MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isercoll2 Structured version   Visualization version   GIF version

Theorem isercoll2 15573
Description: Generalize isercoll 15572 so that both sequences have arbitrary starting point. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
isercoll2.z 𝑍 = (ℤ𝑀)
isercoll2.w 𝑊 = (ℤ𝑁)
isercoll2.m (𝜑𝑀 ∈ ℤ)
isercoll2.n (𝜑𝑁 ∈ ℤ)
isercoll2.g (𝜑𝐺:𝑍𝑊)
isercoll2.i ((𝜑𝑘𝑍) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
isercoll2.0 ((𝜑𝑛 ∈ (𝑊 ∖ ran 𝐺)) → (𝐹𝑛) = 0)
isercoll2.f ((𝜑𝑛𝑊) → (𝐹𝑛) ∈ ℂ)
isercoll2.h ((𝜑𝑘𝑍) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
Assertion
Ref Expression
isercoll2 (𝜑 → (seq𝑀( + , 𝐻) ⇝ 𝐴 ↔ seq𝑁( + , 𝐹) ⇝ 𝐴))
Distinct variable groups:   𝑘,𝑛,𝐴   𝑘,𝐹,𝑛   𝑘,𝐺,𝑛   𝑘,𝐻,𝑛   𝑛,𝑁   𝑘,𝑀,𝑛   𝜑,𝑘,𝑛   𝑛,𝑊   𝑘,𝑍
Allowed substitution hints:   𝑁(𝑘)   𝑊(𝑘)   𝑍(𝑛)

Proof of Theorem isercoll2
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isercoll2.z . . 3 𝑍 = (ℤ𝑀)
2 isercoll2.m . . 3 (𝜑𝑀 ∈ ℤ)
3 1z 12499 . . . 4 1 ∈ ℤ
4 zsubcl 12511 . . . 4 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (1 − 𝑀) ∈ ℤ)
53, 2, 4sylancr 587 . . 3 (𝜑 → (1 − 𝑀) ∈ ℤ)
6 seqex 13907 . . . 4 seq𝑀( + , 𝐻) ∈ V
76a1i 11 . . 3 (𝜑 → seq𝑀( + , 𝐻) ∈ V)
8 seqex 13907 . . . 4 seq1( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))) ∈ V
98a1i 11 . . 3 (𝜑 → seq1( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))) ∈ V)
10 simpr 484 . . . . . 6 ((𝜑𝑘𝑍) → 𝑘𝑍)
1110, 1eleqtrdi 2841 . . . . 5 ((𝜑𝑘𝑍) → 𝑘 ∈ (ℤ𝑀))
125adantr 480 . . . . 5 ((𝜑𝑘𝑍) → (1 − 𝑀) ∈ ℤ)
13 simpl 482 . . . . . 6 ((𝜑𝑘𝑍) → 𝜑)
14 elfzuz 13417 . . . . . . 7 (𝑗 ∈ (𝑀...𝑘) → 𝑗 ∈ (ℤ𝑀))
1514, 1eleqtrrdi 2842 . . . . . 6 (𝑗 ∈ (𝑀...𝑘) → 𝑗𝑍)
16 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → 𝑗𝑍)
1716, 1eleqtrdi 2841 . . . . . . . . . . . 12 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
18 eluzelz 12739 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
1917, 18syl 17 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → 𝑗 ∈ ℤ)
2019zcnd 12575 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝑗 ∈ ℂ)
212zcnd 12575 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℂ)
2221adantr 480 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝑀 ∈ ℂ)
23 1cnd 11104 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 1 ∈ ℂ)
2420, 22, 23subadd23d 11491 . . . . . . . . 9 ((𝜑𝑗𝑍) → ((𝑗𝑀) + 1) = (𝑗 + (1 − 𝑀)))
25 uznn0sub 12768 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑀) → (𝑗𝑀) ∈ ℕ0)
2617, 25syl 17 . . . . . . . . . 10 ((𝜑𝑗𝑍) → (𝑗𝑀) ∈ ℕ0)
27 nn0p1nn 12417 . . . . . . . . . 10 ((𝑗𝑀) ∈ ℕ0 → ((𝑗𝑀) + 1) ∈ ℕ)
