MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunconnlem Structured version   Visualization version   GIF version

Theorem iunconnlem 22190
Description: Lemma for iunconn 22191. (Contributed by Mario Carneiro, 11-Jun-2014.)
Hypotheses
Ref Expression
iunconn.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
iunconn.3 ((𝜑𝑘𝐴) → 𝐵𝑋)
iunconn.4 ((𝜑𝑘𝐴) → 𝑃𝐵)
iunconn.5 ((𝜑𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)
iunconn.6 (𝜑𝑈𝐽)
iunconn.7 (𝜑𝑉𝐽)
iunconn.8 (𝜑 → (𝑉 𝑘𝐴 𝐵) ≠ ∅)
iunconn.9 (𝜑 → (𝑈𝑉) ⊆ (𝑋 𝑘𝐴 𝐵))
iunconn.10 (𝜑 𝑘𝐴 𝐵 ⊆ (𝑈𝑉))
iunconn.11 𝑘𝜑
Assertion
Ref Expression
iunconnlem (𝜑 → ¬ 𝑃𝑈)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐽   𝑃,𝑘   𝑘,𝑋   𝑈,𝑘   𝑘,𝑉
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem iunconnlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iunconn.8 . . 3 (𝜑 → (𝑉 𝑘𝐴 𝐵) ≠ ∅)
2 n0 4245 . . 3 ((𝑉 𝑘𝐴 𝐵) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑉 𝑘𝐴 𝐵))
31, 2sylib 221 . 2 (𝜑 → ∃𝑥 𝑥 ∈ (𝑉 𝑘𝐴 𝐵))
4 elin 3869 . . . 4 (𝑥 ∈ (𝑉 𝑘𝐴 𝐵) ↔ (𝑥𝑉𝑥 𝑘𝐴 𝐵))
5 eliun 4895 . . . . . 6 (𝑥 𝑘𝐴 𝐵 ↔ ∃𝑘𝐴 𝑥𝐵)
6 iunconn.11 . . . . . . . 8 𝑘𝜑
7 nfv 1921 . . . . . . . 8 𝑘 𝑥𝑉
86, 7nfan 1906 . . . . . . 7 𝑘(𝜑𝑥𝑉)
9 nfv 1921 . . . . . . 7 𝑘 ¬ 𝑃𝑈
10 iunconn.5 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)
1110adantr 484 . . . . . . . . . 10 (((𝜑𝑘𝐴) ∧ (𝑥𝑉𝑥𝐵)) → (𝐽t 𝐵) ∈ Conn)
12 iunconn.2 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ (TopOn‘𝑋))
1312ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝐽 ∈ (TopOn‘𝑋))
14 iunconn.3 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → 𝐵𝑋)
1514adantr 484 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝐵𝑋)
16 iunconn.6 . . . . . . . . . . . . 13 (𝜑𝑈𝐽)
1716ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝑈𝐽)
18 iunconn.7 . . . . . . . . . . . . 13 (𝜑𝑉𝐽)
1918ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝑉𝐽)
20 simprr 773 . . . . . . . . . . . . 13 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝑃𝑈)
21 iunconn.4 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝑃𝐵)
2221adantr 484 . . . . . . . . . . . . 13 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝑃𝐵)
23 inelcm 4364 . . . . . . . . . . . . 13 ((𝑃𝑈𝑃𝐵) → (𝑈𝐵) ≠ ∅)
2420, 22, 23syl2anc 587 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → (𝑈𝐵) ≠ ∅)
25 inelcm 4364 . . . . . . . . . . . . 13 ((𝑥𝑉𝑥𝐵) → (𝑉𝐵) ≠ ∅)
2625ad2antrl 728 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → (𝑉𝐵) ≠ ∅)
27 iunconn.9 . . . . . . . . . . . . . . 15 (𝜑 → (𝑈𝑉) ⊆ (𝑋 𝑘𝐴 𝐵))
2827ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → (𝑈𝑉) ⊆ (𝑋 𝑘𝐴 𝐵))
29 ssiun2 4943 . . . . . . . . . . . . . . . 16 (𝑘𝐴𝐵 𝑘𝐴 𝐵)
