MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isercoll2 Structured version   Visualization version   GIF version

Theorem isercoll2 15717
Description: Generalize isercoll 15716 so that both sequences have arbitrary starting point. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
isercoll2.z 𝑍 = (ℤ𝑀)
isercoll2.w 𝑊 = (ℤ𝑁)
isercoll2.m (𝜑𝑀 ∈ ℤ)
isercoll2.n (𝜑𝑁 ∈ ℤ)
isercoll2.g (𝜑𝐺:𝑍𝑊)
isercoll2.i ((𝜑𝑘𝑍) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
isercoll2.0 ((𝜑𝑛 ∈ (𝑊 ∖ ran 𝐺)) → (𝐹𝑛) = 0)
isercoll2.f ((𝜑𝑛𝑊) → (𝐹𝑛) ∈ ℂ)
isercoll2.h ((𝜑𝑘𝑍) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
Assertion
Ref Expression
isercoll2 (𝜑 → (seq𝑀( + , 𝐻) ⇝ 𝐴 ↔ seq𝑁( + , 𝐹) ⇝ 𝐴))
Distinct variable groups:   𝑘,𝑛,𝐴   𝑘,𝐹,𝑛   𝑘,𝐺,𝑛   𝑘,𝐻,𝑛   𝑛,𝑁   𝑘,𝑀,𝑛   𝜑,𝑘,𝑛   𝑛,𝑊   𝑘,𝑍
Allowed substitution hints:   𝑁(𝑘)   𝑊(𝑘)   𝑍(𝑛)

Proof of Theorem isercoll2
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isercoll2.z . . 3 𝑍 = (ℤ𝑀)
2 isercoll2.m . . 3 (𝜑𝑀 ∈ ℤ)
3 1z 12673 . . . 4 1 ∈ ℤ
4 zsubcl 12685 . . . 4 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (1 − 𝑀) ∈ ℤ)
53, 2, 4sylancr 586 . . 3 (𝜑 → (1 − 𝑀) ∈ ℤ)
6 seqex 14054 . . . 4 seq𝑀( + , 𝐻) ∈ V
76a1i 11 . . 3 (𝜑 → seq𝑀( + , 𝐻) ∈ V)
8 seqex 14054 . . . 4 seq1( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))) ∈ V
98a1i 11 . . 3 (𝜑 → seq1( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))) ∈ V)
10 simpr 484 . . . . . 6 ((𝜑𝑘𝑍) → 𝑘𝑍)
1110, 1eleqtrdi 2854 . . . . 5 ((𝜑𝑘𝑍) → 𝑘 ∈ (ℤ𝑀))
125adantr 480 . . . . 5 ((𝜑𝑘𝑍) → (1 − 𝑀) ∈ ℤ)
13 simpl 482 . . . . . 6 ((𝜑𝑘𝑍) → 𝜑)
14 elfzuz 13580 . . . . . . 7 (𝑗 ∈ (𝑀...𝑘) → 𝑗 ∈ (ℤ𝑀))
1514, 1eleqtrrdi 2855 . . . . . 6 (𝑗 ∈ (𝑀...𝑘) → 𝑗𝑍)
16 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → 𝑗𝑍)
1716, 1eleqtrdi 2854 . . . . . . . . . . . 12 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
18 eluzelz 12913 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
1917, 18syl 17 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → 𝑗 ∈ ℤ)
2019zcnd 12748 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝑗 ∈ ℂ)
212zcnd 12748 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℂ)
2221adantr 480 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝑀 ∈ ℂ)
23 1cnd 11285 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 1 ∈ ℂ)
2420, 22, 23subadd23d 11669 . . . . . . . . 9 ((𝜑𝑗𝑍) → ((𝑗𝑀) + 1) = (𝑗 + (1 − 𝑀)))
25 uznn0sub 12942 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑀) → (𝑗𝑀) ∈ ℕ0)
2617, 25syl 17 . . . . . . . . . 10 ((𝜑𝑗𝑍) → (𝑗𝑀) ∈ ℕ0)
27 nn0p1nn 12592 . . . . . . . . . 10 ((𝑗𝑀) ∈ ℕ0 → ((𝑗𝑀) + 1) ∈ ℕ)
