MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunconnlem Structured version   Visualization version   GIF version

Theorem iunconnlem 22922
Description: Lemma for iunconn 22923. (Contributed by Mario Carneiro, 11-Jun-2014.)
Hypotheses
Ref Expression
iunconn.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
iunconn.3 ((𝜑𝑘𝐴) → 𝐵𝑋)
iunconn.4 ((𝜑𝑘𝐴) → 𝑃𝐵)
iunconn.5 ((𝜑𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)
iunconn.6 (𝜑𝑈𝐽)
iunconn.7 (𝜑𝑉𝐽)
iunconn.8 (𝜑 → (𝑉 𝑘𝐴 𝐵) ≠ ∅)
iunconn.9 (𝜑 → (𝑈𝑉) ⊆ (𝑋 𝑘𝐴 𝐵))
iunconn.10 (𝜑 𝑘𝐴 𝐵 ⊆ (𝑈𝑉))
iunconn.11 𝑘𝜑
Assertion
Ref Expression
iunconnlem (𝜑 → ¬ 𝑃𝑈)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐽   𝑃,𝑘   𝑘,𝑋   𝑈,𝑘   𝑘,𝑉
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem iunconnlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iunconn.8 . . 3 (𝜑 → (𝑉 𝑘𝐴 𝐵) ≠ ∅)
2 n0 4345 . . 3 ((𝑉 𝑘𝐴 𝐵) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑉 𝑘𝐴 𝐵))
31, 2sylib 217 . 2 (𝜑 → ∃𝑥 𝑥 ∈ (𝑉 𝑘𝐴 𝐵))
4 elin 3963 . . . 4 (𝑥 ∈ (𝑉 𝑘𝐴 𝐵) ↔ (𝑥𝑉𝑥 𝑘𝐴 𝐵))
5 eliun 5000 . . . . . 6 (𝑥 𝑘𝐴 𝐵 ↔ ∃𝑘𝐴 𝑥𝐵)
6 iunconn.11 . . . . . . . 8 𝑘𝜑
7 nfv 1917 . . . . . . . 8 𝑘 𝑥𝑉
86, 7nfan 1902 . . . . . . 7 𝑘(𝜑𝑥𝑉)
9 nfv 1917 . . . . . . 7 𝑘 ¬ 𝑃𝑈
10 iunconn.5 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)
1110adantr 481 . . . . . . . . . 10 (((𝜑𝑘𝐴) ∧ (𝑥𝑉𝑥𝐵)) → (𝐽t 𝐵) ∈ Conn)
12 iunconn.2 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ (TopOn‘𝑋))
1312ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝐽 ∈ (TopOn‘𝑋))
14 iunconn.3 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → 𝐵𝑋)
1514adantr 481 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝐵𝑋)
16 iunconn.6 . . . . . . . . . . . . 13 (𝜑𝑈𝐽)
1716ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝑈𝐽)
18 iunconn.7 . . . . . . . . . . . . 13 (𝜑𝑉𝐽)
1918ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝑉𝐽)
20 simprr 771 . . . . . . . . . . . . 13 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝑃𝑈)
21 iunconn.4 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝑃𝐵)
2221adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝑃𝐵)
23 inelcm 4463 . . . . . . . . . . . . 13 ((𝑃𝑈𝑃𝐵) → (𝑈𝐵) ≠ ∅)
2420, 22, 23syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → (𝑈𝐵) ≠ ∅)
25 inelcm 4463 . . . . . . . . . . . . 13 ((𝑥𝑉𝑥𝐵) → (𝑉𝐵) ≠ ∅)
2625ad2antrl 726 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → (𝑉𝐵) ≠ ∅)
27 iunconn.9 . . . . . . . . . . . . . . 15 (𝜑 → (𝑈𝑉) ⊆ (𝑋 𝑘𝐴 𝐵))
