 . . . . . . . . . . . . 13 ((𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∩ (𝑃(ball‘𝐷)𝑥)) = ((𝑃(ball‘𝐷)𝑥) ∩ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)))
448adantr 474 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑃𝑋)
45 xaddcom 12366 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ* ∧ ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) ∈ ℝ*) → (𝑥 +𝑒 ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) = (((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) +𝑒 𝑥))
4632, 34, 45syl2anc 579 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑥 +𝑒 ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) = (((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) +𝑒 𝑥))
47 simprl 787 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑥 ∈ ℝ)
48 xnpcan 12377 . . . . . . . . . . . . . . . . 17 (((𝑃𝐷𝑦) ∈ ℝ*𝑥 ∈ ℝ) → (((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) +𝑒 𝑥) = (𝑃𝐷𝑦))
4930, 47, 48syl2anc 579 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) +𝑒 𝑥) = (𝑃𝐷𝑦))
5046, 49eqtrd 2861 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑥 +𝑒 ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) = (𝑃𝐷𝑦))
5130xrleidd 12278 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑃𝐷𝑦) ≤ (𝑃𝐷𝑦))
5250, 51eqbrtrd 4897 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑥 +𝑒 ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ≤ (𝑃𝐷𝑦))
53 bldisj 22580 . . . . . . . . . . . . . 14 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑦𝑋) ∧ (𝑥 ∈ ℝ* ∧ ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) ∈ ℝ* ∧ (𝑥 +𝑒 ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ≤ (𝑃𝐷𝑦))) → ((𝑃(ball‘𝐷)𝑥) ∩ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥))) = ∅)
5428, 44, 29, 32, 34, 52, 53syl33anc 1508 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → ((𝑃(ball‘𝐷)𝑥) ∩ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥))) = ∅)
5543, 54syl5eq 2873 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → ((𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∩ (𝑃(ball‘𝐷)𝑥)) = ∅)
56 blssm 22600 . . . . . . . . . . . . . 14 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) ∈ ℝ*) → (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ 𝑋)
5728, 29, 34, 56syl3anc 1494 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ 𝑋)
58 reldisj 4246 . . . . . . . . . . . . 13 ((𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ 𝑋 → (((𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∩ (𝑃(ball‘𝐷)𝑥)) = ∅ ↔ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ (𝑋 ∖ (𝑃(ball‘𝐷)𝑥))))
5957, 58syl 17 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (((𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∩ (𝑃(ball‘𝐷)𝑥)) = ∅ ↔ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ (𝑋 ∖ (𝑃(ball‘𝐷)𝑥))))
6055, 59mpbid 224 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ (𝑋 ∖ (𝑃(ball‘𝐷)𝑥)))
616adantr 474 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑅 ∈ ℝ*)
62 simprrl 799 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑅 < 𝑥)
631, 16blsscls2 22686 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑥 ∈ ℝ*𝑅 < 𝑥)) → 𝑆 ⊆ (𝑃(ball‘𝐷)𝑥))
6428, 44, 61, 32, 62, 63syl23anc 1500 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑆 ⊆ (𝑃(ball‘𝐷)𝑥))
6564sscond 3976 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑋 ∖ (𝑃(ball‘𝐷)𝑥)) ⊆ (𝑋𝑆))
6660, 65sstrd 3837 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ (𝑋𝑆))
67 eleq2 2895 . . . . . . . . . . . 12 (𝑤 = (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) → (𝑦𝑤𝑦 ∈ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥))))
68 sseq1 3851 . . . . . . . . . . . 12 (𝑤 = (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) → (𝑤 ⊆ (𝑋𝑆) ↔ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ (𝑋𝑆)))
6967, 68anbi12d 624 . . . . . . . . . . 11 (𝑤 = (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) → ((𝑦𝑤𝑤 ⊆ (𝑋𝑆)) ↔ (𝑦 ∈ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∧ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ (𝑋𝑆))))
7069rspcev 3526 . . . . . . . . . 10 (((𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∈ ran (ball‘𝐷) ∧ (𝑦 ∈ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∧ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ (𝑋𝑆))) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆)))
7136, 42, 66, 70syl12anc 870 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆)))
7271expr 450 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ 𝑥 ∈ ℝ) → ((𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆))))
7327, 72sylan2 586 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ 𝑥 ∈ ℚ) → ((𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆))))
7473rexlimdva 3240 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → (∃𝑥 ∈ ℚ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆))))
7526, 74mpd 15 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆)))
7675ralrimiva 3175 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → ∀𝑦 ∈ (𝑋𝑆)∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆)))
771elmopn 22624 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → ((𝑋𝑆) ∈ 𝐽 ↔ ((𝑋𝑆) ⊆ 𝑋 ∧ ∀𝑦 ∈ (𝑋𝑆)∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆)))))
78773ad2ant1 1167 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → ((𝑋𝑆) ∈ 𝐽 ↔ ((𝑋𝑆) ⊆ 𝑋 ∧ ∀𝑦 ∈ (𝑋𝑆)∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆)))))
795, 76, 78mpbir2and 704 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑋𝑆) ∈ 𝐽)
804, 79eqeltrrd 2907 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → ( 𝐽𝑆) ∈ 𝐽)
811mopntop 22622 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
82813ad2ant1 1167 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝐽 ∈ Top)
83 ssrab2 3914 . . . . 5 {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ⊆ 𝑋
8416, 83eqsstri 3860 . . . 4 𝑆𝑋
8584, 3syl5sseq 3878 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝑆 𝐽)
86 eqid 2825 . . . 4 𝐽 = 𝐽
8786iscld2 21210 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → (𝑆 ∈ (Clsd‘𝐽) ↔ ( 𝐽𝑆) ∈ 𝐽))
8882, 85, 87syl2anc 579 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑆 ∈ (Clsd‘𝐽) ↔ ( 𝐽𝑆) ∈ 𝐽))
8980, 88mpbird 249 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝑆 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1111   = wceq 1656  wcel 2164  wral 3117  wrex 3118  {crab 3121  cdif 3795  cin 3797  wss 3798  c0 4146   cuni 4660   class class class wbr 4875  ran crn 5347  cfv 6127  (class class class)co 6910  cr 10258  0cc0 10259  *cxr 10397   < clt 10398  cle 10399  cq 12078  -𝑒cxne 12236   +𝑒 cxad 12237  ∞Metcxmet 20098  ballcbl 20100  MetOpencmopn 20103  Topctop 21075  Clsdccld 21198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-er 8014  df-map 8129  df-en 8229  df-dom 8230  df-sdom 8231  df-sup 8623  df-inf 8624  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-n0 11626  df-z 11712  df-uz 11976  df-q 12079  df-rp 12120  df-xneg 12239  df-xadd 12240  df-xmul 12241  df-topgen 16464  df-psmet 20105  df-xmet 20106  df-bl 20108  df-mopn 20109  df-top 21076  df-topon 21093  df-bases 21128  df-cld 21201
This theorem is referenced by:  blcls  22688  lmle  23476  minveclem4  23607  lhop1lem  24182  ftalem3  25221  ubthlem1  28277
  Copyright terms: Public domain W3C validator