Step | Hyp | Ref
| Expression |
1 | | isercoll2.z |
. . 3
⊢ 𝑍 =
(ℤ≥‘𝑀) |
2 | | isercoll2.m |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℤ) |
3 | | 1z 12207 |
. . . 4
⊢ 1 ∈
ℤ |
4 | | zsubcl 12219 |
. . . 4
⊢ ((1
∈ ℤ ∧ 𝑀
∈ ℤ) → (1 − 𝑀) ∈ ℤ) |
5 | 3, 2, 4 | sylancr 590 |
. . 3
⊢ (𝜑 → (1 − 𝑀) ∈
ℤ) |
6 | | seqex 13576 |
. . . 4
⊢ seq𝑀( + , 𝐻) ∈ V |
7 | 6 | a1i 11 |
. . 3
⊢ (𝜑 → seq𝑀( + , 𝐻) ∈ V) |
8 | | seqex 13576 |
. . . 4
⊢ seq1( + ,
(𝑥 ∈ ℕ ↦
(𝐻‘(𝑀 + (𝑥 − 1))))) ∈ V |
9 | 8 | a1i 11 |
. . 3
⊢ (𝜑 → seq1( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))) ∈ V) |
10 | | simpr 488 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) |
11 | 10, 1 | eleqtrdi 2848 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ (ℤ≥‘𝑀)) |
12 | 5 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (1 − 𝑀) ∈ ℤ) |
13 | | simpl 486 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝜑) |
14 | | elfzuz 13108 |
. . . . . . 7
⊢ (𝑗 ∈ (𝑀...𝑘) → 𝑗 ∈ (ℤ≥‘𝑀)) |
15 | 14, 1 | eleqtrrdi 2849 |
. . . . . 6
⊢ (𝑗 ∈ (𝑀...𝑘) → 𝑗 ∈ 𝑍) |
16 | | simpr 488 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) |
17 | 16, 1 | eleqtrdi 2848 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑀)) |
18 | | eluzelz 12448 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → 𝑗 ∈ ℤ) |
19 | 17, 18 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ ℤ) |
20 | 19 | zcnd 12283 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ ℂ) |
21 | 2 | zcnd 12283 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℂ) |
22 | 21 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑀 ∈ ℂ) |
23 | | 1cnd 10828 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 1 ∈ ℂ) |
24 | 20, 22, 23 | subadd23d 11211 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑗 − 𝑀) + 1) = (𝑗 + (1 − 𝑀))) |
25 | | uznn0sub 12473 |
. . . . . . . . . . 11
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → (𝑗 − 𝑀) ∈
ℕ0) |
26 | 17, 25 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝑗 − 𝑀) ∈
ℕ0) |
27 | | nn0p1nn 12129 |
. . . . . . . . . 10
⊢ ((𝑗 − 𝑀) ∈ ℕ0 → ((𝑗 − 𝑀) + 1) ∈ ℕ) |
28 | 26, 27 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑗 − 𝑀) + 1) ∈ ℕ) |
29 | 24, 28 | eqeltrrd 2839 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝑗 + (1 − 𝑀)) ∈ ℕ) |
30 | | oveq1 7220 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑗 + (1 − 𝑀)) → (𝑥 − 1) = ((𝑗 + (1 − 𝑀)) − 1)) |
31 | 30 | oveq2d 7229 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑗 + (1 − 𝑀)) → (𝑀 + (𝑥 − 1)) = (𝑀 + ((𝑗 + (1 − 𝑀)) − 1))) |
32 | 31 | fveq2d 6721 |
. . . . . . . . 9
⊢ (𝑥 = (𝑗 + (1 − 𝑀)) → (𝐻‘(𝑀 + (𝑥 − 1))) = (𝐻‘(𝑀 + ((𝑗 + (1 − 𝑀)) − 1)))) |
33 | | eqid 2737 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1)))) = (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1)))) |
