MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blcld Structured version   Visualization version   GIF version

Theorem blcld 24391
Description: A "closed ball" in a metric space is actually closed. (Contributed by Mario Carneiro, 31-Dec-2013.) (Revised by Mario Carneiro, 24-Aug-2015.)
Hypotheses
Ref Expression
mopni.1 𝐽 = (MetOpen‘𝐷)
blcld.3 𝑆 = {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅}
Assertion
Ref Expression
blcld ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝑆 ∈ (Clsd‘𝐽))
Distinct variable groups:   𝑧,𝐷   𝑧,𝑅   𝑧,𝑃   𝑧,𝑋
Allowed substitution hints:   𝑆(𝑧)   𝐽(𝑧)

Proof of Theorem blcld
Dummy variables 𝑥 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mopni.1 . . . . . 6 𝐽 = (MetOpen‘𝐷)
21mopnuni 24327 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
323ad2ant1 1133 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝑋 = 𝐽)
43difeq1d 4076 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑋𝑆) = ( 𝐽𝑆))
5 difssd 4088 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑋𝑆) ⊆ 𝑋)
6 simpl3 1194 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → 𝑅 ∈ ℝ*)
7 simpl1 1192 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → 𝐷 ∈ (∞Met‘𝑋))
8 simpl2 1193 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → 𝑃𝑋)
9 eldifi 4082 . . . . . . . . 9 (𝑦 ∈ (𝑋𝑆) → 𝑦𝑋)
109adantl 481 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → 𝑦𝑋)
11 xmetcl 24217 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑦𝑋) → (𝑃𝐷𝑦) ∈ ℝ*)
127, 8, 10, 11syl3anc 1373 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → (𝑃𝐷𝑦) ∈ ℝ*)
13 eldif 3913 . . . . . . . . . 10 (𝑦 ∈ (𝑋𝑆) ↔ (𝑦𝑋 ∧ ¬ 𝑦𝑆))
14 oveq2 7357 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → (𝑃𝐷𝑧) = (𝑃𝐷𝑦))
1514breq1d 5102 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → ((𝑃𝐷𝑧) ≤ 𝑅 ↔ (𝑃𝐷𝑦) ≤ 𝑅))
16 blcld.3 . . . . . . . . . . . . 13 𝑆 = {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅}
1715, 16elrab2 3651 . . . . . . . . . . . 12 (𝑦𝑆 ↔ (𝑦𝑋 ∧ (𝑃𝐷𝑦) ≤ 𝑅))
1817simplbi2 500 . . . . . . . . . . 11 (𝑦𝑋 → ((𝑃𝐷𝑦) ≤ 𝑅𝑦𝑆))
1918con3dimp 408 . . . . . . . . . 10 ((𝑦𝑋 ∧ ¬ 𝑦𝑆) → ¬ (𝑃𝐷𝑦) ≤ 𝑅)
2013, 19sylbi 217 . . . . . . . . 9 (𝑦 ∈ (𝑋𝑆) → ¬ (𝑃𝐷𝑦) ≤ 𝑅)
2120adantl 481 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → ¬ (𝑃𝐷𝑦) ≤ 𝑅)
22 xrltnle 11182 . . . . . . . . 9 ((𝑅 ∈ ℝ* ∧ (𝑃𝐷𝑦) ∈ ℝ*) → (𝑅 < (𝑃𝐷𝑦) ↔ ¬ (𝑃𝐷𝑦) ≤ 𝑅))
236, 12, 22syl2anc 584 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → (𝑅 < (𝑃𝐷𝑦) ↔ ¬ (𝑃𝐷𝑦) ≤ 𝑅))
2421, 23mpbird 257 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → 𝑅 < (𝑃𝐷𝑦))
25 qbtwnxr 13102 . . . . . . 7 ((𝑅 ∈ ℝ* ∧ (𝑃𝐷𝑦) ∈ ℝ*𝑅 < (𝑃𝐷𝑦)) → ∃𝑥 ∈ ℚ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))
266, 12, 24, 25syl3anc 1373 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → ∃𝑥 ∈ ℚ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))
27 qre 12854 . . . . . . . 8 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ)
287adantr 480 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝐷 ∈ (∞Met‘𝑋))
2910adantr 480 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑦𝑋)
3012adantr 480 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑃𝐷𝑦) ∈ ℝ*)
31 rexr 11161 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
3231ad2antrl 728 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑥 ∈ ℝ*)
3332xnegcld 13202 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → -𝑒𝑥 ∈ ℝ*)
3430, 33xaddcld 13203 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) ∈ ℝ*)
35 blelrn 24303 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) ∈ ℝ*) → (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∈ ran (ball‘𝐷))
3628, 29, 34, 35syl3anc 1373 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∈ ran (ball‘𝐷))
37 simprrr 781 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑥 < (𝑃𝐷𝑦))
