MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunconnlem Structured version   Visualization version   GIF version

Theorem iunconnlem 23456
Description: Lemma for iunconn 23457. (Contributed by Mario Carneiro, 11-Jun-2014.)
Hypotheses
Ref Expression
iunconn.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
iunconn.3 ((𝜑𝑘𝐴) → 𝐵𝑋)
iunconn.4 ((𝜑𝑘𝐴) → 𝑃𝐵)
iunconn.5 ((𝜑𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)
iunconn.6 (𝜑𝑈𝐽)
iunconn.7 (𝜑𝑉𝐽)
iunconn.8 (𝜑 → (𝑉 𝑘𝐴 𝐵) ≠ ∅)
iunconn.9 (𝜑 → (𝑈𝑉) ⊆ (𝑋 𝑘𝐴 𝐵))
iunconn.10 (𝜑 𝑘𝐴 𝐵 ⊆ (𝑈𝑉))
iunconn.11 𝑘𝜑
Assertion
Ref Expression
iunconnlem (𝜑 → ¬ 𝑃𝑈)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐽   𝑃,𝑘   𝑘,𝑋   𝑈,𝑘   𝑘,𝑉
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem iunconnlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iunconn.8 . . 3 (𝜑 → (𝑉 𝑘𝐴 𝐵) ≠ ∅)
2 n0 4376 . . 3 ((𝑉 𝑘𝐴 𝐵) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑉 𝑘𝐴 𝐵))
31, 2sylib 218 . 2 (𝜑 → ∃𝑥 𝑥 ∈ (𝑉 𝑘𝐴 𝐵))
4 elin 3992 . . . 4 (𝑥 ∈ (𝑉 𝑘𝐴 𝐵) ↔ (𝑥𝑉𝑥 𝑘𝐴 𝐵))
5 eliun 5019 . . . . . 6 (𝑥 𝑘𝐴 𝐵 ↔ ∃𝑘𝐴 𝑥𝐵)
6 iunconn.11 . . . . . . . 8 𝑘𝜑
7 nfv 1913 . . . . . . . 8 𝑘 𝑥𝑉
86, 7nfan 1898 . . . . . . 7 𝑘(𝜑𝑥𝑉)
9 nfv 1913 . . . . . . 7 𝑘 ¬ 𝑃𝑈
10 iunconn.5 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)
1110adantr 480 . . . . . . . . . 10 (((𝜑𝑘𝐴) ∧ (𝑥𝑉𝑥𝐵)) → (𝐽t 𝐵) ∈ Conn)
12 iunconn.2 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ (TopOn‘𝑋))
1312ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝐽 ∈ (TopOn‘𝑋))
14 iunconn.3 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → 𝐵𝑋)
1514adantr 480 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝐵𝑋)
16 iunconn.6 . . . . . . . . . . . . 13 (𝜑𝑈𝐽)
1716ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝑈𝐽)
18 iunconn.7 . . . . . . . . . . . . 13 (𝜑𝑉𝐽)
1918ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝑉𝐽)
20 simprr 772 . . . . . . . . . . . . 13 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝑃𝑈)
21 iunconn.4 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝑃𝐵)
2221adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝑃𝐵)
23 inelcm 4488 . . . . . . . . . . . . 13 ((𝑃𝑈𝑃𝐵) → (𝑈𝐵) ≠ ∅)
2420, 22, 23syl2anc 583 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → (𝑈𝐵) ≠ ∅)
25 inelcm 4488 . . . . . . . . . . . . 13 ((𝑥𝑉𝑥𝐵) → (𝑉𝐵) ≠ ∅)
2625ad2antrl 727 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → (𝑉𝐵) ≠ ∅)
27 iunconn.9 . . . . . . . . . . . . . . 15 (𝜑 → (𝑈𝑉) ⊆ (𝑋 𝑘𝐴 𝐵))