2827ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → (𝑈𝑉) ⊆ (𝑋 𝑘𝐴 𝐵))
29 ssiun2 5049 . . . . . . . . . . . . . . . 16 (𝑘𝐴𝐵 𝑘𝐴 𝐵)
3029ad2antlr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝐵 𝑘𝐴 𝐵)
3130sscond 4140 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → (𝑋 𝑘𝐴 𝐵) ⊆ (𝑋𝐵))
3228, 31sstrd 3991 . . . . . . . . . . . . 13 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → (𝑈𝑉) ⊆ (𝑋𝐵))
33 inss1 4227 . . . . . . . . . . . . . . 15 (𝑈𝑉) ⊆ 𝑈
34 toponss 22420 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → 𝑈𝑋)
3513, 17, 34syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝑈𝑋)
3633, 35sstrid 3992 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → (𝑈𝑉) ⊆ 𝑋)
37 reldisj 4450 . . . . . . . . . . . . . 14 ((𝑈𝑉) ⊆ 𝑋 → (((𝑈𝑉) ∩ 𝐵) = ∅ ↔ (𝑈𝑉) ⊆ (𝑋𝐵)))
3836, 37syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → (((𝑈𝑉) ∩ 𝐵) = ∅ ↔ (𝑈𝑉) ⊆ (𝑋𝐵)))
3932, 38mpbird 256 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → ((𝑈𝑉) ∩ 𝐵) = ∅)
40 iunconn.10 . . . . . . . . . . . . . 14 (𝜑 𝑘𝐴 𝐵 ⊆ (𝑈𝑉))
4140ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝑘𝐴 𝐵 ⊆ (𝑈𝑉))
4230, 41sstrd 3991 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝐵 ⊆ (𝑈𝑉))
4313, 15, 17, 19, 24, 26, 39, 42nconnsubb 22918 . . . . . . . . . . 11 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → ¬ (𝐽t 𝐵) ∈ Conn)
4443expr 457 . . . . . . . . . 10 (((𝜑𝑘𝐴) ∧ (𝑥𝑉𝑥𝐵)) → (𝑃𝑈 → ¬ (𝐽t 𝐵) ∈ Conn))
4511, 44mt2d 136 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ (𝑥𝑉𝑥𝐵)) → ¬ 𝑃𝑈)
4645an4s 658 . . . . . . . 8 (((𝜑𝑥𝑉) ∧ (𝑘𝐴𝑥𝐵)) → ¬ 𝑃𝑈)
4746exp32 421 . . . . . . 7 ((𝜑𝑥𝑉) → (𝑘𝐴 → (𝑥𝐵 → ¬ 𝑃𝑈)))
488, 9, 47rexlimd 3263 . . . . . 6 ((𝜑𝑥𝑉) → (∃𝑘𝐴 𝑥𝐵 → ¬ 𝑃𝑈))
495, 48biimtrid 241 . . . . 5 ((𝜑𝑥𝑉) → (𝑥 𝑘𝐴 𝐵 → ¬ 𝑃𝑈))
5049expimpd 454 . . . 4 (𝜑 → ((𝑥𝑉𝑥 𝑘𝐴 𝐵) → ¬ 𝑃𝑈))
514, 50biimtrid 241 . . 3 (𝜑 → (𝑥 ∈ (𝑉 𝑘𝐴 𝐵) → ¬ 𝑃𝑈))
5251exlimdv 1936 . 2 (𝜑 → (∃𝑥 𝑥 ∈ (𝑉 𝑘𝐴 𝐵) → ¬ 𝑃𝑈))
533, 52mpd 15 1 (𝜑 → ¬ 𝑃𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wnf 1785  wcel 2106  wne 2940  wrex 3070  cdif 3944  cun 3945  cin 3946  wss 3947  c0 4321   ciun 4996  cfv 6540  (class class class)co 7405  t crest 17362  TopOnctopon 22403  Conncconn 22906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-en 8936  df-fin 8939  df-fi 9402  df-rest 17364  df-topgen 17385  df-top 22387  df-topon 22404  df-bases 22440  df-cld 22514  df-conn 22907
This theorem is referenced by:  iunconn  22923  iunconnlem2  43681
  Copyright terms: Public domain W3C validator