2826, 27syl 17 . . . . . . . . 9 ((𝜑𝑗𝑍) → ((𝑗𝑀) + 1) ∈ ℕ)
2924, 28eqeltrrd 2845 . . . . . . . 8 ((𝜑𝑗𝑍) → (𝑗 + (1 − 𝑀)) ∈ ℕ)
30 oveq1 7455 . . . . . . . . . . 11 (𝑥 = (𝑗 + (1 − 𝑀)) → (𝑥 − 1) = ((𝑗 + (1 − 𝑀)) − 1))
3130oveq2d 7464 . . . . . . . . . 10 (𝑥 = (𝑗 + (1 − 𝑀)) → (𝑀 + (𝑥 − 1)) = (𝑀 + ((𝑗 + (1 − 𝑀)) − 1)))
3231fveq2d 6924 . . . . . . . . 9 (𝑥 = (𝑗 + (1 − 𝑀)) → (𝐻‘(𝑀 + (𝑥 − 1))) = (𝐻‘(𝑀 + ((𝑗 + (1 − 𝑀)) − 1))))
33 eqid 2740 . . . . . . . . 9 (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1)))) = (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))
34 fvex 6933 . . . . . . . . 9 (𝐻‘(𝑀 + ((𝑗 + (1 − 𝑀)) − 1))) ∈ V
3532, 33, 34fvmpt 7029 . . . . . . . 8 ((𝑗 + (1 − 𝑀)) ∈ ℕ → ((𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))‘(𝑗 + (1 − 𝑀))) = (𝐻‘(𝑀 + ((𝑗 + (1 − 𝑀)) − 1))))
3629, 35syl 17 . . . . . . 7 ((𝜑𝑗𝑍) → ((𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))‘(𝑗 + (1 − 𝑀))) = (𝐻‘(𝑀 + ((𝑗 + (1 − 𝑀)) − 1))))
3724oveq1d 7463 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → (((𝑗𝑀) + 1) − 1) = ((𝑗 + (1 − 𝑀)) − 1))
3826nn0cnd 12615 . . . . . . . . . . . 12 ((𝜑𝑗𝑍) → (𝑗𝑀) ∈ ℂ)
39 ax-1cn 11242 . . . . . . . . . . . 12 1 ∈ ℂ
40 pncan 11542 . . . . . . . . . . . 12 (((𝑗𝑀) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑗𝑀) + 1) − 1) = (𝑗𝑀))
4138, 39, 40sylancl 585 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → (((𝑗𝑀) + 1) − 1) = (𝑗𝑀))
4237, 41eqtr3d 2782 . . . . . . . . . 10 ((𝜑𝑗𝑍) → ((𝑗 + (1 − 𝑀)) − 1) = (𝑗𝑀))
4342oveq2d 7464 . . . . . . . . 9 ((𝜑𝑗𝑍) → (𝑀 + ((𝑗 + (1 − 𝑀)) − 1)) = (𝑀 + (𝑗𝑀)))
4422, 20pncan3d 11650 . . . . . . . . 9 ((𝜑𝑗𝑍) → (𝑀 + (𝑗𝑀)) = 𝑗)
4543, 44eqtrd 2780 . . . . . . . 8 ((𝜑𝑗𝑍) → (𝑀 + ((𝑗 + (1 − 𝑀)) − 1)) = 𝑗)
4645fveq2d 6924 . . . . . . 7 ((𝜑𝑗𝑍) → (𝐻‘(𝑀 + ((𝑗 + (1 − 𝑀)) − 1))) = (𝐻𝑗))
4736, 46eqtr2d 2781 . . . . . 6 ((𝜑𝑗𝑍) → (𝐻𝑗) = ((𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))‘(𝑗 + (1 − 𝑀))))
4813, 15, 47syl2an 595 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (𝑀...𝑘)) → (𝐻𝑗) = ((𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))‘(𝑗 + (1 − 𝑀))))
4911, 12, 48seqshft2 14079 . . . 4 ((𝜑𝑘𝑍) → (seq𝑀( + , 𝐻)‘𝑘) = (seq(𝑀 + (1 − 𝑀))( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1)))))‘(𝑘 + (1 − 𝑀))))
5021adantr 480 . . . . . . 7 ((𝜑𝑘𝑍) → 𝑀 ∈ ℂ)
51 pncan3 11544 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑀 + (1 − 𝑀)) = 1)
5250, 39, 51sylancl 585 . . . . . 6 ((𝜑𝑘𝑍) → (𝑀 + (1 − 𝑀)) = 1)
5352seqeq1d 14058 . . . . 5 ((𝜑𝑘𝑍) → seq(𝑀 + (1 − 𝑀))( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))) = seq1( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))))