2827ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → (𝑈𝑉) ⊆ (𝑋 𝑘𝐴 𝐵))
29 ssiun2 5070 . . . . . . . . . . . . . . . 16 (𝑘𝐴𝐵 𝑘𝐴 𝐵)
3029ad2antlr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝐵 𝑘𝐴 𝐵)
3130sscond 4169 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → (𝑋 𝑘𝐴 𝐵) ⊆ (𝑋𝐵))
3228, 31sstrd 4019 . . . . . . . . . . . . 13 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → (𝑈𝑉) ⊆ (𝑋𝐵))
33 inss1 4258 . . . . . . . . . . . . . . 15 (𝑈𝑉) ⊆ 𝑈
34 toponss 22954 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → 𝑈𝑋)
3513, 17, 34syl2anc 583 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝑈𝑋)
3633, 35sstrid 4020 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → (𝑈𝑉) ⊆ 𝑋)
37 reldisj 4476 . . . . . . . . . . . . . 14 ((𝑈𝑉) ⊆ 𝑋 → (((𝑈𝑉) ∩ 𝐵) = ∅ ↔ (𝑈𝑉) ⊆ (𝑋𝐵)))
3836, 37syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → (((𝑈𝑉) ∩ 𝐵) = ∅ ↔ (𝑈𝑉) ⊆ (𝑋𝐵)))
3932, 38mpbird 257 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → ((𝑈𝑉) ∩ 𝐵) = ∅)
40 iunconn.10 . . . . . . . . . . . . . 14 (𝜑 𝑘𝐴 𝐵 ⊆ (𝑈𝑉))
4140ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝑘𝐴 𝐵 ⊆ (𝑈𝑉))
4230, 41sstrd 4019 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝐵 ⊆ (𝑈𝑉))
4313, 15, 17, 19, 24, 26, 39, 42nconnsubb 23452 . . . . . . . . . . 11 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → ¬ (𝐽t 𝐵) ∈ Conn)
4443expr 456 . . . . . . . . . 10 (((𝜑𝑘𝐴) ∧ (𝑥𝑉𝑥𝐵)) → (𝑃𝑈 → ¬ (𝐽t 𝐵) ∈ Conn))
4511, 44mt2d 136 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ (𝑥𝑉𝑥𝐵)) → ¬ 𝑃𝑈)
4645an4s 659 . . . . . . . 8 (((𝜑𝑥𝑉) ∧ (𝑘𝐴𝑥𝐵)) → ¬ 𝑃𝑈)
4746exp32 420 . . . . . . 7 ((𝜑𝑥𝑉) → (𝑘𝐴 → (𝑥𝐵 → ¬ 𝑃𝑈)))
488, 9, 47rexlimd 3272 . . . . . 6 ((𝜑𝑥𝑉) → (∃𝑘𝐴 𝑥𝐵 → ¬ 𝑃𝑈))
495, 48biimtrid 242 . . . . 5 ((𝜑𝑥𝑉) → (𝑥 𝑘𝐴 𝐵 → ¬ 𝑃𝑈))
5049expimpd 453 . . . 4 (𝜑 → ((𝑥𝑉𝑥 𝑘𝐴 𝐵) → ¬ 𝑃𝑈))
514, 50biimtrid 242 . . 3 (𝜑 → (𝑥 ∈ (𝑉 𝑘𝐴 𝐵) → ¬ 𝑃𝑈))
5251exlimdv 1932 . 2 (𝜑 → (∃𝑥 𝑥 ∈ (𝑉 𝑘𝐴 𝐵) → ¬ 𝑃𝑈))
533, 52mpd 15 1 (𝜑 → ¬ 𝑃𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wnf 1781  wcel 2108  wne 2946  wrex 3076  cdif 3973  cun 3974  cin 3975  wss 3976  c0 4352   ciun 5015  cfv 6573  (class class class)co 7448  t crest 17480  TopOnctopon 22937  Conncconn 23440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-en 9004  df-fin 9007  df-fi 9480  df-rest 17482  df-topgen 17503  df-top 22921  df-topon 22938  df-bases 22974  df-cld 23048  df-conn 23441
This theorem is referenced by:  iunconn  23457  iunconnlem2  44906
  Copyright terms: Public domain W3C validator