34 | | fvex 6730 |
. . . . . . . . 9
⊢ (𝐻‘(𝑀 + ((𝑗 + (1 − 𝑀)) − 1))) ∈ V |
35 | 32, 33, 34 | fvmpt 6818 |
. . . . . . . 8
⊢ ((𝑗 + (1 − 𝑀)) ∈ ℕ → ((𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))‘(𝑗 + (1 − 𝑀))) = (𝐻‘(𝑀 + ((𝑗 + (1 − 𝑀)) − 1)))) |
36 | 29, 35 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))‘(𝑗 + (1 − 𝑀))) = (𝐻‘(𝑀 + ((𝑗 + (1 − 𝑀)) − 1)))) |
37 | 24 | oveq1d 7228 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (((𝑗 − 𝑀) + 1) − 1) = ((𝑗 + (1 − 𝑀)) − 1)) |
38 | 26 | nn0cnd 12152 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝑗 − 𝑀) ∈ ℂ) |
39 | | ax-1cn 10787 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℂ |
40 | | pncan 11084 |
. . . . . . . . . . . 12
⊢ (((𝑗 − 𝑀) ∈ ℂ ∧ 1 ∈ ℂ)
→ (((𝑗 − 𝑀) + 1) − 1) = (𝑗 − 𝑀)) |
41 | 38, 39, 40 | sylancl 589 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (((𝑗 − 𝑀) + 1) − 1) = (𝑗 − 𝑀)) |
42 | 37, 41 | eqtr3d 2779 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑗 + (1 − 𝑀)) − 1) = (𝑗 − 𝑀)) |
43 | 42 | oveq2d 7229 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝑀 + ((𝑗 + (1 − 𝑀)) − 1)) = (𝑀 + (𝑗 − 𝑀))) |
44 | 22, 20 | pncan3d 11192 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝑀 + (𝑗 − 𝑀)) = 𝑗) |
45 | 43, 44 | eqtrd 2777 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝑀 + ((𝑗 + (1 − 𝑀)) − 1)) = 𝑗) |
46 | 45 | fveq2d 6721 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘(𝑀 + ((𝑗 + (1 − 𝑀)) − 1))) = (𝐻‘𝑗)) |
47 | 36, 46 | eqtr2d 2778 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = ((𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))‘(𝑗 + (1 − 𝑀)))) |
48 | 13, 15, 47 | syl2an 599 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ 𝑗 ∈ (𝑀...𝑘)) → (𝐻‘𝑗) = ((𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))‘(𝑗 + (1 − 𝑀)))) |
49 | 11, 12, 48 | seqshft2 13602 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (seq𝑀( + , 𝐻)‘𝑘) = (seq(𝑀 + (1 − 𝑀))( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1)))))‘(𝑘 + (1 − 𝑀)))) |
50 | 21 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑀 ∈ ℂ) |
51 | | pncan3 11086 |
. . . . . . 7
⊢ ((𝑀 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑀 + (1
− 𝑀)) =
1) |
52 | 50, 39, 51 | sylancl 589 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑀 + (1 − 𝑀)) = 1) |
53 | 52 | seqeq1d 13580 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → seq(𝑀 + (1 − 𝑀))( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))) = seq1( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1)))))) |
54 | 53 | fveq1d 6719 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (seq(𝑀 + (1 − 𝑀))( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1)))))‘(𝑘 + (1 − 𝑀))) = (seq1( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1)))))‘(𝑘 + (1 − 𝑀)))) |
