Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isercoll2 Structured version   Visualization version   GIF version

Theorem isercoll2 15019
 Description: Generalize isercoll 15018 so that both sequences have arbitrary starting point. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
isercoll2.z 𝑍 = (ℤ𝑀)
isercoll2.w 𝑊 = (ℤ𝑁)
isercoll2.m (𝜑𝑀 ∈ ℤ)
isercoll2.n (𝜑𝑁 ∈ ℤ)
isercoll2.g (𝜑𝐺:𝑍𝑊)
isercoll2.i ((𝜑𝑘𝑍) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
isercoll2.0 ((𝜑𝑛 ∈ (𝑊 ∖ ran 𝐺)) → (𝐹𝑛) = 0)
isercoll2.f ((𝜑𝑛𝑊) → (𝐹𝑛) ∈ ℂ)
isercoll2.h ((𝜑𝑘𝑍) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
Assertion
Ref Expression
isercoll2 (𝜑 → (seq𝑀( + , 𝐻) ⇝ 𝐴 ↔ seq𝑁( + , 𝐹) ⇝ 𝐴))
Distinct variable groups:   𝑘,𝑛,𝐴   𝑘,𝐹,𝑛   𝑘,𝐺,𝑛   𝑘,𝐻,𝑛   𝑛,𝑁   𝑘,𝑀,𝑛   𝜑,𝑘,𝑛   𝑛,𝑊   𝑘,𝑍
Allowed substitution hints:   𝑁(𝑘)   𝑊(𝑘)   𝑍(𝑛)

Proof of Theorem isercoll2
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isercoll2.z . . 3 𝑍 = (ℤ𝑀)
2 isercoll2.m . . 3 (𝜑𝑀 ∈ ℤ)
3 1z 12002 . . . 4 1 ∈ ℤ
4 zsubcl 12014 . . . 4 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (1 − 𝑀) ∈ ℤ)
53, 2, 4sylancr 590 . . 3 (𝜑 → (1 − 𝑀) ∈ ℤ)
6 seqex 13368 . . . 4 seq𝑀( + , 𝐻) ∈ V
76a1i 11 . . 3 (𝜑 → seq𝑀( + , 𝐻) ∈ V)
8 seqex 13368 . . . 4 seq1( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))) ∈ V
98a1i 11 . . 3 (𝜑 → seq1( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))) ∈ V)
10 simpr 488 . . . . . 6 ((𝜑𝑘𝑍) → 𝑘𝑍)
1110, 1eleqtrdi 2900 . . . . 5 ((𝜑𝑘𝑍) → 𝑘 ∈ (ℤ𝑀))
125adantr 484 . . . . 5 ((𝜑𝑘𝑍) → (1 − 𝑀) ∈ ℤ)
13 simpl 486 . . . . . 6 ((𝜑𝑘𝑍) → 𝜑)
14 elfzuz 12900 . . . . . . 7 (𝑗 ∈ (𝑀...𝑘) → 𝑗 ∈ (ℤ𝑀))
1514, 1eleqtrrdi 2901 . . . . . 6 (𝑗 ∈ (𝑀...𝑘) → 𝑗𝑍)
16 simpr 488 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → 𝑗𝑍)
1716, 1eleqtrdi 2900 . . . . . . . . . . . 12 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
18 eluzelz 12243 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
1917, 18syl 17 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → 𝑗 ∈ ℤ)
2019zcnd 12078 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝑗 ∈ ℂ)
212zcnd 12078 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℂ)
2221adantr 484 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝑀 ∈ ℂ)
23 1cnd 10627 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 1 ∈ ℂ)
2420, 22, 23subadd23d 11010 . . . . . . . . 9 ((𝜑𝑗𝑍) → ((𝑗𝑀) + 1) = (𝑗 + (1 − 𝑀)))
25 uznn0sub 12267 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑀) → (𝑗𝑀) ∈ ℕ0)
2617, 25syl 17 . . . . . . . . . 10 ((𝜑𝑗𝑍) → (𝑗𝑀) ∈ ℕ0)
27 nn0p1nn 11926 . . . . . . . . . 10 ((𝑗𝑀) ∈ ℕ0 → ((𝑗𝑀) + 1) ∈ ℕ)
2826, 27syl 17 . . . . . . . . 9 ((𝜑𝑗𝑍) → ((𝑗𝑀) + 1) ∈ ℕ)