5453fveq1d 6922 . . . 4 ((𝜑𝑘𝑍) → (seq(𝑀 + (1 − 𝑀))( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1)))))‘(𝑘 + (1 − 𝑀))) = (seq1( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1)))))‘(𝑘 + (1 − 𝑀))))
5549, 54eqtr2d 2781 . . 3 ((𝜑𝑘𝑍) → (seq1( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1)))))‘(𝑘 + (1 − 𝑀))) = (seq𝑀( + , 𝐻)‘𝑘))
561, 2, 5, 7, 9, 55climshft2 15628 . 2 (𝜑 → (seq𝑀( + , 𝐻) ⇝ 𝐴 ↔ seq1( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))) ⇝ 𝐴))
57 isercoll2.w . . 3 𝑊 = (ℤ𝑁)
58 isercoll2.n . . 3 (𝜑𝑁 ∈ ℤ)
59 isercoll2.g . . . . . 6 (𝜑𝐺:𝑍𝑊)
6059adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℕ) → 𝐺:𝑍𝑊)
61 uzid 12918 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
622, 61syl 17 . . . . . . 7 (𝜑𝑀 ∈ (ℤ𝑀))
63 nnm1nn0 12594 . . . . . . 7 (𝑥 ∈ ℕ → (𝑥 − 1) ∈ ℕ0)
64 uzaddcl 12969 . . . . . . 7 ((𝑀 ∈ (ℤ𝑀) ∧ (𝑥 − 1) ∈ ℕ0) → (𝑀 + (𝑥 − 1)) ∈ (ℤ𝑀))
6562, 63, 64syl2an 595 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → (𝑀 + (𝑥 − 1)) ∈ (ℤ𝑀))
6665, 1eleqtrrdi 2855 . . . . 5 ((𝜑𝑥 ∈ ℕ) → (𝑀 + (𝑥 − 1)) ∈ 𝑍)
6760, 66ffvelcdmd 7119 . . . 4 ((𝜑𝑥 ∈ ℕ) → (𝐺‘(𝑀 + (𝑥 − 1))) ∈ 𝑊)
6867fmpttd 7149 . . 3 (𝜑 → (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))):ℕ⟶𝑊)
69 fveq2 6920 . . . . . . 7 (𝑘 = (𝑀 + (𝑗 − 1)) → (𝐺𝑘) = (𝐺‘(𝑀 + (𝑗 − 1))))
70 fvoveq1 7471 . . . . . . 7 (𝑘 = (𝑀 + (𝑗 − 1)) → (𝐺‘(𝑘 + 1)) = (𝐺‘((𝑀 + (𝑗 − 1)) + 1)))
7169, 70breq12d 5179 . . . . . 6 (𝑘 = (𝑀 + (𝑗 − 1)) → ((𝐺𝑘) < (𝐺‘(𝑘 + 1)) ↔ (𝐺‘(𝑀 + (𝑗 − 1))) < (𝐺‘((𝑀 + (𝑗 − 1)) + 1))))
72 isercoll2.i . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
7372ralrimiva 3152 . . . . . . 7 (𝜑 → ∀𝑘𝑍 (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
7473adantr 480 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ∀𝑘𝑍 (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
75 nnm1nn0 12594 . . . . . . . 8 (𝑗 ∈ ℕ → (𝑗 − 1) ∈ ℕ0)
76 uzaddcl 12969 . . . . . . . 8 ((𝑀 ∈ (ℤ𝑀) ∧ (𝑗 − 1) ∈ ℕ0) → (𝑀 + (𝑗 − 1)) ∈ (ℤ𝑀))
7762, 75, 76syl2an 595 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝑀 + (𝑗 − 1)) ∈ (ℤ𝑀))
7877, 1eleqtrrdi 2855 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (𝑀 + (𝑗 − 1)) ∈ 𝑍)
7971, 74, 78rspcdva 3636 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (𝐺‘(𝑀 + (𝑗 − 1))) < (𝐺‘((𝑀 + (𝑗 − 1)) + 1)))
80 nncn 12301 . . . . . . . . . 10 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
8180adantl 481 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℂ)
82 1cnd 11285 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → 1 ∈ ℂ)