55 | 49, 54 | eqtr2d 2778 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (seq1( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1)))))‘(𝑘 + (1 − 𝑀))) = (seq𝑀( + , 𝐻)‘𝑘)) |
56 | 1, 2, 5, 7, 9, 55 | climshft2 15143 |
. 2
⊢ (𝜑 → (seq𝑀( + , 𝐻) ⇝ 𝐴 ↔ seq1( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))) ⇝ 𝐴)) |
57 | | isercoll2.w |
. . 3
⊢ 𝑊 =
(ℤ≥‘𝑁) |
58 | | isercoll2.n |
. . 3
⊢ (𝜑 → 𝑁 ∈ ℤ) |
59 | | isercoll2.g |
. . . . . 6
⊢ (𝜑 → 𝐺:𝑍⟶𝑊) |
60 | 59 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → 𝐺:𝑍⟶𝑊) |
61 | | uzid 12453 |
. . . . . . . 8
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) |
62 | 2, 61 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
63 | | nnm1nn0 12131 |
. . . . . . 7
⊢ (𝑥 ∈ ℕ → (𝑥 − 1) ∈
ℕ0) |
64 | | uzaddcl 12500 |
. . . . . . 7
⊢ ((𝑀 ∈
(ℤ≥‘𝑀) ∧ (𝑥 − 1) ∈ ℕ0)
→ (𝑀 + (𝑥 − 1)) ∈
(ℤ≥‘𝑀)) |
65 | 62, 63, 64 | syl2an 599 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → (𝑀 + (𝑥 − 1)) ∈
(ℤ≥‘𝑀)) |
66 | 65, 1 | eleqtrrdi 2849 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → (𝑀 + (𝑥 − 1)) ∈ 𝑍) |
67 | 60, 66 | ffvelrnd 6905 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → (𝐺‘(𝑀 + (𝑥 − 1))) ∈ 𝑊) |
68 | 67 | fmpttd 6932 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))):ℕ⟶𝑊) |
69 | | fveq2 6717 |
. . . . . . 7
⊢ (𝑘 = (𝑀 + (𝑗 − 1)) → (𝐺‘𝑘) = (𝐺‘(𝑀 + (𝑗 − 1)))) |
70 | | fvoveq1 7236 |
. . . . . . 7
⊢ (𝑘 = (𝑀 + (𝑗 − 1)) → (𝐺‘(𝑘 + 1)) = (𝐺‘((𝑀 + (𝑗 − 1)) + 1))) |
71 | 69, 70 | breq12d 5066 |
. . . . . 6
⊢ (𝑘 = (𝑀 + (𝑗 − 1)) → ((𝐺‘𝑘) < (𝐺‘(𝑘 + 1)) ↔ (𝐺‘(𝑀 + (𝑗 − 1))) < (𝐺‘((𝑀 + (𝑗 − 1)) + 1)))) |
72 | | isercoll2.i |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) < (𝐺‘(𝑘 + 1))) |
73 | 72 | ralrimiva 3105 |
. . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐺‘𝑘) < (𝐺‘(𝑘 + 1))) |
74 | 73 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ∀𝑘 ∈ 𝑍 (𝐺‘𝑘) < (𝐺‘(𝑘 + 1))) |
75 | | nnm1nn0 12131 |
. . . . . . . 8
⊢ (𝑗 ∈ ℕ → (𝑗 − 1) ∈
ℕ0) |
76 | | uzaddcl 12500 |
. . . . . . . 8
⊢ ((𝑀 ∈
(ℤ≥‘𝑀) ∧ (𝑗 − 1) ∈ ℕ0)
→ (𝑀 + (𝑗 − 1)) ∈
(ℤ≥‘𝑀)) |
77 | 62, 75, 76 | syl2an 599 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑀 + (𝑗 − 1)) ∈
(ℤ≥‘𝑀)) |
78 | 77, 1 | eleqtrrdi 2849 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑀 + (𝑗 − 1)) ∈ 𝑍) |
79 | 71, 74, 78 | rspcdva 3539 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐺‘(𝑀 + (𝑗 − 1))) < (𝐺‘((𝑀 + (𝑗 − 1)) + 1))) |
80 | | nncn 11838 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℂ) |
81 | 80 | adantl 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℂ) |
82 | | 1cnd 10828 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 1 ∈