2924, 28eqeltrrd 2891 . . . . . . . 8 ((𝜑𝑗𝑍) → (𝑗 + (1 − 𝑀)) ∈ ℕ)
30 oveq1 7142 . . . . . . . . . . 11 (𝑥 = (𝑗 + (1 − 𝑀)) → (𝑥 − 1) = ((𝑗 + (1 − 𝑀)) − 1))
3130oveq2d 7151 . . . . . . . . . 10 (𝑥 = (𝑗 + (1 − 𝑀)) → (𝑀 + (𝑥 − 1)) = (𝑀 + ((𝑗 + (1 − 𝑀)) − 1)))
3231fveq2d 6649 . . . . . . . . 9 (𝑥 = (𝑗 + (1 − 𝑀)) → (𝐻‘(𝑀 + (𝑥 − 1))) = (𝐻‘(𝑀 + ((𝑗 + (1 − 𝑀)) − 1))))
33 eqid 2798 . . . . . . . . 9 (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1)))) = (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))
34 fvex 6658 . . . . . . . . 9 (𝐻‘(𝑀 + ((𝑗 + (1 − 𝑀)) − 1))) ∈ V
3532, 33, 34fvmpt 6745 . . . . . . . 8 ((𝑗 + (1 − 𝑀)) ∈ ℕ → ((𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))‘(𝑗 + (1 − 𝑀))) = (𝐻‘(𝑀 + ((𝑗 + (1 − 𝑀)) − 1))))
3629, 35syl 17 . . . . . . 7 ((𝜑𝑗𝑍) → ((𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))‘(𝑗 + (1 − 𝑀))) = (𝐻‘(𝑀 + ((𝑗 + (1 − 𝑀)) − 1))))
3724oveq1d 7150 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → (((𝑗𝑀) + 1) − 1) = ((𝑗 + (1 − 𝑀)) − 1))
3826nn0cnd 11947 . . . . . . . . . . . 12 ((𝜑𝑗𝑍) → (𝑗𝑀) ∈ ℂ)
39 ax-1cn 10586 . . . . . . . . . . . 12 1 ∈ ℂ
40 pncan 10883 . . . . . . . . . . . 12 (((𝑗𝑀) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑗𝑀) + 1) − 1) = (𝑗𝑀))
4138, 39, 40sylancl 589 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → (((𝑗𝑀) + 1) − 1) = (𝑗𝑀))
4237, 41eqtr3d 2835 . . . . . . . . . 10 ((𝜑𝑗𝑍) → ((𝑗 + (1 − 𝑀)) − 1) = (𝑗𝑀))
4342oveq2d 7151 . . . . . . . . 9 ((𝜑𝑗𝑍) → (𝑀 + ((𝑗 + (1 − 𝑀)) − 1)) = (𝑀 + (𝑗𝑀)))
4422, 20pncan3d 10991 . . . . . . . . 9 ((𝜑𝑗𝑍) → (𝑀 + (𝑗𝑀)) = 𝑗)
4543, 44eqtrd 2833 . . . . . . . 8 ((𝜑𝑗𝑍) → (𝑀 + ((𝑗 + (1 − 𝑀)) − 1)) = 𝑗)
4645fveq2d 6649 . . . . . . 7 ((𝜑𝑗𝑍) → (𝐻‘(𝑀 + ((𝑗 + (1 − 𝑀)) − 1))) = (𝐻𝑗))
4736, 46eqtr2d 2834 . . . . . 6 ((𝜑𝑗𝑍) → (𝐻𝑗) = ((𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))‘(𝑗 + (1 − 𝑀))))
4813, 15, 47syl2an 598 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (𝑀...𝑘)) → (𝐻𝑗) = ((𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))‘(𝑗 + (1 − 𝑀))))
4911, 12, 48seqshft2 13394 . . . 4 ((𝜑𝑘𝑍) → (seq𝑀( + , 𝐻)‘𝑘) = (seq(𝑀 + (1 − 𝑀))( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1)))))‘(𝑘 + (1 − 𝑀))))
5021adantr 484 . . . . . . 7 ((𝜑𝑘𝑍) → 𝑀 ∈ ℂ)
51 pncan3 10885 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑀 + (1 − 𝑀)) = 1)
5250, 39, 51sylancl 589 . . . . . 6 ((𝜑𝑘𝑍) → (𝑀 + (1 − 𝑀)) = 1)
5352seqeq1d 13372 . . . . 5 ((𝜑𝑘𝑍) → seq(𝑀 + (1 − 𝑀))( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))) = seq1( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))))
5453fveq1d 6647 . . . 4 ((𝜑𝑘𝑍) → (seq(𝑀 + (1 − 𝑀))( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1)))))‘(𝑘 + (1 − 𝑀))) = (seq1( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1)))))‘(𝑘 + (1 − 𝑀))))