2826, 27syl 17 . . . . . . . . 9 ((𝜑𝑗𝑍) → ((𝑗𝑀) + 1) ∈ ℕ)
2924, 28eqeltrrd 2832 . . . . . . . 8 ((𝜑𝑗𝑍) → (𝑗 + (1 − 𝑀)) ∈ ℕ)
30 oveq1 7353 . . . . . . . . . . 11 (𝑥 = (𝑗 + (1 − 𝑀)) → (𝑥 − 1) = ((𝑗 + (1 − 𝑀)) − 1))
3130oveq2d 7362 . . . . . . . . . 10 (𝑥 = (𝑗 + (1 − 𝑀)) → (𝑀 + (𝑥 − 1)) = (𝑀 + ((𝑗 + (1 − 𝑀)) − 1)))
3231fveq2d 6826 . . . . . . . . 9 (𝑥 = (𝑗 + (1 − 𝑀)) → (𝐻‘(𝑀 + (𝑥 − 1))) = (𝐻‘(𝑀 + ((𝑗 + (1 − 𝑀)) − 1))))
33 eqid 2731 . . . . . . . . 9 (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1)))) = (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))
34 fvex 6835 . . . . . . . . 9 (𝐻‘(𝑀 + ((𝑗 + (1 − 𝑀)) − 1))) ∈ V
3532, 33, 34fvmpt 6929 . . . . . . . 8 ((𝑗 + (1 − 𝑀)) ∈ ℕ → ((𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))‘(𝑗 + (1 − 𝑀))) = (𝐻‘(𝑀 + ((𝑗 + (1 − 𝑀)) − 1))))
3629, 35syl 17 . . . . . . 7 ((𝜑𝑗𝑍) → ((𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))‘(𝑗 + (1 − 𝑀))) = (𝐻‘(𝑀 + ((𝑗 + (1 − 𝑀)) − 1))))
3724oveq1d 7361 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → (((𝑗𝑀) + 1) − 1) = ((𝑗 + (1 − 𝑀)) − 1))
3826nn0cnd 12441 . . . . . . . . . . . 12 ((𝜑𝑗𝑍) → (𝑗𝑀) ∈ ℂ)
39 ax-1cn 11061 . . . . . . . . . . . 12 1 ∈ ℂ
40 pncan 11363 . . . . . . . . . . . 12 (((𝑗𝑀) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑗𝑀) + 1) − 1) = (𝑗𝑀))
4138, 39, 40sylancl 586 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → (((𝑗𝑀) + 1) − 1) = (𝑗𝑀))
4237, 41eqtr3d 2768 . . . . . . . . . 10 ((𝜑𝑗𝑍) → ((𝑗 + (1 − 𝑀)) − 1) = (𝑗𝑀))
4342oveq2d 7362 . . . . . . . . 9 ((𝜑𝑗𝑍) → (𝑀 + ((𝑗 + (1 − 𝑀)) − 1)) = (𝑀 + (𝑗𝑀)))
4422, 20pncan3d 11472 . . . . . . . . 9 ((𝜑𝑗𝑍) → (𝑀 + (𝑗𝑀)) = 𝑗)
4543, 44eqtrd 2766 . . . . . . . 8 ((𝜑𝑗𝑍) → (𝑀 + ((𝑗 + (1 − 𝑀)) − 1)) = 𝑗)
4645fveq2d 6826 . . . . . . 7 ((𝜑𝑗𝑍) → (𝐻‘(𝑀 + ((𝑗 + (1 − 𝑀)) − 1))) = (𝐻𝑗))
4736, 46eqtr2d 2767 . . . . . 6 ((𝜑𝑗𝑍) → (𝐻𝑗) = ((𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))‘(𝑗 + (1 − 𝑀))))
4813, 15, 47syl2an 596 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (𝑀...𝑘)) → (𝐻𝑗) = ((𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))‘(𝑗 + (1 − 𝑀))))
4911, 12, 48seqshft2 13932 . . . 4 ((𝜑𝑘𝑍) → (seq𝑀( + , 𝐻)‘𝑘) = (seq(𝑀 + (1 − 𝑀))( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1)))))‘(𝑘 + (1 − 𝑀))))
5021adantr 480 . . . . . . 7 ((𝜑𝑘𝑍) → 𝑀 ∈ ℂ)
51 pncan3 11365 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑀 + (1 − 𝑀)) = 1)
5250, 39, 51sylancl 586 . . . . . 6 ((𝜑𝑘𝑍) → (𝑀 + (1 − 𝑀)) = 1)
5352seqeq1d 13911 . . . . 5 ((𝜑𝑘𝑍) → seq(𝑀 + (1 − 𝑀))( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))) = seq1( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))))
