| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ntrss | Structured version Visualization version GIF version | ||
| Description: Subset relationship for interior. (Contributed by NM, 3-Oct-2007.) |
| Ref | Expression |
|---|---|
| clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| ntrss | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((int‘𝐽)‘𝑇) ⊆ ((int‘𝐽)‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sscon 4125 | . . . . . . 7 ⊢ (𝑇 ⊆ 𝑆 → (𝑋 ∖ 𝑆) ⊆ (𝑋 ∖ 𝑇)) | |
| 2 | 1 | adantl 481 | . . . . . 6 ⊢ ((𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → (𝑋 ∖ 𝑆) ⊆ (𝑋 ∖ 𝑇)) |
| 3 | difss 4118 | . . . . . 6 ⊢ (𝑋 ∖ 𝑇) ⊆ 𝑋 | |
| 4 | 2, 3 | jctil 519 | . . . . 5 ⊢ ((𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((𝑋 ∖ 𝑇) ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ⊆ (𝑋 ∖ 𝑇))) |
| 5 | clscld.1 | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
| 6 | 5 | clsss 23027 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (𝑋 ∖ 𝑇) ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ⊆ (𝑋 ∖ 𝑇)) → ((cls‘𝐽)‘(𝑋 ∖ 𝑆)) ⊆ ((cls‘𝐽)‘(𝑋 ∖ 𝑇))) |
| 7 | 6 | 3expb 1120 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ ((𝑋 ∖ 𝑇) ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ⊆ (𝑋 ∖ 𝑇))) → ((cls‘𝐽)‘(𝑋 ∖ 𝑆)) ⊆ ((cls‘𝐽)‘(𝑋 ∖ 𝑇))) |
| 8 | 4, 7 | sylan2 593 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆)) → ((cls‘𝐽)‘(𝑋 ∖ 𝑆)) ⊆ ((cls‘𝐽)‘(𝑋 ∖ 𝑇))) |
| 9 | 8 | sscond 4128 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆)) → (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝑇))) ⊆ (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝑆)))) |
| 10 | sstr2 3972 | . . . . 5 ⊢ (𝑇 ⊆ 𝑆 → (𝑆 ⊆ 𝑋 → 𝑇 ⊆ 𝑋)) | |
| 11 | 10 | impcom 407 | . . . 4 ⊢ ((𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → 𝑇 ⊆ 𝑋) |
| 12 | 5 | ntrval2 23024 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑇 ⊆ 𝑋) → ((int‘𝐽)‘𝑇) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝑇)))) |
| 13 | 11, 12 | sylan2 593 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆)) → ((int‘𝐽)‘𝑇) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝑇)))) |
| 14 | 5 | ntrval2 23024 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝑆)))) |
| 15 | 14 | adantrr 717 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆)) → ((int‘𝐽)‘𝑆) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝑆)))) |
| 16 | 9, 13, 15 | 3sstr4d 4021 | . 2 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆)) → ((int‘𝐽)‘𝑇) ⊆ ((int‘𝐽)‘𝑆)) |
| 17 | 16 | 3impb 1114 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((int‘𝐽)‘𝑇) ⊆ ((int‘𝐽)‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∖ cdif 3930 ⊆ wss 3933 ∪ cuni 4889 ‘cfv 6542 Topctop 22866 intcnt 22990 clsccl 22991 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-iin 4976 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-top 22867 df-cld 22992 df-ntr 22993 df-cls 22994 |
| This theorem is referenced by: ntrin 23034 ntrcls0 23049 dvreslem 25899 dvres2lem 25900 dvaddbr 25929 dvmulbr 25930 dvmulbrOLD 25931 dvcnvrelem2 26012 ntruni 36269 cldregopn 36273 limciccioolb 45581 limcicciooub 45597 cncfiooicclem1 45853 |
| Copyright terms: Public domain | W3C validator |