8381, 82, 82addsubd 11668 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → ((𝑗 + 1) − 1) = ((𝑗 − 1) + 1))
8483oveq2d 7464 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝑀 + ((𝑗 + 1) − 1)) = (𝑀 + ((𝑗 − 1) + 1)))
8521adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝑀 ∈ ℂ)
8675adantl 481 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝑗 − 1) ∈ ℕ0)
8786nn0cnd 12615 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝑗 − 1) ∈ ℂ)
8885, 87, 82addassd 11312 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ((𝑀 + (𝑗 − 1)) + 1) = (𝑀 + ((𝑗 − 1) + 1)))
8984, 88eqtr4d 2783 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (𝑀 + ((𝑗 + 1) − 1)) = ((𝑀 + (𝑗 − 1)) + 1))
9089fveq2d 6924 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (𝐺‘(𝑀 + ((𝑗 + 1) − 1))) = (𝐺‘((𝑀 + (𝑗 − 1)) + 1)))
9179, 90breqtrrd 5194 . . . 4 ((𝜑𝑗 ∈ ℕ) → (𝐺‘(𝑀 + (𝑗 − 1))) < (𝐺‘(𝑀 + ((𝑗 + 1) − 1))))
92 oveq1 7455 . . . . . . . 8 (𝑥 = 𝑗 → (𝑥 − 1) = (𝑗 − 1))
9392oveq2d 7464 . . . . . . 7 (𝑥 = 𝑗 → (𝑀 + (𝑥 − 1)) = (𝑀 + (𝑗 − 1)))
9493fveq2d 6924 . . . . . 6 (𝑥 = 𝑗 → (𝐺‘(𝑀 + (𝑥 − 1))) = (𝐺‘(𝑀 + (𝑗 − 1))))
95 eqid 2740 . . . . . 6 (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))) = (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))
96 fvex 6933 . . . . . 6 (𝐺‘(𝑀 + (𝑗 − 1))) ∈ V
9794, 95, 96fvmpt 7029 . . . . 5 (𝑗 ∈ ℕ → ((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘𝑗) = (𝐺‘(𝑀 + (𝑗 − 1))))
9897adantl 481 . . . 4 ((𝜑𝑗 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘𝑗) = (𝐺‘(𝑀 + (𝑗 − 1))))
99 peano2nn 12305 . . . . . 6 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ)
10099adantl 481 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℕ)
101 oveq1 7455 . . . . . . . 8 (𝑥 = (𝑗 + 1) → (𝑥 − 1) = ((𝑗 + 1) − 1))
102101oveq2d 7464 . . . . . . 7 (𝑥 = (𝑗 + 1) → (𝑀 + (𝑥 − 1)) = (𝑀 + ((𝑗 + 1) − 1)))
103102fveq2d 6924 . . . . . 6 (𝑥 = (𝑗 + 1) → (𝐺‘(𝑀 + (𝑥 − 1))) = (𝐺‘(𝑀 + ((𝑗 + 1) − 1))))
104 fvex 6933 . . . . . 6 (𝐺‘(𝑀 + ((𝑗 + 1) − 1))) ∈ V
105103, 95, 104fvmpt 7029 . . . . 5 ((𝑗 + 1) ∈ ℕ → ((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘(𝑗 + 1)) = (𝐺‘(𝑀 + ((𝑗 + 1) − 1))))
106100, 105syl 17 . . . 4 ((𝜑𝑗 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘(𝑗 + 1)) = (𝐺‘(𝑀 + ((𝑗 + 1) − 1))))
10791, 98, 1063brtr4d 5198 . . 3 ((𝜑𝑗 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘𝑗) < ((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘(𝑗 + 1)))
10859ffnd 6748 . . . . . . . 8 (𝜑𝐺 Fn 𝑍)
109 uznn0sub 12942 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ𝑀) → (𝑘𝑀) ∈ ℕ0)