5453fveq1d 6824 . . . 4 ((𝜑𝑘𝑍) → (seq(𝑀 + (1 − 𝑀))( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1)))))‘(𝑘 + (1 − 𝑀))) = (seq1( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1)))))‘(𝑘 + (1 − 𝑀))))
5549, 54eqtr2d 2767 . . 3 ((𝜑𝑘𝑍) → (seq1( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1)))))‘(𝑘 + (1 − 𝑀))) = (seq𝑀( + , 𝐻)‘𝑘))
561, 2, 5, 7, 9, 55climshft2 15486 . 2 (𝜑 → (seq𝑀( + , 𝐻) ⇝ 𝐴 ↔ seq1( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))) ⇝ 𝐴))
57 isercoll2.w . . 3 𝑊 = (ℤ𝑁)
58 isercoll2.n . . 3 (𝜑𝑁 ∈ ℤ)
59 isercoll2.g . . . . . 6 (𝜑𝐺:𝑍𝑊)
6059adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℕ) → 𝐺:𝑍𝑊)
61 uzid 12744 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
622, 61syl 17 . . . . . . 7 (𝜑𝑀 ∈ (ℤ𝑀))
63 nnm1nn0 12419 . . . . . . 7 (𝑥 ∈ ℕ → (𝑥 − 1) ∈ ℕ0)
64 uzaddcl 12799 . . . . . . 7 ((𝑀 ∈ (ℤ𝑀) ∧ (𝑥 − 1) ∈ ℕ0) → (𝑀 + (𝑥 − 1)) ∈ (ℤ𝑀))
6562, 63, 64syl2an 596 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → (𝑀 + (𝑥 − 1)) ∈ (ℤ𝑀))
6665, 1eleqtrrdi 2842 . . . . 5 ((𝜑𝑥 ∈ ℕ) → (𝑀 + (𝑥 − 1)) ∈ 𝑍)
6760, 66ffvelcdmd 7018 . . . 4 ((𝜑𝑥 ∈ ℕ) → (𝐺‘(𝑀 + (𝑥 − 1))) ∈ 𝑊)
6867fmpttd 7048 . . 3 (𝜑 → (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))):ℕ⟶𝑊)
69 fveq2 6822 . . . . . . 7 (𝑘 = (𝑀 + (𝑗 − 1)) → (𝐺𝑘) = (𝐺‘(𝑀 + (𝑗 − 1))))
70 fvoveq1 7369 . . . . . . 7 (𝑘 = (𝑀 + (𝑗 − 1)) → (𝐺‘(𝑘 + 1)) = (𝐺‘((𝑀 + (𝑗 − 1)) + 1)))
7169, 70breq12d 5104 . . . . . 6 (𝑘 = (𝑀 + (𝑗 − 1)) → ((𝐺𝑘) < (𝐺‘(𝑘 + 1)) ↔ (𝐺‘(𝑀 + (𝑗 − 1))) < (𝐺‘((𝑀 + (𝑗 − 1)) + 1))))
72 isercoll2.i . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
7372ralrimiva 3124 . . . . . . 7 (𝜑 → ∀𝑘𝑍 (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
7473adantr 480 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ∀𝑘𝑍 (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
75 nnm1nn0 12419 . . . . . . . 8 (𝑗 ∈ ℕ → (𝑗 − 1) ∈ ℕ0)
76 uzaddcl 12799 . . . . . . . 8 ((𝑀 ∈ (ℤ𝑀) ∧ (𝑗 − 1) ∈ ℕ0) → (𝑀 + (𝑗 − 1)) ∈ (ℤ𝑀))
7762, 75, 76syl2an 596 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝑀 + (𝑗 − 1)) ∈ (ℤ𝑀))
7877, 1eleqtrrdi 2842 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (𝑀 + (𝑗 − 1)) ∈ 𝑍)
7971, 74, 78rspcdva 3578 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (𝐺‘(𝑀 + (𝑗 − 1))) < (𝐺‘((𝑀 + (𝑗 − 1)) + 1)))
80 nncn 12130 . . . . . . . . . 10 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
8180adantl 481 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℂ)
82 1cnd 11104 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → 1 ∈ ℂ)
8381, 82, 82addsubd 11490 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → ((𝑗 + 1) − 1) = ((𝑗 − 1) + 1))
