MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunconnlem Structured version   Visualization version   GIF version

Theorem iunconnlem 21719
Description: Lemma for iunconn 21720. (Contributed by Mario Carneiro, 11-Jun-2014.)
Hypotheses
Ref Expression
iunconn.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
iunconn.3 ((𝜑𝑘𝐴) → 𝐵𝑋)
iunconn.4 ((𝜑𝑘𝐴) → 𝑃𝐵)
iunconn.5 ((𝜑𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)
iunconn.6 (𝜑𝑈𝐽)
iunconn.7 (𝜑𝑉𝐽)
iunconn.8 (𝜑 → (𝑉 𝑘𝐴 𝐵) ≠ ∅)
iunconn.9 (𝜑 → (𝑈𝑉) ⊆ (𝑋 𝑘𝐴 𝐵))
iunconn.10 (𝜑 𝑘𝐴 𝐵 ⊆ (𝑈𝑉))
iunconn.11 𝑘𝜑
Assertion
Ref Expression
iunconnlem (𝜑 → ¬ 𝑃𝑈)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐽   𝑃,𝑘   𝑘,𝑋   𝑈,𝑘   𝑘,𝑉
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem iunconnlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iunconn.8 . . 3 (𝜑 → (𝑉 𝑘𝐴 𝐵) ≠ ∅)
2 n0 4230 . . 3 ((𝑉 𝑘𝐴 𝐵) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑉 𝑘𝐴 𝐵))
31, 2sylib 219 . 2 (𝜑 → ∃𝑥 𝑥 ∈ (𝑉 𝑘𝐴 𝐵))
4 elin 4090 . . . 4 (𝑥 ∈ (𝑉 𝑘𝐴 𝐵) ↔ (𝑥𝑉𝑥 𝑘𝐴 𝐵))
5 eliun 4829 . . . . . 6 (𝑥 𝑘𝐴 𝐵 ↔ ∃𝑘𝐴 𝑥𝐵)
6 iunconn.11 . . . . . . . 8 𝑘𝜑
7 nfv 1892 . . . . . . . 8 𝑘 𝑥𝑉
86, 7nfan 1881 . . . . . . 7 𝑘(𝜑𝑥𝑉)
9 nfv 1892 . . . . . . 7 𝑘 ¬ 𝑃𝑈
10 iunconn.5 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)
1110adantr 481 . . . . . . . . . 10 (((𝜑𝑘𝐴) ∧ (𝑥𝑉𝑥𝐵)) → (𝐽t 𝐵) ∈ Conn)
12 iunconn.2 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ (TopOn‘𝑋))
1312ad2antrr 722 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝐽 ∈ (TopOn‘𝑋))
14 iunconn.3 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → 𝐵𝑋)
1514adantr 481 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝐵𝑋)
16 iunconn.6 . . . . . . . . . . . . 13 (𝜑𝑈𝐽)
1716ad2antrr 722 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝑈𝐽)
18 iunconn.7 . . . . . . . . . . . . 13 (𝜑𝑉𝐽)
1918ad2antrr 722 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝑉𝐽)
20 simprr 769 . . . . . . . . . . . . 13 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝑃𝑈)
21 iunconn.4 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝑃𝐵)
2221adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝑃𝐵)
23 inelcm 4328 . . . . . . . . . . . . 13 ((𝑃𝑈𝑃𝐵) → (𝑈𝐵) ≠ ∅)
2420, 22, 23syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → (𝑈𝐵) ≠ ∅)
25 inelcm 4328 . . . . . . . . . . . . 13 ((𝑥𝑉𝑥𝐵) → (𝑉𝐵) ≠ ∅)
2625ad2antrl 724 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → (𝑉𝐵) ≠ ∅)
27 iunconn.9 . . . . . . . . . . . . . . 15 (𝜑 → (𝑈𝑉) ⊆ (𝑋 𝑘𝐴 𝐵))