ℂ) |
83 | 81, 82, 82 | addsubd 11210 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝑗 + 1) − 1) = ((𝑗 − 1) + 1)) |
84 | 83 | oveq2d 7229 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑀 + ((𝑗 + 1) − 1)) = (𝑀 + ((𝑗 − 1) + 1))) |
85 | 21 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑀 ∈ ℂ) |
86 | 75 | adantl 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑗 − 1) ∈
ℕ0) |
87 | 86 | nn0cnd 12152 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑗 − 1) ∈ ℂ) |
88 | 85, 87, 82 | addassd 10855 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝑀 + (𝑗 − 1)) + 1) = (𝑀 + ((𝑗 − 1) + 1))) |
89 | 84, 88 | eqtr4d 2780 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑀 + ((𝑗 + 1) − 1)) = ((𝑀 + (𝑗 − 1)) + 1)) |
90 | 89 | fveq2d 6721 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐺‘(𝑀 + ((𝑗 + 1) − 1))) = (𝐺‘((𝑀 + (𝑗 − 1)) + 1))) |
91 | 79, 90 | breqtrrd 5081 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐺‘(𝑀 + (𝑗 − 1))) < (𝐺‘(𝑀 + ((𝑗 + 1) − 1)))) |
92 | | oveq1 7220 |
. . . . . . . 8
⊢ (𝑥 = 𝑗 → (𝑥 − 1) = (𝑗 − 1)) |
93 | 92 | oveq2d 7229 |
. . . . . . 7
⊢ (𝑥 = 𝑗 → (𝑀 + (𝑥 − 1)) = (𝑀 + (𝑗 − 1))) |
94 | 93 | fveq2d 6721 |
. . . . . 6
⊢ (𝑥 = 𝑗 → (𝐺‘(𝑀 + (𝑥 − 1))) = (𝐺‘(𝑀 + (𝑗 − 1)))) |
95 | | eqid 2737 |
. . . . . 6
⊢ (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))) = (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))) |
96 | | fvex 6730 |
. . . . . 6
⊢ (𝐺‘(𝑀 + (𝑗 − 1))) ∈ V |
97 | 94, 95, 96 | fvmpt 6818 |
. . . . 5
⊢ (𝑗 ∈ ℕ → ((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘𝑗) = (𝐺‘(𝑀 + (𝑗 − 1)))) |
98 | 97 | adantl 485 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘𝑗) = (𝐺‘(𝑀 + (𝑗 − 1)))) |
99 | | peano2nn 11842 |
. . . . . 6
⊢ (𝑗 ∈ ℕ → (𝑗 + 1) ∈
ℕ) |
100 | 99 | adantl 485 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℕ) |
101 | | oveq1 7220 |
. . . . . . . 8
⊢ (𝑥 = (𝑗 + 1) → (𝑥 − 1) = ((𝑗 + 1) − 1)) |
102 | 101 | oveq2d 7229 |
. . . . . . 7
⊢ (𝑥 = (𝑗 + 1) → (𝑀 + (𝑥 − 1)) = (𝑀 + ((𝑗 + 1) − 1))) |
103 | 102 | fveq2d 6721 |
. . . . . 6
⊢ (𝑥 = (𝑗 + 1) → (𝐺‘(𝑀 + (𝑥 − 1))) = (𝐺‘(𝑀 + ((𝑗 + 1) − 1)))) |
104 | | fvex 6730 |
. . . . . 6
⊢ (𝐺‘(𝑀 + ((𝑗 + 1) − 1))) ∈ V |
105 | 103, 95, 104 | fvmpt 6818 |
. . . . 5
⊢ ((𝑗 + 1) ∈ ℕ →
((𝑥 ∈ ℕ ↦
(𝐺‘(𝑀 + (𝑥 − 1))))‘(𝑗 + 1)) = (𝐺‘(𝑀 + ((𝑗 + 1) − 1)))) |
106 | 100, 105 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘(𝑗 + 1)) = (𝐺‘(𝑀 + ((𝑗 + 1) − 1)))) |
107 | 91, 98, 106 | 3brtr4d 5085 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘𝑗) < ((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘(𝑗 + 1))) |
108 | 59 | ffnd 6546 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 Fn 𝑍) |