8483oveq2d 7362 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝑀 + ((𝑗 + 1) − 1)) = (𝑀 + ((𝑗 − 1) + 1)))
8521adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝑀 ∈ ℂ)
8675adantl 481 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝑗 − 1) ∈ ℕ0)
8786nn0cnd 12441 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝑗 − 1) ∈ ℂ)
8885, 87, 82addassd 11131 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ((𝑀 + (𝑗 − 1)) + 1) = (𝑀 + ((𝑗 − 1) + 1)))
8984, 88eqtr4d 2769 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (𝑀 + ((𝑗 + 1) − 1)) = ((𝑀 + (𝑗 − 1)) + 1))
9089fveq2d 6826 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (𝐺‘(𝑀 + ((𝑗 + 1) − 1))) = (𝐺‘((𝑀 + (𝑗 − 1)) + 1)))
9179, 90breqtrrd 5119 . . . 4 ((𝜑𝑗 ∈ ℕ) → (𝐺‘(𝑀 + (𝑗 − 1))) < (𝐺‘(𝑀 + ((𝑗 + 1) − 1))))
92 oveq1 7353 . . . . . . . 8 (𝑥 = 𝑗 → (𝑥 − 1) = (𝑗 − 1))
9392oveq2d 7362 . . . . . . 7 (𝑥 = 𝑗 → (𝑀 + (𝑥 − 1)) = (𝑀 + (𝑗 − 1)))
9493fveq2d 6826 . . . . . 6 (𝑥 = 𝑗 → (𝐺‘(𝑀 + (𝑥 − 1))) = (𝐺‘(𝑀 + (𝑗 − 1))))
95 eqid 2731 . . . . . 6 (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))) = (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))
96 fvex 6835 . . . . . 6 (𝐺‘(𝑀 + (𝑗 − 1))) ∈ V
9794, 95, 96fvmpt 6929 . . . . 5 (𝑗 ∈ ℕ → ((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘𝑗) = (𝐺‘(𝑀 + (𝑗 − 1))))
9897adantl 481 . . . 4 ((𝜑𝑗 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘𝑗) = (𝐺‘(𝑀 + (𝑗 − 1))))
99 peano2nn 12134 . . . . . 6 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ)
10099adantl 481 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℕ)
101 oveq1 7353 . . . . . . . 8 (𝑥 = (𝑗 + 1) → (𝑥 − 1) = ((𝑗 + 1) − 1))
102101oveq2d 7362 . . . . . . 7 (𝑥 = (𝑗 + 1) → (𝑀 + (𝑥 − 1)) = (𝑀 + ((𝑗 + 1) − 1)))
103102fveq2d 6826 . . . . . 6 (𝑥 = (𝑗 + 1) → (𝐺‘(𝑀 + (𝑥 − 1))) = (𝐺‘(𝑀 + ((𝑗 + 1) − 1))))
104 fvex 6835 . . . . . 6 (𝐺‘(𝑀 + ((𝑗 + 1) − 1))) ∈ V
105103, 95, 104fvmpt 6929 . . . . 5 ((𝑗 + 1) ∈ ℕ → ((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘(𝑗 + 1)) = (𝐺‘(𝑀 + ((𝑗 + 1) − 1))))
106100, 105syl 17 . . . 4 ((𝜑𝑗 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘(𝑗 + 1)) = (𝐺‘(𝑀 + ((𝑗 + 1) − 1))))
10791, 98, 1063brtr4d 5123 . . 3 ((𝜑𝑗 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘𝑗) < ((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘(𝑗 + 1)))
10859ffnd 6652 . . . . . . . 8 (𝜑𝐺 Fn 𝑍)
109 uznn0sub 12768 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ𝑀) → (𝑘𝑀) ∈ ℕ0)
11011, 109syl 17 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝑘𝑀) ∈ ℕ0)
111 nn0p1nn 12417 . . . . . . . . . . . 12 ((𝑘𝑀) ∈ ℕ0 → ((𝑘𝑀) + 1) ∈ ℕ)
