Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  blcld Structured version   Visualization version   GIF version

Theorem blcld 23200
 Description: A "closed ball" in a metric space is actually closed. (Contributed by Mario Carneiro, 31-Dec-2013.) (Revised by Mario Carneiro, 24-Aug-2015.)
Hypotheses
Ref Expression
mopni.1 𝐽 = (MetOpen‘𝐷)
blcld.3 𝑆 = {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅}
Assertion
Ref Expression
blcld ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝑆 ∈ (Clsd‘𝐽))
Distinct variable groups:   𝑧,𝐷   𝑧,𝑅   𝑧,𝑃   𝑧,𝑋
Allowed substitution hints:   𝑆(𝑧)   𝐽(𝑧)

Proof of Theorem blcld
Dummy variables 𝑥 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mopni.1 . . . . . 6 𝐽 = (MetOpen‘𝐷)
21mopnuni 23136 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
323ad2ant1 1131 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝑋 = 𝐽)
43difeq1d 4028 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑋𝑆) = ( 𝐽𝑆))
5 difssd 4039 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑋𝑆) ⊆ 𝑋)
6 simpl3 1191 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → 𝑅 ∈ ℝ*)
7 simpl1 1189 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → 𝐷 ∈ (∞Met‘𝑋))
8 simpl2 1190 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → 𝑃𝑋)
9 eldifi 4033 . . . . . . . . 9 (𝑦 ∈ (𝑋𝑆) → 𝑦𝑋)
109adantl 486 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → 𝑦𝑋)
11 xmetcl 23026 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑦𝑋) → (𝑃𝐷𝑦) ∈ ℝ*)
127, 8, 10, 11syl3anc 1369 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → (𝑃𝐷𝑦) ∈ ℝ*)
13 eldif 3869 . . . . . . . . . 10 (𝑦 ∈ (𝑋𝑆) ↔ (𝑦𝑋 ∧ ¬ 𝑦𝑆))
14 oveq2 7159 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → (𝑃𝐷𝑧) = (𝑃𝐷𝑦))
1514breq1d 5043 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → ((𝑃𝐷𝑧) ≤ 𝑅 ↔ (𝑃𝐷𝑦) ≤ 𝑅))
16 blcld.3 . . . . . . . . . . . . 13 𝑆 = {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅}
1715, 16elrab2 3606 . . . . . . . . . . . 12 (𝑦𝑆 ↔ (𝑦𝑋 ∧ (𝑃𝐷𝑦) ≤ 𝑅))
1817simplbi2 505 . . . . . . . . . . 11 (𝑦𝑋 → ((𝑃𝐷𝑦) ≤ 𝑅𝑦𝑆))
1918con3dimp 413 . . . . . . . . . 10 ((𝑦𝑋 ∧ ¬ 𝑦𝑆) → ¬ (𝑃𝐷𝑦) ≤ 𝑅)
2013, 19sylbi 220 . . . . . . . . 9 (𝑦 ∈ (𝑋𝑆) → ¬ (𝑃𝐷𝑦) ≤ 𝑅)
2120adantl 486 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → ¬ (𝑃𝐷𝑦) ≤ 𝑅)
22 xrltnle 10739 . . . . . . . . 9 ((𝑅 ∈ ℝ* ∧ (𝑃𝐷𝑦) ∈ ℝ*) → (𝑅 < (𝑃𝐷𝑦) ↔ ¬ (𝑃𝐷𝑦) ≤ 𝑅))
236, 12, 22syl2anc 588 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → (𝑅 < (𝑃𝐷𝑦) ↔ ¬ (𝑃𝐷𝑦) ≤ 𝑅))
2421, 23mpbird 260 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → 𝑅 < (𝑃𝐷𝑦))
25 qbtwnxr 12627 . . . . . . 7 ((𝑅 ∈ ℝ* ∧ (𝑃𝐷𝑦) ∈ ℝ*𝑅 < (𝑃𝐷𝑦)) → ∃𝑥 ∈ ℚ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))
266, 12, 24, 25syl3anc 1369 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → ∃𝑥 ∈ ℚ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))
27 qre 12386 . . . . . . . 8 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ)
287adantr 485 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝐷 ∈ (∞Met‘𝑋))
2910adantr 485 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑦𝑋)
3012adantr 485 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑃𝐷𝑦) ∈ ℝ*)
31 rexr 10718 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
3231ad2antrl 728 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑥 ∈ ℝ*)
3332xnegcld 12727 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → -𝑒𝑥 ∈ ℝ*)
3430, 33xaddcld 12728 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) ∈ ℝ*)
35 blelrn 23112 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) ∈ ℝ*) → (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∈ ran (ball‘𝐷))
3628, 29, 34, 35syl3anc 1369 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∈ ran (ball‘𝐷))
37 simprrr 782 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑥 < (𝑃𝐷𝑦))
38 xposdif 12689 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑦) ∈ ℝ*) → (𝑥 < (𝑃𝐷𝑦) ↔ 0 < ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)))
3932, 30, 38syl2anc 588 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑥 < (𝑃𝐷𝑦) ↔ 0 < ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)))
4037, 39mpbid 235 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 0 < ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥))
