| Step | Hyp | Ref
| Expression |
| 1 | | regr1lem.3 |
. . . . 5
⊢ (𝜑 → 𝐽 ∈ Reg) |
| 2 | 1 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → 𝐽 ∈ Reg) |
| 3 | | regr1lem.6 |
. . . . 5
⊢ (𝜑 → 𝑈 ∈ 𝐽) |
| 4 | 3 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → 𝑈 ∈ 𝐽) |
| 5 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → 𝐴 ∈ 𝑈) |
| 6 | | regsep 23342 |
. . . 4
⊢ ((𝐽 ∈ Reg ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈) → ∃𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈)) |
| 7 | 2, 4, 5, 6 | syl3anc 1373 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → ∃𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈)) |
| 8 | | regr1lem.7 |
. . . . 5
⊢ (𝜑 → ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝐴) ∈ 𝑚 ∧ (𝐹‘𝐵) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) |
| 9 | 8 | ad2antrr 726 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) → ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝐴) ∈ 𝑚 ∧ (𝐹‘𝐵) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) |
| 10 | | regr1lem.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 11 | 10 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵 ∈ 𝑈) → 𝐽 ∈ (TopOn‘𝑋)) |
| 12 | | simplrl 777 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵 ∈ 𝑈) → 𝑧 ∈ 𝐽) |
| 13 | | kqval.2 |
. . . . . . . 8
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) |
| 14 | 13 | kqopn 23742 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝐽) → (𝐹 “ 𝑧) ∈ (KQ‘𝐽)) |
| 15 | 11, 12, 14 | syl2anc 584 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵 ∈ 𝑈) → (𝐹 “ 𝑧) ∈ (KQ‘𝐽)) |
| 16 | | toponuni 22920 |
. . . . . . . . . 10
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
| 17 | 11, 16 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵 ∈ 𝑈) → 𝑋 = ∪ 𝐽) |
| 18 | 17 | difeq1d 4125 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵 ∈ 𝑈) → (𝑋 ∖ ((cls‘𝐽)‘𝑧)) = (∪ 𝐽 ∖ ((cls‘𝐽)‘𝑧))) |
| 19 | | topontop 22919 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
| 20 | 11, 19 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵 ∈ 𝑈) → 𝐽 ∈ Top) |
| 21 | | elssuni 4937 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ 𝐽 → 𝑧 ⊆ ∪ 𝐽) |
| 22 | 12, 21 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵 ∈ 𝑈) → 𝑧 ⊆ ∪ 𝐽) |
| 23 | | eqid 2737 |
. . . . . . . . . . 11
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 24 | 23 | clscld 23055 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑧 ⊆ ∪ 𝐽)
→ ((cls‘𝐽)‘𝑧) ∈ (Clsd‘𝐽)) |
| 25 | 20, 22, 24 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵 ∈ 𝑈) → ((cls‘𝐽)‘𝑧) ∈ (Clsd‘𝐽)) |
| 26 | 23 | cldopn 23039 |
. . . . . . . . 9
⊢
(((cls‘𝐽)‘𝑧) ∈ (Clsd‘𝐽) → (∪ 𝐽 ∖ ((cls‘𝐽)‘𝑧)) ∈ 𝐽) |
| 27 | 25, 26 | syl 17 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵 ∈ 𝑈) → (∪ 𝐽 ∖ ((cls‘𝐽)‘𝑧)) ∈ 𝐽) |
| 28 | 18, 27 | eqeltrd 2841 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵 ∈ 𝑈) → (𝑋 ∖ ((cls‘𝐽)‘𝑧)) ∈ 𝐽) |
| 29 | 13 | kqopn 23742 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑋 ∖ ((cls‘𝐽)‘𝑧)) ∈ 𝐽) → (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧))) ∈ (KQ‘𝐽)) |