112110, 111syl 17 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → ((𝑘𝑀) + 1) ∈ ℕ)
113110nn0cnd 12441 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (𝑘𝑀) ∈ ℂ)
114 pncan 11363 . . . . . . . . . . . . . . 15 (((𝑘𝑀) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑘𝑀) + 1) − 1) = (𝑘𝑀))
115113, 39, 114sylancl 586 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑍) → (((𝑘𝑀) + 1) − 1) = (𝑘𝑀))
116115oveq2d 7362 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → (𝑀 + (((𝑘𝑀) + 1) − 1)) = (𝑀 + (𝑘𝑀)))
117 eluzelz 12739 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
118117, 1eleq2s 2849 . . . . . . . . . . . . . . 15 (𝑘𝑍𝑘 ∈ ℤ)
119118zcnd 12575 . . . . . . . . . . . . . 14 (𝑘𝑍𝑘 ∈ ℂ)
120 pncan3 11365 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑀 + (𝑘𝑀)) = 𝑘)
12121, 119, 120syl2an 596 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → (𝑀 + (𝑘𝑀)) = 𝑘)
122116, 121eqtr2d 2767 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → 𝑘 = (𝑀 + (((𝑘𝑀) + 1) − 1)))
123122fveq2d 6826 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐺‘(𝑀 + (((𝑘𝑀) + 1) − 1))))
124 oveq1 7353 . . . . . . . . . . . . . 14 (𝑥 = ((𝑘𝑀) + 1) → (𝑥 − 1) = (((𝑘𝑀) + 1) − 1))
125124oveq2d 7362 . . . . . . . . . . . . 13 (𝑥 = ((𝑘𝑀) + 1) → (𝑀 + (𝑥 − 1)) = (𝑀 + (((𝑘𝑀) + 1) − 1)))
126125fveq2d 6826 . . . . . . . . . . . 12 (𝑥 = ((𝑘𝑀) + 1) → (𝐺‘(𝑀 + (𝑥 − 1))) = (𝐺‘(𝑀 + (((𝑘𝑀) + 1) − 1))))
127126rspceeqv 3600 . . . . . . . . . . 11 ((((𝑘𝑀) + 1) ∈ ℕ ∧ (𝐺𝑘) = (𝐺‘(𝑀 + (((𝑘𝑀) + 1) − 1)))) → ∃𝑥 ∈ ℕ (𝐺𝑘) = (𝐺‘(𝑀 + (𝑥 − 1))))
128112, 123, 127syl2anc 584 . . . . . . . . . 10 ((𝜑𝑘𝑍) → ∃𝑥 ∈ ℕ (𝐺𝑘) = (𝐺‘(𝑀 + (𝑥 − 1))))
129 fvex 6835 . . . . . . . . . . 11 (𝐺𝑘) ∈ V
13095elrnmpt 5898 . . . . . . . . . . 11 ((𝐺𝑘) ∈ V → ((𝐺𝑘) ∈ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))) ↔ ∃𝑥 ∈ ℕ (𝐺𝑘) = (𝐺‘(𝑀 + (𝑥 − 1)))))
131129, 130ax-mp 5 . . . . . . . . . 10 ((𝐺𝑘) ∈ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))) ↔ ∃𝑥 ∈ ℕ (𝐺𝑘) = (𝐺‘(𝑀 + (𝑥 − 1))))
132128, 131sylibr 234 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))))
133132ralrimiva 3124 . . . . . . . 8 (𝜑 → ∀𝑘𝑍 (𝐺𝑘) ∈ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))))
134 ffnfv 7052 . . . . . . . 8 (𝐺:𝑍⟶ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))) ↔ (𝐺 Fn 𝑍 ∧ ∀𝑘𝑍 (𝐺𝑘) ∈ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))))
135108, 133, 134sylanbrc 583 . . . . . . 7 (𝜑𝐺:𝑍⟶ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))))
136135frnd 6659 . . . . . 6 (𝜑 → ran 𝐺 ⊆ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))))