5549, 54eqtr2d 2834 . . 3 ((𝜑𝑘𝑍) → (seq1( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1)))))‘(𝑘 + (1 − 𝑀))) = (seq𝑀( + , 𝐻)‘𝑘))
561, 2, 5, 7, 9, 55climshft2 14933 . 2 (𝜑 → (seq𝑀( + , 𝐻) ⇝ 𝐴 ↔ seq1( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))) ⇝ 𝐴))
57 isercoll2.w . . 3 𝑊 = (ℤ𝑁)
58 isercoll2.n . . 3 (𝜑𝑁 ∈ ℤ)
59 isercoll2.g . . . . . 6 (𝜑𝐺:𝑍𝑊)
6059adantr 484 . . . . 5 ((𝜑𝑥 ∈ ℕ) → 𝐺:𝑍𝑊)
61 uzid 12248 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
622, 61syl 17 . . . . . . 7 (𝜑𝑀 ∈ (ℤ𝑀))
63 nnm1nn0 11928 . . . . . . 7 (𝑥 ∈ ℕ → (𝑥 − 1) ∈ ℕ0)
64 uzaddcl 12294 . . . . . . 7 ((𝑀 ∈ (ℤ𝑀) ∧ (𝑥 − 1) ∈ ℕ0) → (𝑀 + (𝑥 − 1)) ∈ (ℤ𝑀))
6562, 63, 64syl2an 598 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → (𝑀 + (𝑥 − 1)) ∈ (ℤ𝑀))
6665, 1eleqtrrdi 2901 . . . . 5 ((𝜑𝑥 ∈ ℕ) → (𝑀 + (𝑥 − 1)) ∈ 𝑍)
6760, 66ffvelrnd 6829 . . . 4 ((𝜑𝑥 ∈ ℕ) → (𝐺‘(𝑀 + (𝑥 − 1))) ∈ 𝑊)
6867fmpttd 6856 . . 3 (𝜑 → (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))):ℕ⟶𝑊)
69 fveq2 6645 . . . . . . 7 (𝑘 = (𝑀 + (𝑗 − 1)) → (𝐺𝑘) = (𝐺‘(𝑀 + (𝑗 − 1))))
70 fvoveq1 7158 . . . . . . 7 (𝑘 = (𝑀 + (𝑗 − 1)) → (𝐺‘(𝑘 + 1)) = (𝐺‘((𝑀 + (𝑗 − 1)) + 1)))
7169, 70breq12d 5043 . . . . . 6 (𝑘 = (𝑀 + (𝑗 − 1)) → ((𝐺𝑘) < (𝐺‘(𝑘 + 1)) ↔ (𝐺‘(𝑀 + (𝑗 − 1))) < (𝐺‘((𝑀 + (𝑗 − 1)) + 1))))
72 isercoll2.i . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
7372ralrimiva 3149 . . . . . . 7 (𝜑 → ∀𝑘𝑍 (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
7473adantr 484 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ∀𝑘𝑍 (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
75 nnm1nn0 11928 . . . . . . . 8 (𝑗 ∈ ℕ → (𝑗 − 1) ∈ ℕ0)
76 uzaddcl 12294 . . . . . . . 8 ((𝑀 ∈ (ℤ𝑀) ∧ (𝑗 − 1) ∈ ℕ0) → (𝑀 + (𝑗 − 1)) ∈ (ℤ𝑀))
7762, 75, 76syl2an 598 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝑀 + (𝑗 − 1)) ∈ (ℤ𝑀))
7877, 1eleqtrrdi 2901 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (𝑀 + (𝑗 − 1)) ∈ 𝑍)
7971, 74, 78rspcdva 3573 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (𝐺‘(𝑀 + (𝑗 − 1))) < (𝐺‘((𝑀 + (𝑗 − 1)) + 1)))
80 nncn 11635 . . . . . . . . . 10 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
8180adantl 485 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℂ)
82 1cnd 10627 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → 1 ∈ ℂ)
8381, 82, 82addsubd 11009 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → ((𝑗 + 1) − 1) = ((𝑗 − 1) + 1))
8483oveq2d 7151 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝑀 + ((𝑗 + 1) − 1)) = (𝑀 + ((𝑗 − 1) + 1)))
8521adantr 484 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝑀 ∈ ℂ)
