| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ntrss | Structured version Visualization version GIF version | ||
| Description: Subset relationship for interior. (Contributed by NM, 3-Oct-2007.) |
| Ref | Expression |
|---|---|
| clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| ntrss | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((int‘𝐽)‘𝑇) ⊆ ((int‘𝐽)‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sscon 4092 | . . . . . . 7 ⊢ (𝑇 ⊆ 𝑆 → (𝑋 ∖ 𝑆) ⊆ (𝑋 ∖ 𝑇)) | |
| 2 | 1 | adantl 481 | . . . . . 6 ⊢ ((𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → (𝑋 ∖ 𝑆) ⊆ (𝑋 ∖ 𝑇)) |
| 3 | difss 4085 | . . . . . 6 ⊢ (𝑋 ∖ 𝑇) ⊆ 𝑋 | |
| 4 | 2, 3 | jctil 519 | . . . . 5 ⊢ ((𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((𝑋 ∖ 𝑇) ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ⊆ (𝑋 ∖ 𝑇))) |
| 5 | clscld.1 | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
| 6 | 5 | clsss 22970 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (𝑋 ∖ 𝑇) ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ⊆ (𝑋 ∖ 𝑇)) → ((cls‘𝐽)‘(𝑋 ∖ 𝑆)) ⊆ ((cls‘𝐽)‘(𝑋 ∖ 𝑇))) |
| 7 | 6 | 3expb 1120 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ ((𝑋 ∖ 𝑇) ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ⊆ (𝑋 ∖ 𝑇))) → ((cls‘𝐽)‘(𝑋 ∖ 𝑆)) ⊆ ((cls‘𝐽)‘(𝑋 ∖ 𝑇))) |
| 8 | 4, 7 | sylan2 593 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆)) → ((cls‘𝐽)‘(𝑋 ∖ 𝑆)) ⊆ ((cls‘𝐽)‘(𝑋 ∖ 𝑇))) |
| 9 | 8 | sscond 4095 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆)) → (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝑇))) ⊆ (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝑆)))) |
| 10 | sstr2 3937 | . . . . 5 ⊢ (𝑇 ⊆ 𝑆 → (𝑆 ⊆ 𝑋 → 𝑇 ⊆ 𝑋)) | |
| 11 | 10 | impcom 407 | . . . 4 ⊢ ((𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → 𝑇 ⊆ 𝑋) |
| 12 | 5 | ntrval2 22967 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑇 ⊆ 𝑋) → ((int‘𝐽)‘𝑇) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝑇)))) |
| 13 | 11, 12 | sylan2 593 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆)) → ((int‘𝐽)‘𝑇) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝑇)))) |
| 14 | 5 | ntrval2 22967 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝑆)))) |
| 15 | 14 | adantrr 717 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆)) → ((int‘𝐽)‘𝑆) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝑆)))) |
| 16 | 9, 13, 15 | 3sstr4d 3986 | . 2 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆)) → ((int‘𝐽)‘𝑇) ⊆ ((int‘𝐽)‘𝑆)) |
| 17 | 16 | 3impb 1114 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((int‘𝐽)‘𝑇) ⊆ ((int‘𝐽)‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∖ cdif 3895 ⊆ wss 3898 ∪ cuni 4858 ‘cfv 6486 Topctop 22809 intcnt 22933 clsccl 22934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-top 22810 df-cld 22935 df-ntr 22936 df-cls 22937 |
| This theorem is referenced by: ntrin 22977 ntrcls0 22992 dvreslem 25838 dvres2lem 25839 dvaddbr 25868 dvmulbr 25869 dvmulbrOLD 25870 dvcnvrelem2 25951 ntruni 36392 cldregopn 36396 limciccioolb 45745 limcicciooub 45759 cncfiooicclem1 46015 |
| Copyright terms: Public domain | W3C validator |