109 | | uznn0sub 12473 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → (𝑘 − 𝑀) ∈
ℕ0) |
110 | 11, 109 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑘 − 𝑀) ∈
ℕ0) |
111 | | nn0p1nn 12129 |
. . . . . . . . . . . 12
⊢ ((𝑘 − 𝑀) ∈ ℕ0 → ((𝑘 − 𝑀) + 1) ∈ ℕ) |
112 | 110, 111 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 − 𝑀) + 1) ∈ ℕ) |
113 | 110 | nn0cnd 12152 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑘 − 𝑀) ∈ ℂ) |
114 | | pncan 11084 |
. . . . . . . . . . . . . . 15
⊢ (((𝑘 − 𝑀) ∈ ℂ ∧ 1 ∈ ℂ)
→ (((𝑘 − 𝑀) + 1) − 1) = (𝑘 − 𝑀)) |
115 | 113, 39, 114 | sylancl 589 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (((𝑘 − 𝑀) + 1) − 1) = (𝑘 − 𝑀)) |
116 | 115 | oveq2d 7229 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑀 + (((𝑘 − 𝑀) + 1) − 1)) = (𝑀 + (𝑘 − 𝑀))) |
117 | | eluzelz 12448 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → 𝑘 ∈ ℤ) |
118 | 117, 1 | eleq2s 2856 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ) |
119 | 118 | zcnd 12283 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℂ) |
120 | | pncan3 11086 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑀 + (𝑘 − 𝑀)) = 𝑘) |
121 | 21, 119, 120 | syl2an 599 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑀 + (𝑘 − 𝑀)) = 𝑘) |
122 | 116, 121 | eqtr2d 2778 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 = (𝑀 + (((𝑘 − 𝑀) + 1) − 1))) |
123 | 122 | fveq2d 6721 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐺‘(𝑀 + (((𝑘 − 𝑀) + 1) − 1)))) |
124 | | oveq1 7220 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = ((𝑘 − 𝑀) + 1) → (𝑥 − 1) = (((𝑘 − 𝑀) + 1) − 1)) |
125 | 124 | oveq2d 7229 |
. . . . . . . . . . . . 13
⊢ (𝑥 = ((𝑘 − 𝑀) + 1) → (𝑀 + (𝑥 − 1)) = (𝑀 + (((𝑘 − 𝑀) + 1) − 1))) |
126 | 125 | fveq2d 6721 |
. . . . . . . . . . . 12
⊢ (𝑥 = ((𝑘 − 𝑀) + 1) → (𝐺‘(𝑀 + (𝑥 − 1))) = (𝐺‘(𝑀 + (((𝑘 − 𝑀) + 1) − 1)))) |
127 | 126 | rspceeqv 3552 |
. . . . . . . . . . 11
⊢ ((((𝑘 − 𝑀) + 1) ∈ ℕ ∧ (𝐺‘𝑘) = (𝐺‘(𝑀 + (((𝑘 − 𝑀) + 1) − 1)))) → ∃𝑥 ∈ ℕ (𝐺‘𝑘) = (𝐺‘(𝑀 + (𝑥 − 1)))) |
128 | 112, 123,
127 | syl2anc 587 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ∃𝑥 ∈ ℕ (𝐺‘𝑘) = (𝐺‘(𝑀 + (𝑥 − 1)))) |
129 | | fvex 6730 |
. . . . . . . . . . 11
⊢ (𝐺‘𝑘) ∈ V |
130 | 95 | elrnmpt 5825 |
. . . . . . . . . . 11
⊢ ((𝐺‘𝑘) ∈ V → ((𝐺‘𝑘) ∈ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))) ↔ ∃𝑥 ∈ ℕ (𝐺‘𝑘) = (𝐺‘(𝑀 + (𝑥 − 1))))) |
131 | 129, 130 | ax-mp 5 |
. . . . . . . . . 10
⊢ ((𝐺‘𝑘) ∈ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))) ↔ ∃𝑥 ∈ ℕ (𝐺‘𝑘) = (𝐺‘(𝑀 + (𝑥 − 1)))) |
132 | 128, 131 | sylibr 237 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))) |
133 | 132 | ralrimiva 3105 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐺‘𝑘) ∈ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))) |