8675adantl 485 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝑗 − 1) ∈ ℕ0)
8786nn0cnd 11947 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝑗 − 1) ∈ ℂ)
8885, 87, 82addassd 10654 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ((𝑀 + (𝑗 − 1)) + 1) = (𝑀 + ((𝑗 − 1) + 1)))
8984, 88eqtr4d 2836 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (𝑀 + ((𝑗 + 1) − 1)) = ((𝑀 + (𝑗 − 1)) + 1))
9089fveq2d 6649 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (𝐺‘(𝑀 + ((𝑗 + 1) − 1))) = (𝐺‘((𝑀 + (𝑗 − 1)) + 1)))
9179, 90breqtrrd 5058 . . . 4 ((𝜑𝑗 ∈ ℕ) → (𝐺‘(𝑀 + (𝑗 − 1))) < (𝐺‘(𝑀 + ((𝑗 + 1) − 1))))
92 oveq1 7142 . . . . . . . 8 (𝑥 = 𝑗 → (𝑥 − 1) = (𝑗 − 1))
9392oveq2d 7151 . . . . . . 7 (𝑥 = 𝑗 → (𝑀 + (𝑥 − 1)) = (𝑀 + (𝑗 − 1)))
9493fveq2d 6649 . . . . . 6 (𝑥 = 𝑗 → (𝐺‘(𝑀 + (𝑥 − 1))) = (𝐺‘(𝑀 + (𝑗 − 1))))
95 eqid 2798 . . . . . 6 (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))) = (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))
96 fvex 6658 . . . . . 6 (𝐺‘(𝑀 + (𝑗 − 1))) ∈ V
9794, 95, 96fvmpt 6745 . . . . 5 (𝑗 ∈ ℕ → ((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘𝑗) = (𝐺‘(𝑀 + (𝑗 − 1))))
9897adantl 485 . . . 4 ((𝜑𝑗 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘𝑗) = (𝐺‘(𝑀 + (𝑗 − 1))))
99 peano2nn 11639 . . . . . 6 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ)
10099adantl 485 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℕ)
101 oveq1 7142 . . . . . . . 8 (𝑥 = (𝑗 + 1) → (𝑥 − 1) = ((𝑗 + 1) − 1))
102101oveq2d 7151 . . . . . . 7 (𝑥 = (𝑗 + 1) → (𝑀 + (𝑥 − 1)) = (𝑀 + ((𝑗 + 1) − 1)))
103102fveq2d 6649 . . . . . 6 (𝑥 = (𝑗 + 1) → (𝐺‘(𝑀 + (𝑥 − 1))) = (𝐺‘(𝑀 + ((𝑗 + 1) − 1))))
104 fvex 6658 . . . . . 6 (𝐺‘(𝑀 + ((𝑗 + 1) − 1))) ∈ V
105103, 95, 104fvmpt 6745 . . . . 5 ((𝑗 + 1) ∈ ℕ → ((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘(𝑗 + 1)) = (𝐺‘(𝑀 + ((𝑗 + 1) − 1))))
106100, 105syl 17 . . . 4 ((𝜑𝑗 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘(𝑗 + 1)) = (𝐺‘(𝑀 + ((𝑗 + 1) − 1))))
10791, 98, 1063brtr4d 5062 . . 3 ((𝜑𝑗 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘𝑗) < ((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘(𝑗 + 1)))
10859ffnd 6488 . . . . . . . 8 (𝜑𝐺 Fn 𝑍)
109 uznn0sub 12267 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ𝑀) → (𝑘𝑀) ∈ ℕ0)
11011, 109syl 17 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝑘𝑀) ∈ ℕ0)
111 nn0p1nn 11926 . . . . . . . . . . . 12 ((𝑘𝑀) ∈ ℕ0 → ((𝑘𝑀) + 1) ∈ ℕ)
112110, 111syl 17 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → ((𝑘𝑀) + 1) ∈ ℕ)
113110nn0cnd 11947 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (𝑘𝑀) ∈ ℂ)
114 pncan 10883 . . . . . . . . . . . . . . 15 (((𝑘𝑀) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑘𝑀) + 1) − 1) = (𝑘𝑀))