11011, 109syl 17 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝑘𝑀) ∈ ℕ0)
111 nn0p1nn 12592 . . . . . . . . . . . 12 ((𝑘𝑀) ∈ ℕ0 → ((𝑘𝑀) + 1) ∈ ℕ)
112110, 111syl 17 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → ((𝑘𝑀) + 1) ∈ ℕ)
113110nn0cnd 12615 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (𝑘𝑀) ∈ ℂ)
114 pncan 11542 . . . . . . . . . . . . . . 15 (((𝑘𝑀) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑘𝑀) + 1) − 1) = (𝑘𝑀))
115113, 39, 114sylancl 585 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑍) → (((𝑘𝑀) + 1) − 1) = (𝑘𝑀))
116115oveq2d 7464 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → (𝑀 + (((𝑘𝑀) + 1) − 1)) = (𝑀 + (𝑘𝑀)))
117 eluzelz 12913 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
118117, 1eleq2s 2862 . . . . . . . . . . . . . . 15 (𝑘𝑍𝑘 ∈ ℤ)
119118zcnd 12748 . . . . . . . . . . . . . 14 (𝑘𝑍𝑘 ∈ ℂ)
120 pncan3 11544 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑀 + (𝑘𝑀)) = 𝑘)
12121, 119, 120syl2an 595 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → (𝑀 + (𝑘𝑀)) = 𝑘)
122116, 121eqtr2d 2781 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → 𝑘 = (𝑀 + (((𝑘𝑀) + 1) − 1)))
123122fveq2d 6924 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐺‘(𝑀 + (((𝑘𝑀) + 1) − 1))))
124 oveq1 7455 . . . . . . . . . . . . . 14 (𝑥 = ((𝑘𝑀) + 1) → (𝑥 − 1) = (((𝑘𝑀) + 1) − 1))
125124oveq2d 7464 . . . . . . . . . . . . 13 (𝑥 = ((𝑘𝑀) + 1) → (𝑀 + (𝑥 − 1)) = (𝑀 + (((𝑘𝑀) + 1) − 1)))
126125fveq2d 6924 . . . . . . . . . . . 12 (𝑥 = ((𝑘𝑀) + 1) → (𝐺‘(𝑀 + (𝑥 − 1))) = (𝐺‘(𝑀 + (((𝑘𝑀) + 1) − 1))))
127126rspceeqv 3658 . . . . . . . . . . 11 ((((𝑘𝑀) + 1) ∈ ℕ ∧ (𝐺𝑘) = (𝐺‘(𝑀 + (((𝑘𝑀) + 1) − 1)))) → ∃𝑥 ∈ ℕ (𝐺𝑘) = (𝐺‘(𝑀 + (𝑥 − 1))))
128112, 123, 127syl2anc 583 . . . . . . . . . 10 ((𝜑𝑘𝑍) → ∃𝑥 ∈ ℕ (𝐺𝑘) = (𝐺‘(𝑀 + (𝑥 − 1))))
129 fvex 6933 . . . . . . . . . . 11 (𝐺𝑘) ∈ V
13095elrnmpt 5981 . . . . . . . . . . 11 ((𝐺𝑘) ∈ V → ((𝐺𝑘) ∈ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))) ↔ ∃𝑥 ∈ ℕ (𝐺𝑘) = (𝐺‘(𝑀 + (𝑥 − 1)))))
131129, 130ax-mp 5 . . . . . . . . . 10 ((𝐺𝑘) ∈ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))) ↔ ∃𝑥 ∈ ℕ (𝐺𝑘) = (𝐺‘(𝑀 + (𝑥 − 1))))
132128, 131sylibr 234 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))))
133132ralrimiva 3152 . . . . . . . 8 (𝜑 → ∀𝑘𝑍 (𝐺𝑘) ∈ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))))
134 ffnfv 7153 . . . . . . . 8 (𝐺:𝑍⟶ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))) ↔ (𝐺 Fn 𝑍 ∧ ∀𝑘𝑍 (𝐺𝑘) ∈ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))))
135108, 133, 134sylanbrc 582 . . . . . . 7 (𝜑𝐺:𝑍⟶ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))))