| 30 | 11, 28, 29 | syl2anc 584 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵 ∈ 𝑈) → (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧))) ∈ (KQ‘𝐽)) |
| 31 | | simprrl 781 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) → 𝐴 ∈ 𝑧) |
| 32 | 31 | adantr 480 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵 ∈ 𝑈) → 𝐴 ∈ 𝑧) |
| 33 | | regr1lem.4 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| 34 | 33 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵 ∈ 𝑈) → 𝐴 ∈ 𝑋) |
| 35 | 13 | kqfvima 23738 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋) → (𝐴 ∈ 𝑧 ↔ (𝐹‘𝐴) ∈ (𝐹 “ 𝑧))) |
| 36 | 11, 12, 34, 35 | syl3anc 1373 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵 ∈ 𝑈) → (𝐴 ∈ 𝑧 ↔ (𝐹‘𝐴) ∈ (𝐹 “ 𝑧))) |
| 37 | 32, 36 | mpbid 232 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵 ∈ 𝑈) → (𝐹‘𝐴) ∈ (𝐹 “ 𝑧)) |
| 38 | | regr1lem.5 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ 𝑋) |
| 39 | 38 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵 ∈ 𝑈) → 𝐵 ∈ 𝑋) |
| 40 | | simprrr 782 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) → ((cls‘𝐽)‘𝑧) ⊆ 𝑈) |
| 41 | 40 | sseld 3982 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) → (𝐵 ∈ ((cls‘𝐽)‘𝑧) → 𝐵 ∈ 𝑈)) |
| 42 | 41 | con3dimp 408 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵 ∈ 𝑈) → ¬ 𝐵 ∈ ((cls‘𝐽)‘𝑧)) |
| 43 | 39, 42 | eldifd 3962 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵 ∈ 𝑈) → 𝐵 ∈ (𝑋 ∖ ((cls‘𝐽)‘𝑧))) |
| 44 | 13 | kqfvima 23738 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑋 ∖ ((cls‘𝐽)‘𝑧)) ∈ 𝐽 ∧ 𝐵 ∈ 𝑋) → (𝐵 ∈ (𝑋 ∖ ((cls‘𝐽)‘𝑧)) ↔ (𝐹‘𝐵) ∈ (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧))))) |
| 45 | 11, 28, 39, 44 | syl3anc 1373 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵 ∈ 𝑈) → (𝐵 ∈ (𝑋 ∖ ((cls‘𝐽)‘𝑧)) ↔ (𝐹‘𝐵) ∈ (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧))))) |
| 46 | 43, 45 | mpbid 232 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵 ∈ 𝑈) → (𝐹‘𝐵) ∈ (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧)))) |
| 47 | 23 | sscls 23064 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑧 ⊆ ∪ 𝐽)
→ 𝑧 ⊆
((cls‘𝐽)‘𝑧)) |
| 48 | 20, 22, 47 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵 ∈ 𝑈) → 𝑧 ⊆ ((cls‘𝐽)‘𝑧)) |
| 49 | 48 | sscond 4146 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵 ∈ 𝑈) → (𝑋 ∖ ((cls‘𝐽)‘𝑧)) ⊆ (𝑋 ∖ 𝑧)) |
| 50 | | imass2 6120 |
. . . . . . . 8
⊢ ((𝑋 ∖ ((cls‘𝐽)‘𝑧)) ⊆ (𝑋 ∖ 𝑧) → (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧))) ⊆ (𝐹 “ (𝑋 ∖ 𝑧))) |
| 51 | | sslin 4243 |
. . . . . . . 8
⊢ ((𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧))) ⊆ (𝐹 “ (𝑋 ∖ 𝑧)) → ((𝐹 “ 𝑧) ∩ (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧)))) ⊆ ((𝐹 “ 𝑧) ∩ (𝐹 “ (𝑋 ∖ 𝑧)))) |
| 52 | 49, 50, 51 | 3syl 18 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵 ∈ 𝑈) → ((𝐹 “ 𝑧) ∩ (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧)))) ⊆ ((𝐹 “ 𝑧) ∩ (𝐹 “ (𝑋 ∖ 𝑧)))) |
| 53 | 13 | kqdisj 23740 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝐽) → ((𝐹 “ 𝑧) ∩ (𝐹 “ (𝑋 ∖ 𝑧))) = ∅) |
