| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ntrss | Structured version Visualization version GIF version | ||
| Description: Subset relationship for interior. (Contributed by NM, 3-Oct-2007.) |
| Ref | Expression |
|---|---|
| clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| ntrss | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((int‘𝐽)‘𝑇) ⊆ ((int‘𝐽)‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sscon 4093 | . . . . . . 7 ⊢ (𝑇 ⊆ 𝑆 → (𝑋 ∖ 𝑆) ⊆ (𝑋 ∖ 𝑇)) | |
| 2 | 1 | adantl 481 | . . . . . 6 ⊢ ((𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → (𝑋 ∖ 𝑆) ⊆ (𝑋 ∖ 𝑇)) |
| 3 | difss 4086 | . . . . . 6 ⊢ (𝑋 ∖ 𝑇) ⊆ 𝑋 | |
| 4 | 2, 3 | jctil 519 | . . . . 5 ⊢ ((𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((𝑋 ∖ 𝑇) ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ⊆ (𝑋 ∖ 𝑇))) |
| 5 | clscld.1 | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
| 6 | 5 | clsss 22967 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (𝑋 ∖ 𝑇) ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ⊆ (𝑋 ∖ 𝑇)) → ((cls‘𝐽)‘(𝑋 ∖ 𝑆)) ⊆ ((cls‘𝐽)‘(𝑋 ∖ 𝑇))) |
| 7 | 6 | 3expb 1120 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ ((𝑋 ∖ 𝑇) ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ⊆ (𝑋 ∖ 𝑇))) → ((cls‘𝐽)‘(𝑋 ∖ 𝑆)) ⊆ ((cls‘𝐽)‘(𝑋 ∖ 𝑇))) |
| 8 | 4, 7 | sylan2 593 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆)) → ((cls‘𝐽)‘(𝑋 ∖ 𝑆)) ⊆ ((cls‘𝐽)‘(𝑋 ∖ 𝑇))) |
| 9 | 8 | sscond 4096 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆)) → (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝑇))) ⊆ (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝑆)))) |
| 10 | sstr2 3941 | . . . . 5 ⊢ (𝑇 ⊆ 𝑆 → (𝑆 ⊆ 𝑋 → 𝑇 ⊆ 𝑋)) | |
| 11 | 10 | impcom 407 | . . . 4 ⊢ ((𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → 𝑇 ⊆ 𝑋) |
| 12 | 5 | ntrval2 22964 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑇 ⊆ 𝑋) → ((int‘𝐽)‘𝑇) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝑇)))) |
| 13 | 11, 12 | sylan2 593 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆)) → ((int‘𝐽)‘𝑇) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝑇)))) |
| 14 | 5 | ntrval2 22964 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝑆)))) |
| 15 | 14 | adantrr 717 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆)) → ((int‘𝐽)‘𝑆) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝑆)))) |
| 16 | 9, 13, 15 | 3sstr4d 3990 | . 2 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆)) → ((int‘𝐽)‘𝑇) ⊆ ((int‘𝐽)‘𝑆)) |
| 17 | 16 | 3impb 1114 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((int‘𝐽)‘𝑇) ⊆ ((int‘𝐽)‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∖ cdif 3899 ⊆ wss 3902 ∪ cuni 4859 ‘cfv 6481 Topctop 22806 intcnt 22930 clsccl 22931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-top 22807 df-cld 22932 df-ntr 22933 df-cls 22934 |
| This theorem is referenced by: ntrin 22974 ntrcls0 22989 dvreslem 25835 dvres2lem 25836 dvaddbr 25865 dvmulbr 25866 dvmulbrOLD 25867 dvcnvrelem2 25948 ntruni 36360 cldregopn 36364 limciccioolb 45660 limcicciooub 45674 cncfiooicclem1 45930 |
| Copyright terms: Public domain | W3C validator |