38 xposdif 13164 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑦) ∈ ℝ*) → (𝑥 < (𝑃𝐷𝑦) ↔ 0 < ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)))
3932, 30, 38syl2anc 584 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑥 < (𝑃𝐷𝑦) ↔ 0 < ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)))
4037, 39mpbid 232 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 0 < ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥))
41 xblcntr 24297 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ (((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) ∈ ℝ* ∧ 0 < ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥))) → 𝑦 ∈ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)))
4228, 29, 34, 40, 41syl112anc 1376 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑦 ∈ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)))
43 incom 4160 . . . . . . . . . . . . 13 ((𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∩ (𝑃(ball‘𝐷)𝑥)) = ((𝑃(ball‘𝐷)𝑥) ∩ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)))
448adantr 480 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑃𝑋)
45 xaddcom 13142 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ* ∧ ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) ∈ ℝ*) → (𝑥 +𝑒 ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) = (((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) +𝑒 𝑥))
4632, 34, 45syl2anc 584 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑥 +𝑒 ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) = (((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) +𝑒 𝑥))
47 simprl 770 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑥 ∈ ℝ)
48 xnpcan 13154 . . . . . . . . . . . . . . . . 17 (((𝑃𝐷𝑦) ∈ ℝ*𝑥 ∈ ℝ) → (((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) +𝑒 𝑥) = (𝑃𝐷𝑦))
4930, 47, 48syl2anc 584 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) +𝑒 𝑥) = (𝑃𝐷𝑦))
5046, 49eqtrd 2764 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑥 +𝑒 ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) = (𝑃𝐷𝑦))
5130xrleidd 13054 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑃𝐷𝑦) ≤ (𝑃𝐷𝑦))
5250, 51eqbrtrd 5114 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑥 +𝑒 ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ≤ (𝑃𝐷𝑦))
53 bldisj 24284 . . . . . . . . . . . . . 14 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑦𝑋) ∧ (𝑥 ∈ ℝ* ∧ ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) ∈ ℝ* ∧ (𝑥 +𝑒 ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ≤ (𝑃𝐷𝑦))) → ((𝑃(ball‘𝐷)𝑥) ∩ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥))) = ∅)
5428, 44, 29, 32, 34, 52, 53syl33anc 1387 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → ((𝑃(ball‘𝐷)𝑥) ∩ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥))) = ∅)
5543, 54eqtrid 2776 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → ((𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∩ (𝑃(ball‘𝐷)𝑥)) = ∅)
56 blssm 24304 . . . . . . . . . . . . . 14 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) ∈ ℝ*) → (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ 𝑋)
5728, 29, 34, 56syl3anc 1373 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ 𝑋)
58 reldisj 4404 . . . . . . . . . . . . 13 ((𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ 𝑋 → (((𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∩ (𝑃(ball‘𝐷)𝑥)) = ∅ ↔ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ (𝑋 ∖ (𝑃(ball‘𝐷)𝑥))))
5957, 58syl 17 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (((𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∩ (𝑃(ball‘𝐷)𝑥)) = ∅ ↔ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ (𝑋 ∖ (𝑃(ball‘𝐷)𝑥))))
6055, 59mpbid 232 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ (𝑋 ∖ (𝑃(ball‘𝐷)𝑥)))
616adantr 480 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑅 ∈ ℝ*)
62 simprrl 780 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑅 < 𝑥)
