Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ntrss | Structured version Visualization version GIF version |
Description: Subset relationship for interior. (Contributed by NM, 3-Oct-2007.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
ntrss | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((int‘𝐽)‘𝑇) ⊆ ((int‘𝐽)‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sscon 4074 | . . . . . . 7 ⊢ (𝑇 ⊆ 𝑆 → (𝑋 ∖ 𝑆) ⊆ (𝑋 ∖ 𝑇)) | |
2 | 1 | adantl 481 | . . . . . 6 ⊢ ((𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → (𝑋 ∖ 𝑆) ⊆ (𝑋 ∖ 𝑇)) |
3 | difss 4067 | . . . . . 6 ⊢ (𝑋 ∖ 𝑇) ⊆ 𝑋 | |
4 | 2, 3 | jctil 519 | . . . . 5 ⊢ ((𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((𝑋 ∖ 𝑇) ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ⊆ (𝑋 ∖ 𝑇))) |
5 | clscld.1 | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
6 | 5 | clsss 22149 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (𝑋 ∖ 𝑇) ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ⊆ (𝑋 ∖ 𝑇)) → ((cls‘𝐽)‘(𝑋 ∖ 𝑆)) ⊆ ((cls‘𝐽)‘(𝑋 ∖ 𝑇))) |
7 | 6 | 3expb 1118 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ ((𝑋 ∖ 𝑇) ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ⊆ (𝑋 ∖ 𝑇))) → ((cls‘𝐽)‘(𝑋 ∖ 𝑆)) ⊆ ((cls‘𝐽)‘(𝑋 ∖ 𝑇))) |
8 | 4, 7 | sylan2 592 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆)) → ((cls‘𝐽)‘(𝑋 ∖ 𝑆)) ⊆ ((cls‘𝐽)‘(𝑋 ∖ 𝑇))) |
9 | 8 | sscond 4077 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆)) → (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝑇))) ⊆ (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝑆)))) |
10 | sstr2 3929 | . . . . 5 ⊢ (𝑇 ⊆ 𝑆 → (𝑆 ⊆ 𝑋 → 𝑇 ⊆ 𝑋)) | |
11 | 10 | impcom 407 | . . . 4 ⊢ ((𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → 𝑇 ⊆ 𝑋) |
12 | 5 | ntrval2 22146 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑇 ⊆ 𝑋) → ((int‘𝐽)‘𝑇) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝑇)))) |
13 | 11, 12 | sylan2 592 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆)) → ((int‘𝐽)‘𝑇) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝑇)))) |
14 | 5 | ntrval2 22146 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝑆)))) |
15 | 14 | adantrr 713 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆)) → ((int‘𝐽)‘𝑆) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝑆)))) |
16 | 9, 13, 15 | 3sstr4d 3969 | . 2 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆)) → ((int‘𝐽)‘𝑇) ⊆ ((int‘𝐽)‘𝑆)) |
17 | 16 | 3impb 1113 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((int‘𝐽)‘𝑇) ⊆ ((int‘𝐽)‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2107 ∖ cdif 3885 ⊆ wss 3888 ∪ cuni 4841 ‘cfv 6423 Topctop 21986 intcnt 22112 clsccl 22113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5210 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7571 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3067 df-rex 3068 df-reu 3069 df-rab 3071 df-v 3429 df-sbc 3717 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-int 4882 df-iun 4928 df-iin 4929 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5485 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-iota 6381 df-fun 6425 df-fn 6426 df-f 6427 df-f1 6428 df-fo 6429 df-f1o 6430 df-fv 6431 df-top 21987 df-cld 22114 df-ntr 22115 df-cls 22116 |
This theorem is referenced by: ntrin 22156 ntrcls0 22171 dvreslem 25016 dvres2lem 25017 dvaddbr 25045 dvmulbr 25046 dvcnvrelem2 25125 ntruni 34485 cldregopn 34489 limciccioolb 43094 limcicciooub 43110 cncfiooicclem1 43366 |
Copyright terms: Public domain | W3C validator |