41 xblcntr 23106 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ (((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) ∈ ℝ* ∧ 0 < ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥))) → 𝑦 ∈ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)))
4228, 29, 34, 40, 41syl112anc 1372 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑦 ∈ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)))
43 incom 4107 . . . . . . . . . . . . 13 ((𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∩ (𝑃(ball‘𝐷)𝑥)) = ((𝑃(ball‘𝐷)𝑥) ∩ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)))
448adantr 485 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑃𝑋)
45 xaddcom 12667 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ* ∧ ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) ∈ ℝ*) → (𝑥 +𝑒 ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) = (((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) +𝑒 𝑥))
4632, 34, 45syl2anc 588 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑥 +𝑒 ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) = (((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) +𝑒 𝑥))
47 simprl 771 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑥 ∈ ℝ)
48 xnpcan 12679 . . . . . . . . . . . . . . . . 17 (((𝑃𝐷𝑦) ∈ ℝ*𝑥 ∈ ℝ) → (((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) +𝑒 𝑥) = (𝑃𝐷𝑦))
4930, 47, 48syl2anc 588 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) +𝑒 𝑥) = (𝑃𝐷𝑦))
5046, 49eqtrd 2794 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑥 +𝑒 ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) = (𝑃𝐷𝑦))
5130xrleidd 12579 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑃𝐷𝑦) ≤ (𝑃𝐷𝑦))
5250, 51eqbrtrd 5055 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑥 +𝑒 ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ≤ (𝑃𝐷𝑦))
53 bldisj 23093 . . . . . . . . . . . . . 14 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑦𝑋) ∧ (𝑥 ∈ ℝ* ∧ ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) ∈ ℝ* ∧ (𝑥 +𝑒 ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ≤ (𝑃𝐷𝑦))) → ((𝑃(ball‘𝐷)𝑥) ∩ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥))) = ∅)
5428, 44, 29, 32, 34, 52, 53syl33anc 1383 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → ((𝑃(ball‘𝐷)𝑥) ∩ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥))) = ∅)
5543, 54syl5eq 2806 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → ((𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∩ (𝑃(ball‘𝐷)𝑥)) = ∅)
56 blssm 23113 . . . . . . . . . . . . . 14 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ ((𝑃𝐷𝑦) +𝑒 -𝑒𝑥) ∈ ℝ*) → (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ 𝑋)
5728, 29, 34, 56syl3anc 1369 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ 𝑋)
58 reldisj 4349 . . . . . . . . . . . . 13 ((𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ 𝑋 → (((𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∩ (𝑃(ball‘𝐷)𝑥)) = ∅ ↔ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ (𝑋 ∖ (𝑃(ball‘𝐷)𝑥))))
5957, 58syl 17 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (((𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∩ (𝑃(ball‘𝐷)𝑥)) = ∅ ↔ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ (𝑋 ∖ (𝑃(ball‘𝐷)𝑥))))
6055, 59mpbid 235 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ (𝑋 ∖ (𝑃(ball‘𝐷)𝑥)))
616adantr 485 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑅 ∈ ℝ*)
62 simprrl 781 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑅 < 𝑥)
631, 16blsscls2 23199 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑥 ∈ ℝ*𝑅 < 𝑥)) → 𝑆 ⊆ (𝑃(ball‘𝐷)𝑥))
6428, 44, 61, 32, 62, 63syl23anc 1375 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → 𝑆 ⊆ (𝑃(ball‘𝐷)𝑥))
6564sscond 4048 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑋 ∖ (𝑃(ball‘𝐷)𝑥)) ⊆ (𝑋𝑆))
6660, 65sstrd 3903 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ (𝑋𝑆))
67 eleq2 2841 . . . . . . . . . . . 12 (𝑤 = (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) → (𝑦𝑤𝑦 ∈ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥))))
68 sseq1 3918 . . . . . . . . . . . 12 (𝑤 = (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) → (𝑤 ⊆ (𝑋𝑆) ↔ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ (𝑋𝑆)))