136135frnd 6755 . . . . . 6 (𝜑 → ran 𝐺 ⊆ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))))
137136sscond 4169 . . . . 5 (𝜑 → (𝑊 ∖ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))) ⊆ (𝑊 ∖ ran 𝐺))
138137sselda 4008 . . . 4 ((𝜑𝑛 ∈ (𝑊 ∖ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))))) → 𝑛 ∈ (𝑊 ∖ ran 𝐺))
139 isercoll2.0 . . . 4 ((𝜑𝑛 ∈ (𝑊 ∖ ran 𝐺)) → (𝐹𝑛) = 0)
140138, 139syldan 590 . . 3 ((𝜑𝑛 ∈ (𝑊 ∖ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))))) → (𝐹𝑛) = 0)
141 isercoll2.f . . 3 ((𝜑𝑛𝑊) → (𝐹𝑛) ∈ ℂ)
142 fveq2 6920 . . . . . 6 (𝑘 = (𝑀 + (𝑗 − 1)) → (𝐻𝑘) = (𝐻‘(𝑀 + (𝑗 − 1))))
14369fveq2d 6924 . . . . . 6 (𝑘 = (𝑀 + (𝑗 − 1)) → (𝐹‘(𝐺𝑘)) = (𝐹‘(𝐺‘(𝑀 + (𝑗 − 1)))))
144142, 143eqeq12d 2756 . . . . 5 (𝑘 = (𝑀 + (𝑗 − 1)) → ((𝐻𝑘) = (𝐹‘(𝐺𝑘)) ↔ (𝐻‘(𝑀 + (𝑗 − 1))) = (𝐹‘(𝐺‘(𝑀 + (𝑗 − 1))))))
145 isercoll2.h . . . . . . 7 ((𝜑𝑘𝑍) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
146145ralrimiva 3152 . . . . . 6 (𝜑 → ∀𝑘𝑍 (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
147146adantr 480 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ∀𝑘𝑍 (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
148144, 147, 78rspcdva 3636 . . . 4 ((𝜑𝑗 ∈ ℕ) → (𝐻‘(𝑀 + (𝑗 − 1))) = (𝐹‘(𝐺‘(𝑀 + (𝑗 − 1)))))
14993fveq2d 6924 . . . . . 6 (𝑥 = 𝑗 → (𝐻‘(𝑀 + (𝑥 − 1))) = (𝐻‘(𝑀 + (𝑗 − 1))))
150 fvex 6933 . . . . . 6 (𝐻‘(𝑀 + (𝑗 − 1))) ∈ V
151149, 33, 150fvmpt 7029 . . . . 5 (𝑗 ∈ ℕ → ((𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))‘𝑗) = (𝐻‘(𝑀 + (𝑗 − 1))))
152151adantl 481 . . . 4 ((𝜑𝑗 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))‘𝑗) = (𝐻‘(𝑀 + (𝑗 − 1))))
15398fveq2d 6924 . . . 4 ((𝜑𝑗 ∈ ℕ) → (𝐹‘((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘𝑗)) = (𝐹‘(𝐺‘(𝑀 + (𝑗 − 1)))))
154148, 152, 1533eqtr4d 2790 . . 3 ((𝜑𝑗 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))‘𝑗) = (𝐹‘((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘𝑗)))
15557, 58, 68, 107, 140, 141, 154isercoll 15716 . 2 (𝜑 → (seq1( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))) ⇝ 𝐴 ↔ seq𝑁( + , 𝐹) ⇝ 𝐴))
15656, 155bitrd 279 1 (𝜑 → (seq𝑀( + , 𝐻) ⇝ 𝐴 ↔ seq𝑁( + , 𝐹) ⇝ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  cdif 3973   class class class wbr 5166  cmpt 5249  ran crn 5701   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cmin 11520  cn 12293  0cn0 12553  cz 12639  cuz 12903  ...cfz 13567  seqcseq 14052  cli 15530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-seq 14053  df-hash 14380  df-shft 15116  df-clim 15534
This theorem is referenced by:  iserodd  16882  stirlinglem5  45999
  Copyright terms: Public domain W3C validator