115113, 39, 114sylancl 589 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑍) → (((𝑘𝑀) + 1) − 1) = (𝑘𝑀))
116115oveq2d 7151 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → (𝑀 + (((𝑘𝑀) + 1) − 1)) = (𝑀 + (𝑘𝑀)))
117 eluzelz 12243 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
118117, 1eleq2s 2908 . . . . . . . . . . . . . . 15 (𝑘𝑍𝑘 ∈ ℤ)
119118zcnd 12078 . . . . . . . . . . . . . 14 (𝑘𝑍𝑘 ∈ ℂ)
120 pncan3 10885 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑀 + (𝑘𝑀)) = 𝑘)
12121, 119, 120syl2an 598 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → (𝑀 + (𝑘𝑀)) = 𝑘)
122116, 121eqtr2d 2834 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → 𝑘 = (𝑀 + (((𝑘𝑀) + 1) − 1)))
123122fveq2d 6649 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐺‘(𝑀 + (((𝑘𝑀) + 1) − 1))))
124 oveq1 7142 . . . . . . . . . . . . . 14 (𝑥 = ((𝑘𝑀) + 1) → (𝑥 − 1) = (((𝑘𝑀) + 1) − 1))
125124oveq2d 7151 . . . . . . . . . . . . 13 (𝑥 = ((𝑘𝑀) + 1) → (𝑀 + (𝑥 − 1)) = (𝑀 + (((𝑘𝑀) + 1) − 1)))
126125fveq2d 6649 . . . . . . . . . . . 12 (𝑥 = ((𝑘𝑀) + 1) → (𝐺‘(𝑀 + (𝑥 − 1))) = (𝐺‘(𝑀 + (((𝑘𝑀) + 1) − 1))))
127126rspceeqv 3586 . . . . . . . . . . 11 ((((𝑘𝑀) + 1) ∈ ℕ ∧ (𝐺𝑘) = (𝐺‘(𝑀 + (((𝑘𝑀) + 1) − 1)))) → ∃𝑥 ∈ ℕ (𝐺𝑘) = (𝐺‘(𝑀 + (𝑥 − 1))))
128112, 123, 127syl2anc 587 . . . . . . . . . 10 ((𝜑𝑘𝑍) → ∃𝑥 ∈ ℕ (𝐺𝑘) = (𝐺‘(𝑀 + (𝑥 − 1))))
129 fvex 6658 . . . . . . . . . . 11 (𝐺𝑘) ∈ V
13095elrnmpt 5792 . . . . . . . . . . 11 ((𝐺𝑘) ∈ V → ((𝐺𝑘) ∈ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))) ↔ ∃𝑥 ∈ ℕ (𝐺𝑘) = (𝐺‘(𝑀 + (𝑥 − 1)))))
131129, 130ax-mp 5 . . . . . . . . . 10 ((𝐺𝑘) ∈ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))) ↔ ∃𝑥 ∈ ℕ (𝐺𝑘) = (𝐺‘(𝑀 + (𝑥 − 1))))
132128, 131sylibr 237 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))))
133132ralrimiva 3149 . . . . . . . 8 (𝜑 → ∀𝑘𝑍 (𝐺𝑘) ∈ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))))
134 ffnfv 6859 . . . . . . . 8 (𝐺:𝑍⟶ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))) ↔ (𝐺 Fn 𝑍 ∧ ∀𝑘𝑍 (𝐺𝑘) ∈ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))))
135108, 133, 134sylanbrc 586 . . . . . . 7 (𝜑𝐺:𝑍⟶ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))))
136135frnd 6494 . . . . . 6 (𝜑 → ran 𝐺 ⊆ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))))
137136sscond 4069 . . . . 5 (𝜑 → (𝑊 ∖ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))) ⊆ (𝑊 ∖ ran 𝐺))
138137sselda 3915 . . . 4 ((𝜑𝑛 ∈ (𝑊 ∖ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))))) → 𝑛 ∈ (𝑊 ∖ ran 𝐺))
139 isercoll2.0 . . . 4 ((𝜑𝑛 ∈ (𝑊 ∖ ran 𝐺)) → (𝐹𝑛) = 0)
140138, 139syldan 594 . . 3 ((𝜑𝑛 ∈ (𝑊 ∖ ran (𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1)))))) → (𝐹𝑛) = 0)