| 54 | 11, 12, 53 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵 ∈ 𝑈) → ((𝐹 “ 𝑧) ∩ (𝐹 “ (𝑋 ∖ 𝑧))) = ∅) |
| 55 | | sseq0 4403 |
. . . . . . 7
⊢ ((((𝐹 “ 𝑧) ∩ (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧)))) ⊆ ((𝐹 “ 𝑧) ∩ (𝐹 “ (𝑋 ∖ 𝑧))) ∧ ((𝐹 “ 𝑧) ∩ (𝐹 “ (𝑋 ∖ 𝑧))) = ∅) → ((𝐹 “ 𝑧) ∩ (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧)))) = ∅) |
| 56 | 52, 54, 55 | syl2anc 584 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵 ∈ 𝑈) → ((𝐹 “ 𝑧) ∩ (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧)))) = ∅) |
| 57 | | eleq2 2830 |
. . . . . . . 8
⊢ (𝑚 = (𝐹 “ 𝑧) → ((𝐹‘𝐴) ∈ 𝑚 ↔ (𝐹‘𝐴) ∈ (𝐹 “ 𝑧))) |
| 58 | | ineq1 4213 |
. . . . . . . . 9
⊢ (𝑚 = (𝐹 “ 𝑧) → (𝑚 ∩ 𝑛) = ((𝐹 “ 𝑧) ∩ 𝑛)) |
| 59 | 58 | eqeq1d 2739 |
. . . . . . . 8
⊢ (𝑚 = (𝐹 “ 𝑧) → ((𝑚 ∩ 𝑛) = ∅ ↔ ((𝐹 “ 𝑧) ∩ 𝑛) = ∅)) |
| 60 | 57, 59 | 3anbi13d 1440 |
. . . . . . 7
⊢ (𝑚 = (𝐹 “ 𝑧) → (((𝐹‘𝐴) ∈ 𝑚 ∧ (𝐹‘𝐵) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) ↔ ((𝐹‘𝐴) ∈ (𝐹 “ 𝑧) ∧ (𝐹‘𝐵) ∈ 𝑛 ∧ ((𝐹 “ 𝑧) ∩ 𝑛) = ∅))) |
| 61 | | eleq2 2830 |
. . . . . . . 8
⊢ (𝑛 = (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧))) → ((𝐹‘𝐵) ∈ 𝑛 ↔ (𝐹‘𝐵) ∈ (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧))))) |
| 62 | | ineq2 4214 |
. . . . . . . . 9
⊢ (𝑛 = (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧))) → ((𝐹 “ 𝑧) ∩ 𝑛) = ((𝐹 “ 𝑧) ∩ (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧))))) |
| 63 | 62 | eqeq1d 2739 |
. . . . . . . 8
⊢ (𝑛 = (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧))) → (((𝐹 “ 𝑧) ∩ 𝑛) = ∅ ↔ ((𝐹 “ 𝑧) ∩ (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧)))) = ∅)) |
| 64 | 61, 63 | 3anbi23d 1441 |
. . . . . . 7
⊢ (𝑛 = (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧))) → (((𝐹‘𝐴) ∈ (𝐹 “ 𝑧) ∧ (𝐹‘𝐵) ∈ 𝑛 ∧ ((𝐹 “ 𝑧) ∩ 𝑛) = ∅) ↔ ((𝐹‘𝐴) ∈ (𝐹 “ 𝑧) ∧ (𝐹‘𝐵) ∈ (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧))) ∧ ((𝐹 “ 𝑧) ∩ (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧)))) = ∅))) |
| 65 | 60, 64 | rspc2ev 3635 |
. . . . . 6
⊢ (((𝐹 “ 𝑧) ∈ (KQ‘𝐽) ∧ (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧))) ∈ (KQ‘𝐽) ∧ ((𝐹‘𝐴) ∈ (𝐹 “ 𝑧) ∧ (𝐹‘𝐵) ∈ (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧))) ∧ ((𝐹 “ 𝑧) ∩ (𝐹 “ (𝑋 ∖ ((cls‘𝐽)‘𝑧)))) = ∅)) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝐴) ∈ 𝑚 ∧ (𝐹‘𝐵) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) |
| 66 | 15, 30, 37, 46, 56, 65 | syl113anc 1384 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) ∧ ¬ 𝐵 ∈ 𝑈) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝐴) ∈ 𝑚 ∧ (𝐹‘𝐵) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) |
| 67 | 66 | ex 412 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) → (¬ 𝐵 ∈ 𝑈 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹‘𝐴) ∈ 𝑚 ∧ (𝐹‘𝐵) ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
| 68 | 9, 67 | mt3d 148 |
. . 3
⊢ (((𝜑 ∧ 𝐴 ∈ 𝑈) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ 𝑈))) → 𝐵 ∈ 𝑈) |
| 69 | 7, 68 | rexlimddv 3161 |
. 2
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → 𝐵 ∈ 𝑈) |
| 70 | 69 | ex 412 |
1
⊢ (𝜑 → (𝐴 ∈ 𝑈 → 𝐵 ∈ 𝑈)) |