2827ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → (𝑈𝑉) ⊆ (𝑋 𝑘𝐴 𝐵))
29 ssiun2 4870 . . . . . . . . . . . . . . . 16 (𝑘𝐴𝐵 𝑘𝐴 𝐵)
3029ad2antlr 723 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝐵 𝑘𝐴 𝐵)
3130sscond 4039 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → (𝑋 𝑘𝐴 𝐵) ⊆ (𝑋𝐵))
3228, 31sstrd 3899 . . . . . . . . . . . . 13 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → (𝑈𝑉) ⊆ (𝑋𝐵))
33 inss1 4125 . . . . . . . . . . . . . . 15 (𝑈𝑉) ⊆ 𝑈
34 toponss 21219 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → 𝑈𝑋)
3513, 17, 34syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝑈𝑋)
3633, 35syl5ss 3900 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → (𝑈𝑉) ⊆ 𝑋)
37 reldisj 4316 . . . . . . . . . . . . . 14 ((𝑈𝑉) ⊆ 𝑋 → (((𝑈𝑉) ∩ 𝐵) = ∅ ↔ (𝑈𝑉) ⊆ (𝑋𝐵)))
3836, 37syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → (((𝑈𝑉) ∩ 𝐵) = ∅ ↔ (𝑈𝑉) ⊆ (𝑋𝐵)))
3932, 38mpbird 258 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → ((𝑈𝑉) ∩ 𝐵) = ∅)
40 iunconn.10 . . . . . . . . . . . . . 14 (𝜑 𝑘𝐴 𝐵 ⊆ (𝑈𝑉))
4140ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝑘𝐴 𝐵 ⊆ (𝑈𝑉))
4230, 41sstrd 3899 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝐵 ⊆ (𝑈𝑉))
4313, 15, 17, 19, 24, 26, 39, 42nconnsubb 21715 . . . . . . . . . . 11 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → ¬ (𝐽t 𝐵) ∈ Conn)
4443expr 457 . . . . . . . . . 10 (((𝜑𝑘𝐴) ∧ (𝑥𝑉𝑥𝐵)) → (𝑃𝑈 → ¬ (𝐽t 𝐵) ∈ Conn))
4511, 44mt2d 138 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ (𝑥𝑉𝑥𝐵)) → ¬ 𝑃𝑈)
4645an4s 656 . . . . . . . 8 (((𝜑𝑥𝑉) ∧ (𝑘𝐴𝑥𝐵)) → ¬ 𝑃𝑈)
4746exp32 421 . . . . . . 7 ((𝜑𝑥𝑉) → (𝑘𝐴 → (𝑥𝐵 → ¬ 𝑃𝑈)))
488, 9, 47rexlimd 3278 . . . . . 6 ((𝜑𝑥𝑉) → (∃𝑘𝐴 𝑥𝐵 → ¬ 𝑃𝑈))
495, 48syl5bi 243 . . . . 5 ((𝜑𝑥𝑉) → (𝑥 𝑘𝐴 𝐵 → ¬ 𝑃𝑈))
5049expimpd 454 . . . 4 (𝜑 → ((𝑥𝑉𝑥 𝑘𝐴 𝐵) → ¬ 𝑃𝑈))
514, 50syl5bi 243 . . 3 (𝜑 → (𝑥 ∈ (𝑉 𝑘𝐴 𝐵) → ¬ 𝑃𝑈))
5251exlimdv 1911 . 2 (𝜑 → (∃𝑥 𝑥 ∈ (𝑉 𝑘𝐴 𝐵) → ¬ 𝑃𝑈))
533, 52mpd 15 1 (𝜑 → ¬ 𝑃𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1522  wex 1761  wnf 1765  wcel 2081  wne 2984  wrex 3106  cdif 3856  cun 3857  cin 3858  wss 3859  c0 4211   ciun 4825  cfv 6225  (class class class)co 7016  t crest 16523  TopOnctopon 21202  Conncconn 21703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-oadd 7957  df-er 8139  df-en 8358  df-fin 8361  df-fi 8721  df-rest 16525  df-topgen 16546  df-top 21186  df-topon 21203  df-bases 21238  df-cld 21311  df-conn 21704
This theorem is referenced by:  iunconn  21720  iunconnlem2  40808
  Copyright terms: Public domain W3C validator