6967, 68anbi12d 634 . . . . . . . . . . 11 (𝑤 = (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) → ((𝑦𝑤𝑤 ⊆ (𝑋𝑆)) ↔ (𝑦 ∈ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∧ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ (𝑋𝑆))))
7069rspcev 3542 . . . . . . . . . 10 (((𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∈ ran (ball‘𝐷) ∧ (𝑦 ∈ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ∧ (𝑦(ball‘𝐷)((𝑃𝐷𝑦) +𝑒 -𝑒𝑥)) ⊆ (𝑋𝑆))) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆)))
7136, 42, 66, 70syl12anc 836 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ (𝑥 ∈ ℝ ∧ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)))) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆)))
7271expr 461 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ 𝑥 ∈ ℝ) → ((𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆))))
7327, 72sylan2 596 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) ∧ 𝑥 ∈ ℚ) → ((𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆))))
7473rexlimdva 3209 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → (∃𝑥 ∈ ℚ (𝑅 < 𝑥𝑥 < (𝑃𝐷𝑦)) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆))))
7526, 74mpd 15 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦 ∈ (𝑋𝑆)) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆)))
7675ralrimiva 3114 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → ∀𝑦 ∈ (𝑋𝑆)∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆)))
771elmopn 23137 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → ((𝑋𝑆) ∈ 𝐽 ↔ ((𝑋𝑆) ⊆ 𝑋 ∧ ∀𝑦 ∈ (𝑋𝑆)∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆)))))
78773ad2ant1 1131 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → ((𝑋𝑆) ∈ 𝐽 ↔ ((𝑋𝑆) ⊆ 𝑋 ∧ ∀𝑦 ∈ (𝑋𝑆)∃𝑤 ∈ ran (ball‘𝐷)(𝑦𝑤𝑤 ⊆ (𝑋𝑆)))))
795, 76, 78mpbir2and 713 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑋𝑆) ∈ 𝐽)
804, 79eqeltrrd 2854 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → ( 𝐽𝑆) ∈ 𝐽)
811mopntop 23135 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
82813ad2ant1 1131 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝐽 ∈ Top)
8316ssrab3 3987 . . . 4 𝑆𝑋
8483, 3sseqtrid 3945 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝑆 𝐽)
85 eqid 2759 . . . 4 𝐽 = 𝐽
8685iscld2 21721 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → (𝑆 ∈ (Clsd‘𝐽) ↔ ( 𝐽𝑆) ∈ 𝐽))
8782, 84, 86syl2anc 588 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑆 ∈ (Clsd‘𝐽) ↔ ( 𝐽𝑆) ∈ 𝐽))
8880, 87mpbird 260 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝑆 ∈ (Clsd‘𝐽))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 400   ∧ w3a 1085   = wceq 1539   ∈ wcel 2112  ∀wral 3071  ∃wrex 3072  {crab 3075   ∖ cdif 3856   ∩ cin 3858   ⊆ wss 3859  ∅c0 4226  ∪ cuni 4799   class class class wbr 5033  ran crn 5526  ‘cfv 6336  (class class class)co 7151  ℝcr 10567  0cc0 10568  ℝ*cxr 10705   < clt 10706   ≤ cle 10707  ℚcq 12381  -𝑒cxne 12538   +𝑒 cxad 12539  ∞Metcxmet 20144  ballcbl 20146  MetOpencmopn 20149  Topctop 21586  Clsdccld 21709 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-cnex 10624  ax-resscn 10625  ax-1cn 10626  ax-icn 10627  ax-addcl 10628  ax-addrcl 10629  ax-mulcl 10630  ax-mulrcl 10631  ax-mulcom 10632  ax-addass 10633  ax-mulass 10634  ax-distr 10635  ax-i2m1 10636  ax-1ne0 10637  ax-1rid 10638  ax-rnegex 10639  ax-rrecex 10640  ax-cnre 10641  ax-pre-lttri 10642  ax-pre-lttrn 10643  ax-pre-ltadd 10644  ax-pre-mulgt0 10645  ax-pre-sup 10646 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-1st 7694  df-2nd 7695  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-er 8300  df-map 8419  df-en 8529  df-dom 8530  df-sdom 8531  df-sup 8932  df-inf 8933  df-pnf 10708  df-mnf 10709  df-xr 10710  df-ltxr 10711  df-le 10712  df-sub 10903  df-neg 10904  df-div 11329  df-nn 11668  df-2 11730  df-n0 11928  df-z 12014  df-uz 12276  df-q 12382  df-rp 12424  df-xneg 12541  df-xadd 12542  df-xmul 12543  df-topgen 16768  df-psmet 20151  df-xmet 20152  df-bl 20154  df-mopn 20155  df-top 21587  df-topon 21604  df-bases 21639  df-cld 21712 This theorem is referenced by:  blcls  23201  lmle  23994  minveclem4  24125  lhop1lem  24705  ftalem3  25752  ubthlem1  28745
 Copyright terms: Public domain W3C validator