134 | | ffnfv 6935 |
. . . . . . . 8
⊢ (𝐺:𝑍⟶ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))) ↔ (𝐺 Fn 𝑍 ∧ ∀𝑘 ∈ 𝑍 (𝐺‘𝑘) ∈ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))))) |
135 | 108, 133,
134 | sylanbrc 586 |
. . . . . . 7
⊢ (𝜑 → 𝐺:𝑍⟶ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))) |
136 | 135 | frnd 6553 |
. . . . . 6
⊢ (𝜑 → ran 𝐺 ⊆ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))) |
137 | 136 | sscond 4056 |
. . . . 5
⊢ (𝜑 → (𝑊 ∖ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))) ⊆ (𝑊 ∖ ran 𝐺)) |
138 | 137 | sselda 3901 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑊 ∖ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))))) → 𝑛 ∈ (𝑊 ∖ ran 𝐺)) |
139 | | isercoll2.0 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑊 ∖ ran 𝐺)) → (𝐹‘𝑛) = 0) |
140 | 138, 139 | syldan 594 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑊 ∖ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))))) → (𝐹‘𝑛) = 0) |
141 | | isercoll2.f |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑊) → (𝐹‘𝑛) ∈ ℂ) |
142 | | fveq2 6717 |
. . . . . 6
⊢ (𝑘 = (𝑀 + (𝑗 − 1)) → (𝐻‘𝑘) = (𝐻‘(𝑀 + (𝑗 − 1)))) |
143 | 69 | fveq2d 6721 |
. . . . . 6
⊢ (𝑘 = (𝑀 + (𝑗 − 1)) → (𝐹‘(𝐺‘𝑘)) = (𝐹‘(𝐺‘(𝑀 + (𝑗 − 1))))) |
144 | 142, 143 | eqeq12d 2753 |
. . . . 5
⊢ (𝑘 = (𝑀 + (𝑗 − 1)) → ((𝐻‘𝑘) = (𝐹‘(𝐺‘𝑘)) ↔ (𝐻‘(𝑀 + (𝑗 − 1))) = (𝐹‘(𝐺‘(𝑀 + (𝑗 − 1)))))) |
145 | | isercoll2.h |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = (𝐹‘(𝐺‘𝑘))) |
146 | 145 | ralrimiva 3105 |
. . . . . 6
⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐻‘𝑘) = (𝐹‘(𝐺‘𝑘))) |
147 | 146 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ∀𝑘 ∈ 𝑍 (𝐻‘𝑘) = (𝐹‘(𝐺‘𝑘))) |
148 | 144, 147,
78 | rspcdva 3539 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐻‘(𝑀 + (𝑗 − 1))) = (𝐹‘(𝐺‘(𝑀 + (𝑗 − 1))))) |
149 | 93 | fveq2d 6721 |
. . . . . 6
⊢ (𝑥 = 𝑗 → (𝐻‘(𝑀 + (𝑥 − 1))) = (𝐻‘(𝑀 + (𝑗 − 1)))) |
150 | | fvex 6730 |
. . . . . 6
⊢ (𝐻‘(𝑀 + (𝑗 − 1))) ∈ V |
151 | 149, 33, 150 | fvmpt 6818 |
. . . . 5
⊢ (𝑗 ∈ ℕ → ((𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))‘𝑗) = (𝐻‘(𝑀 + (𝑗 − 1)))) |
152 | 151 | adantl 485 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))‘𝑗) = (𝐻‘(𝑀 + (𝑗 − 1)))) |
153 | 98 | fveq2d 6721 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘𝑗)) = (𝐹‘(𝐺‘(𝑀 + (𝑗 − 1))))) |
154 | 148, 152,
153 | 3eqtr4d 2787 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))‘𝑗) = (𝐹‘((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘𝑗))) |
155 | 57, 58, 68, 107, 140, 141, 154 | isercoll 15231 |
. 2
⊢ (𝜑 → (seq1( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))) ⇝ 𝐴 ↔ seq𝑁( + , 𝐹) ⇝ 𝐴)) |
156 | 56, 155 | bitrd 282 |
1
⊢ (𝜑 → (seq𝑀( + , 𝐻) ⇝ 𝐴 ↔ seq𝑁( + , 𝐹) ⇝ 𝐴)) |