Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ntrss | Structured version Visualization version GIF version |
Description: Subset relationship for interior. (Contributed by NM, 3-Oct-2007.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
ntrss | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((int‘𝐽)‘𝑇) ⊆ ((int‘𝐽)‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sscon 4069 | . . . . . . 7 ⊢ (𝑇 ⊆ 𝑆 → (𝑋 ∖ 𝑆) ⊆ (𝑋 ∖ 𝑇)) | |
2 | 1 | adantl 481 | . . . . . 6 ⊢ ((𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → (𝑋 ∖ 𝑆) ⊆ (𝑋 ∖ 𝑇)) |
3 | difss 4062 | . . . . . 6 ⊢ (𝑋 ∖ 𝑇) ⊆ 𝑋 | |
4 | 2, 3 | jctil 519 | . . . . 5 ⊢ ((𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((𝑋 ∖ 𝑇) ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ⊆ (𝑋 ∖ 𝑇))) |
5 | clscld.1 | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
6 | 5 | clsss 22113 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (𝑋 ∖ 𝑇) ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ⊆ (𝑋 ∖ 𝑇)) → ((cls‘𝐽)‘(𝑋 ∖ 𝑆)) ⊆ ((cls‘𝐽)‘(𝑋 ∖ 𝑇))) |
7 | 6 | 3expb 1118 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ ((𝑋 ∖ 𝑇) ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ⊆ (𝑋 ∖ 𝑇))) → ((cls‘𝐽)‘(𝑋 ∖ 𝑆)) ⊆ ((cls‘𝐽)‘(𝑋 ∖ 𝑇))) |
8 | 4, 7 | sylan2 592 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆)) → ((cls‘𝐽)‘(𝑋 ∖ 𝑆)) ⊆ ((cls‘𝐽)‘(𝑋 ∖ 𝑇))) |
9 | 8 | sscond 4072 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆)) → (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝑇))) ⊆ (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝑆)))) |
10 | sstr2 3924 | . . . . 5 ⊢ (𝑇 ⊆ 𝑆 → (𝑆 ⊆ 𝑋 → 𝑇 ⊆ 𝑋)) | |
11 | 10 | impcom 407 | . . . 4 ⊢ ((𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → 𝑇 ⊆ 𝑋) |
12 | 5 | ntrval2 22110 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑇 ⊆ 𝑋) → ((int‘𝐽)‘𝑇) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝑇)))) |
13 | 11, 12 | sylan2 592 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆)) → ((int‘𝐽)‘𝑇) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝑇)))) |
14 | 5 | ntrval2 22110 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝑆)))) |
15 | 14 | adantrr 713 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆)) → ((int‘𝐽)‘𝑆) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝑆)))) |
16 | 9, 13, 15 | 3sstr4d 3964 | . 2 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆)) → ((int‘𝐽)‘𝑇) ⊆ ((int‘𝐽)‘𝑆)) |
17 | 16 | 3impb 1113 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((int‘𝐽)‘𝑇) ⊆ ((int‘𝐽)‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ⊆ wss 3883 ∪ cuni 4836 ‘cfv 6418 Topctop 21950 intcnt 22076 clsccl 22077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-top 21951 df-cld 22078 df-ntr 22079 df-cls 22080 |
This theorem is referenced by: ntrin 22120 ntrcls0 22135 dvreslem 24978 dvres2lem 24979 dvaddbr 25007 dvmulbr 25008 dvcnvrelem2 25087 ntruni 34443 cldregopn 34447 limciccioolb 43052 limcicciooub 43068 cncfiooicclem1 43324 |
Copyright terms: Public domain | W3C validator |