141 isercoll2.f . . 3 ((𝜑𝑛𝑊) → (𝐹𝑛) ∈ ℂ)
142 fveq2 6645 . . . . . 6 (𝑘 = (𝑀 + (𝑗 − 1)) → (𝐻𝑘) = (𝐻‘(𝑀 + (𝑗 − 1))))
14369fveq2d 6649 . . . . . 6 (𝑘 = (𝑀 + (𝑗 − 1)) → (𝐹‘(𝐺𝑘)) = (𝐹‘(𝐺‘(𝑀 + (𝑗 − 1)))))
144142, 143eqeq12d 2814 . . . . 5 (𝑘 = (𝑀 + (𝑗 − 1)) → ((𝐻𝑘) = (𝐹‘(𝐺𝑘)) ↔ (𝐻‘(𝑀 + (𝑗 − 1))) = (𝐹‘(𝐺‘(𝑀 + (𝑗 − 1))))))
145 isercoll2.h . . . . . . 7 ((𝜑𝑘𝑍) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
146145ralrimiva 3149 . . . . . 6 (𝜑 → ∀𝑘𝑍 (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
147146adantr 484 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ∀𝑘𝑍 (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
148144, 147, 78rspcdva 3573 . . . 4 ((𝜑𝑗 ∈ ℕ) → (𝐻‘(𝑀 + (𝑗 − 1))) = (𝐹‘(𝐺‘(𝑀 + (𝑗 − 1)))))
14993fveq2d 6649 . . . . . 6 (𝑥 = 𝑗 → (𝐻‘(𝑀 + (𝑥 − 1))) = (𝐻‘(𝑀 + (𝑗 − 1))))
150 fvex 6658 . . . . . 6 (𝐻‘(𝑀 + (𝑗 − 1))) ∈ V
151149, 33, 150fvmpt 6745 . . . . 5 (𝑗 ∈ ℕ → ((𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))‘𝑗) = (𝐻‘(𝑀 + (𝑗 − 1))))
152151adantl 485 . . . 4 ((𝜑𝑗 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))‘𝑗) = (𝐻‘(𝑀 + (𝑗 − 1))))
15398fveq2d 6649 . . . 4 ((𝜑𝑗 ∈ ℕ) → (𝐹‘((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘𝑗)) = (𝐹‘(𝐺‘(𝑀 + (𝑗 − 1)))))
154148, 152, 1533eqtr4d 2843 . . 3 ((𝜑𝑗 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))‘𝑗) = (𝐹‘((𝑥 ∈ ℕ ↦ (𝐺‘(𝑀 + (𝑥 − 1))))‘𝑗)))
15557, 58, 68, 107, 140, 141, 154isercoll 15018 . 2 (𝜑 → (seq1( + , (𝑥 ∈ ℕ ↦ (𝐻‘(𝑀 + (𝑥 − 1))))) ⇝ 𝐴 ↔ seq𝑁( + , 𝐹) ⇝ 𝐴))
15656, 155bitrd 282 1 (𝜑 → (seq𝑀( + , 𝐻) ⇝ 𝐴 ↔ seq𝑁( + , 𝐹) ⇝ 𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3106  ∃wrex 3107  Vcvv 3441   ∖ cdif 3878   class class class wbr 5030   ↦ cmpt 5110  ran crn 5520   Fn wfn 6319  ⟶wf 6320  ‘cfv 6324  (class class class)co 7135  ℂcc 10526  0cc0 10528  1c1 10529   + caddc 10531   < clt 10666   − cmin 10861  ℕcn 11627  ℕ0cn0 11887  ℤcz 11971  ℤ≥cuz 12233  ...cfz 12887  seqcseq 13366   ⇝ cli 14835 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-inf2 9090  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605  ax-pre-sup 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7563  df-1st 7673  df-2nd 7674  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-oadd 8091  df-er 8274  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-sup 8892  df-card 9354  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864  df-nn 11628  df-n0 11888  df-xnn0 11958  df-z 11972  df-uz 12234  df-fz 12888  df-seq 13367  df-hash 13689  df-shft 14420  df-clim 14839 This theorem is referenced by:  iserodd  16164  stirlinglem5  42735
 Copyright terms: Public domain W3C validator