3029ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝐵 𝑘𝐴 𝐵)
3130sscond 4042 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → (𝑋 𝑘𝐴 𝐵) ⊆ (𝑋𝐵))
3228, 31sstrd 3897 . . . . . . . . . . . . 13 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → (𝑈𝑉) ⊆ (𝑋𝐵))
33 inss1 4129 . . . . . . . . . . . . . . 15 (𝑈𝑉) ⊆ 𝑈
34 toponss 21690 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → 𝑈𝑋)
3513, 17, 34syl2anc 587 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝑈𝑋)
3633, 35sstrid 3898 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → (𝑈𝑉) ⊆ 𝑋)
37 reldisj 4351 . . . . . . . . . . . . . 14 ((𝑈𝑉) ⊆ 𝑋 → (((𝑈𝑉) ∩ 𝐵) = ∅ ↔ (𝑈𝑉) ⊆ (𝑋𝐵)))
3836, 37syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → (((𝑈𝑉) ∩ 𝐵) = ∅ ↔ (𝑈𝑉) ⊆ (𝑋𝐵)))
3932, 38mpbird 260 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → ((𝑈𝑉) ∩ 𝐵) = ∅)
40 iunconn.10 . . . . . . . . . . . . . 14 (𝜑 𝑘𝐴 𝐵 ⊆ (𝑈𝑉))
4140ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝑘𝐴 𝐵 ⊆ (𝑈𝑉))
4230, 41sstrd 3897 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝐵 ⊆ (𝑈𝑉))
4313, 15, 17, 19, 24, 26, 39, 42nconnsubb 22186 . . . . . . . . . . 11 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → ¬ (𝐽t 𝐵) ∈ Conn)
4443expr 460 . . . . . . . . . 10 (((𝜑𝑘𝐴) ∧ (𝑥𝑉𝑥𝐵)) → (𝑃𝑈 → ¬ (𝐽t 𝐵) ∈ Conn))
4511, 44mt2d 138 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ (𝑥𝑉𝑥𝐵)) → ¬ 𝑃𝑈)
4645an4s 660 . . . . . . . 8 (((𝜑𝑥𝑉) ∧ (𝑘𝐴𝑥𝐵)) → ¬ 𝑃𝑈)
4746exp32 424 . . . . . . 7 ((𝜑𝑥𝑉) → (𝑘𝐴 → (𝑥𝐵 → ¬ 𝑃𝑈)))
488, 9, 47rexlimd 3228 . . . . . 6 ((𝜑𝑥𝑉) → (∃𝑘𝐴 𝑥𝐵 → ¬ 𝑃𝑈))
495, 48syl5bi 245 . . . . 5 ((𝜑𝑥𝑉) → (𝑥 𝑘𝐴 𝐵 → ¬ 𝑃𝑈))
5049expimpd 457 . . . 4 (𝜑 → ((𝑥𝑉𝑥 𝑘𝐴 𝐵) → ¬ 𝑃𝑈))
514, 50syl5bi 245 . . 3 (𝜑 → (𝑥 ∈ (𝑉 𝑘𝐴 𝐵) → ¬ 𝑃𝑈))
5251exlimdv 1940 . 2 (𝜑 → (∃𝑥 𝑥 ∈ (𝑉 𝑘𝐴 𝐵) → ¬ 𝑃𝑈))
533, 52mpd 15 1 (𝜑 → ¬ 𝑃𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1542  wex 1786  wnf 1790  wcel 2114  wne 2935  wrex 3055  cdif 3850  cun 3851  cin 3852  wss 3853  c0 4221   ciun 4891  cfv 6349  (class class class)co 7182  t crest 16809  TopOnctopon 21673  Conncconn 22174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-int 4847  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-ord 6185  df-on 6186  df-lim 6187  df-suc 6188  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7185  df-oprab 7186  df-mpo 7187  df-om 7612  df-1st 7726  df-2nd 7727  df-en 8568  df-fin 8571  df-fi 8960  df-rest 16811  df-topgen 16832  df-top 21657  df-topon 21674  df-bases 21709  df-cld 21782  df-conn 22175
This theorem is referenced by:  iunconn  22191  iunconnlem2  42133
  Copyright terms: Public domain W3C validator