631, 16blsscls2 24390 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑥 ∈ ℝ*𝑅 < 𝑥)) → 𝑆 ⊆ (𝑃(ball‘𝐷)𝑥))
6428, 44, 61, 32, 62, 63syl23anc 1379 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑆 ⊆ (𝑃(ball‘𝐷)𝑥))
6564sscond 4097 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑋 ∖ (𝑃(ball‘𝐷)𝑥)) ⊆ (𝑋𝑆))
6660, 65sstrd 3946 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ (𝑋𝑆))
67 eleq2 2817 . . . . . . . . . . . 12 (𝑤 = (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) → (𝑦𝑤𝑦 ∈ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥))))
68 sseq1 3961 . . . . . . . . . . . 12 (𝑤 = (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) → (𝑤 ⊆ (𝑋𝑆) ↔ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ (𝑋𝑆)))
6967, 68anbi12d 632 . . . . . . . . . . 11 (𝑤 = (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) → ((𝑦𝑤𝑤 ⊆ (𝑋𝑆)) ↔ (𝑦 ∈ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∧ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ (𝑋𝑆))))
7069rspcev 3577 . . . . . . . . . 10 (((𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∈ ran (ball‘𝐷) ∧ (𝑦 ∈ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∧ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ (𝑋𝑆))) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆)))
7136, 42, 66, 70syl12anc 836 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆)))
7271expr 456 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ 𝑥 ∈ ℝ) → ((𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆))))
7327, 72sylan2 593 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ 𝑥 ∈ ℚ) → ((𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆))))
7473rexlimdva 3130 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → (∃𝑥 ∈ ℚ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆))))
7526, 74mpd 15 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆)))
7675ralrimiva 3121 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → ∀𝑦 ∈ (𝑋𝑆)∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆)))
771elmopn 24328 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → ((𝑋𝑆) ∈ 𝐽 ↔ ((𝑋𝑆) ⊆ 𝑋 ∧ ∀𝑦 ∈ (𝑋𝑆)∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆)))))
78773ad2ant1 1133 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → ((𝑋𝑆) ∈ 𝐽 ↔ ((𝑋𝑆) ⊆ 𝑋 ∧ ∀𝑦 ∈ (𝑋𝑆)∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆)))))
795, 76, 78mpbir2and 713 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑋𝑆) ∈ 𝐽)
804, 79eqeltrrd 2829 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → ( 𝐽𝑆) ∈ 𝐽)
811mopntop 24326 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
82813ad2ant1 1133 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝐽 ∈ Top)
8316ssrab3 4033 . . . 4 𝑆𝑋
8483, 3sseqtrid 3978 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝑆 𝐽)
85 eqid 2729 . . . 4 𝐽 = 𝐽
8685iscld2 22913 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → (𝑆 ∈ (Clsd‘𝐽) ↔ ( 𝐽𝑆) ∈ 𝐽))
8782, 84, 86syl2anc 584 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑆 ∈ (Clsd‘𝐽) ↔ ( 𝐽𝑆) ∈ 𝐽))
8880, 87mpbird 257 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝑆 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3394  cdif 3900  cin 3902  wss 3903  c0 4284   cuni 4858   class class class wbr 5092  ran crn 5620  cfv 6482  (class class class)co 7349  cr 11008  0cc0 11009  *cxr 11148   < clt 11149  cle 11150  cq 12849  -𝑒cxne 13011   +𝑒 cxad 13012  ∞Metcxmet 21246  ballcbl 21248  MetOpencmopn 21251  Topctop 22778  Clsdccld 22901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-topgen 17347  df-psmet 21253  df-xmet 21254  df-bl 21256  df-mopn 21257  df-top 22779  df-topon 22796  df-bases 22831  df-cld 22904
This theorem is referenced by:  blcls  24392  lmle  25199  minveclem4  25330  lhop1lem  25916  ftalem3  26983  ubthlem1  30814
  Copyright terms: Public domain W3C validator