137136sscond 4096 . . . . 5 (𝜑 → (𝑊 ∖ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))) ⊆ (𝑊 ∖ ran 𝐺))
138137sselda 3934 . . . 4 ((𝜑𝑛 ∈ (𝑊 ∖ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))))) → 𝑛 ∈ (𝑊 ∖ ran 𝐺))
139 isercoll2.0 . . . 4 ((𝜑𝑛 ∈ (𝑊 ∖ ran 𝐺)) → (𝐹𝑛) = 0)
140138, 139syldan 591 . . 3 ((𝜑𝑛 ∈ (𝑊 ∖ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))))) → (𝐹𝑛) = 0)
141 isercoll2.f . . 3 ((𝜑𝑛𝑊) → (𝐹𝑛) ∈ ℂ)
142 fveq2 6822 . . . . . 6 (𝑘 = (𝑀 + (𝑗 − 1)) → (𝐻𝑘) = (𝐻‘(𝑀 + (𝑗 − 1))))
14369fveq2d 6826 . . . . . 6 (𝑘 = (𝑀 + (𝑗 − 1)) → (𝐹‘(𝐺𝑘)) = (𝐹‘(𝐺‘(𝑀 + (𝑗 − 1)))))
144142, 143eqeq12d 2747 . . . . 5 (𝑘 = (𝑀 + (𝑗 − 1)) → ((𝐻𝑘) = (𝐹‘(𝐺𝑘)) ↔ (𝐻‘(𝑀 + (𝑗 − 1))) = (𝐹‘(𝐺‘(𝑀 + (𝑗 − 1))))))
145 isercoll2.h . . . . . . 7 ((𝜑𝑘𝑍) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
146145ralrimiva 3124 . . . . . 6 (𝜑 → ∀𝑘𝑍 (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
147146adantr 480 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ∀𝑘𝑍 (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
148144, 147, 78rspcdva 3578 . . . 4 ((𝜑𝑗 ∈ ℕ) → (𝐻‘(𝑀 + (𝑗 − 1))) = (𝐹‘(𝐺‘(𝑀 + (𝑗 − 1)))))
14993fveq2d 6826 . . . . . 6 (𝑥 = 𝑗 → (𝐻‘(𝑀 + (𝑥 − 1))) = (𝐻‘(𝑀 + (𝑗 − 1))))
150 fvex 6835 . . . . . 6 (𝐻‘(𝑀 + (𝑗 − 1))) ∈ V
151149, 33, 150fvmpt 6929 . . . . 5 (𝑗 ∈ ℕ → ((𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))‘𝑗) = (𝐻‘(𝑀 + (𝑗 − 1))))
152151adantl 481 . . . 4 ((𝜑𝑗 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))‘𝑗) = (𝐻‘(𝑀 + (𝑗 − 1))))
15398fveq2d 6826 . . . 4 ((𝜑𝑗 ∈ ℕ) → (𝐹‘((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘𝑗)) = (𝐹‘(𝐺‘(𝑀 + (𝑗 − 1)))))
154148, 152, 1533eqtr4d 2776 . . 3 ((𝜑𝑗 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))‘𝑗) = (𝐹‘((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘𝑗)))
15557, 58, 68, 107, 140, 141, 154isercoll 15572 . 2 (𝜑 → (seq1( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))) ⇝ 𝐴 ↔ seq𝑁( + , 𝐹) ⇝ 𝐴))
15656, 155bitrd 279 1 (𝜑 → (seq𝑀( + , 𝐻) ⇝ 𝐴 ↔ seq𝑁( + , 𝐹) ⇝ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  cdif 3899   class class class wbr 5091  cmpt 5172  ran crn 5617   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  cc 11001  0cc0 11003  1c1 11004   + caddc 11006   < clt 11143  cmin 11341  cn 12122  0cn0 12378  cz 12465  cuz 12729  ...cfz 13404  seqcseq 13905  cli 15388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-n0 12379  df-xnn0 12452  df-z 12466  df-uz 12730  df-fz 13405  df-seq 13906  df-hash 14235  df-shft 14971  df-clim 15392
This theorem is referenced by:  iserodd  16744  stirlinglem5  46115
  Copyright terms: Public domain W3C validator