MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrss Structured version   Visualization version   GIF version

Theorem ntrss 22971
Description: Subset relationship for interior. (Contributed by NM, 3-Oct-2007.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
ntrss ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((int‘𝐽)‘𝑇) ⊆ ((int‘𝐽)‘𝑆))

Proof of Theorem ntrss
StepHypRef Expression
1 sscon 4092 . . . . . . 7 (𝑇𝑆 → (𝑋𝑆) ⊆ (𝑋𝑇))
21adantl 481 . . . . . 6 ((𝑆𝑋𝑇𝑆) → (𝑋𝑆) ⊆ (𝑋𝑇))
3 difss 4085 . . . . . 6 (𝑋𝑇) ⊆ 𝑋
42, 3jctil 519 . . . . 5 ((𝑆𝑋𝑇𝑆) → ((𝑋𝑇) ⊆ 𝑋 ∧ (𝑋𝑆) ⊆ (𝑋𝑇)))
5 clscld.1 . . . . . . 7 𝑋 = 𝐽
65clsss 22970 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑋𝑇) ⊆ 𝑋 ∧ (𝑋𝑆) ⊆ (𝑋𝑇)) → ((cls‘𝐽)‘(𝑋𝑆)) ⊆ ((cls‘𝐽)‘(𝑋𝑇)))
763expb 1120 . . . . 5 ((𝐽 ∈ Top ∧ ((𝑋𝑇) ⊆ 𝑋 ∧ (𝑋𝑆) ⊆ (𝑋𝑇))) → ((cls‘𝐽)‘(𝑋𝑆)) ⊆ ((cls‘𝐽)‘(𝑋𝑇)))
84, 7sylan2 593 . . . 4 ((𝐽 ∈ Top ∧ (𝑆𝑋𝑇𝑆)) → ((cls‘𝐽)‘(𝑋𝑆)) ⊆ ((cls‘𝐽)‘(𝑋𝑇)))
98sscond 4095 . . 3 ((𝐽 ∈ Top ∧ (𝑆𝑋𝑇𝑆)) → (𝑋 ∖ ((cls‘𝐽)‘(𝑋𝑇))) ⊆ (𝑋 ∖ ((cls‘𝐽)‘(𝑋𝑆))))
10 sstr2 3937 . . . . 5 (𝑇𝑆 → (𝑆𝑋𝑇𝑋))
1110impcom 407 . . . 4 ((𝑆𝑋𝑇𝑆) → 𝑇𝑋)
125ntrval2 22967 . . . 4 ((𝐽 ∈ Top ∧ 𝑇𝑋) → ((int‘𝐽)‘𝑇) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋𝑇))))
1311, 12sylan2 593 . . 3 ((𝐽 ∈ Top ∧ (𝑆𝑋𝑇𝑆)) → ((int‘𝐽)‘𝑇) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋𝑇))))
145ntrval2 22967 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋𝑆))))
1514adantrr 717 . . 3 ((𝐽 ∈ Top ∧ (𝑆𝑋𝑇𝑆)) → ((int‘𝐽)‘𝑆) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋𝑆))))
169, 13, 153sstr4d 3986 . 2 ((𝐽 ∈ Top ∧ (𝑆𝑋𝑇𝑆)) → ((int‘𝐽)‘𝑇) ⊆ ((int‘𝐽)‘𝑆))
17163impb 1114 1 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((int‘𝐽)‘𝑇) ⊆ ((int‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  cdif 3895  wss 3898   cuni 4858  cfv 6486  Topctop 22809  intcnt 22933  clsccl 22934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-top 22810  df-cld 22935  df-ntr 22936  df-cls 22937
This theorem is referenced by:  ntrin  22977  ntrcls0  22992  dvreslem  25838  dvres2lem  25839  dvaddbr  25868  dvmulbr  25869  dvmulbrOLD  25870  dvcnvrelem2  25951  ntruni  36392  cldregopn  36396  limciccioolb  45745  limcicciooub  45759  cncfiooicclem1  46015
  Copyright terms: Public domain W3C validator