MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxdstprj1 Structured version   Visualization version   GIF version

Theorem rrxdstprj1 25336
Description: The distance between two points in Euclidean space is greater than the distance between the projections onto one coordinate. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Sep-2015.) (Revised by Thierry Arnoux, 7-Jul-2019.)
Hypotheses
Ref Expression
rrxmval.1 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
rrxmval.d 𝐷 = (dist‘(ℝ^‘𝐼))
rrxdstprj1.1 𝑀 = ((abs ∘ − ) ↾ (ℝ × ℝ))
Assertion
Ref Expression
rrxdstprj1 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐴)𝑀(𝐺𝐴)) ≤ (𝐹𝐷𝐺))
Distinct variable groups:   ,𝐹   ,𝐺   ,𝐼   ,𝑉
Allowed substitution hints:   𝐴()   𝐷()   𝑀()   𝑋()

Proof of Theorem rrxdstprj1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simplll 774 . . 3 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → 𝐼𝑉)
2 simpr 484 . . 3 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
3 simplr 768 . . 3 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (𝐹𝑋𝐺𝑋))
4 rrxmval.1 . . . . . . . . 9 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
5 simprl 770 . . . . . . . . 9 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 𝐹𝑋)
64, 5rrxfsupp 25329 . . . . . . . 8 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (𝐹 supp 0) ∈ Fin)
7 simprr 772 . . . . . . . . 9 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 𝐺𝑋)
84, 7rrxfsupp 25329 . . . . . . . 8 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (𝐺 supp 0) ∈ Fin)
9 unfi 9080 . . . . . . . 8 (((𝐹 supp 0) ∈ Fin ∧ (𝐺 supp 0) ∈ Fin) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∈ Fin)
106, 8, 9syl2anc 584 . . . . . . 7 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∈ Fin)
114, 5rrxsuppss 25330 . . . . . . . . . 10 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (𝐹 supp 0) ⊆ 𝐼)
124, 7rrxsuppss 25330 . . . . . . . . . 10 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (𝐺 supp 0) ⊆ 𝐼)
1311, 12unssd 4139 . . . . . . . . 9 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐼)
1413sselda 3929 . . . . . . . 8 ((((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → 𝑘𝐼)
154, 5rrxf 25328 . . . . . . . . . . 11 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 𝐹:𝐼⟶ℝ)
1615ffvelcdmda 7017 . . . . . . . . . 10 ((((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → (𝐹𝑘) ∈ ℝ)
174, 7rrxf 25328 . . . . . . . . . . 11 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 𝐺:𝐼⟶ℝ)
1817ffvelcdmda 7017 . . . . . . . . . 10 ((((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → (𝐺𝑘) ∈ ℝ)
1916, 18resubcld 11545 . . . . . . . . 9 ((((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → ((𝐹𝑘) − (𝐺𝑘)) ∈ ℝ)
2019resqcld 14032 . . . . . . . 8 ((((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℝ)
2114, 20syldan 591 . . . . . . 7 ((((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℝ)
2219sqge0d 14044 . . . . . . . 8 ((((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → 0 ≤ (((𝐹𝑘) − (𝐺𝑘))↑2))
2314, 22syldan 591 . . . . . . 7 ((((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → 0 ≤ (((𝐹𝑘) − (𝐺𝑘))↑2))
24 fveq2 6822 . . . . . . . . 9 (𝑘 = 𝐴 → (𝐹𝑘) = (𝐹𝐴))
25 fveq2 6822 . . . . . . . . 9 (𝑘 = 𝐴 → (𝐺𝑘) = (𝐺𝐴))
2624, 25oveq12d 7364 . . . . . . . 8 (𝑘 = 𝐴 → ((𝐹𝑘) − (𝐺𝑘)) = ((𝐹𝐴) − (𝐺𝐴)))
2726oveq1d 7361 . . . . . . 7 (𝑘 = 𝐴 → (((𝐹𝑘) − (𝐺𝑘))↑2) = (((𝐹𝐴) − (𝐺𝐴))↑2))
28 simplr 768 . . . . . . 7 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
2910, 21, 23, 27, 28fsumge1 15704 . . . . . 6 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (((𝐹𝐴) − (𝐺𝐴))↑2) ≤ Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))
3013, 28sseldd 3930 . . . . . . . . 9 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 𝐴𝐼)
3115, 30ffvelcdmd 7018 . . . . . . . 8 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (𝐹𝐴) ∈ ℝ)
3217, 30ffvelcdmd 7018 . . . . . . . 8 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (𝐺𝐴) ∈ ℝ)
3331, 32resubcld 11545 . . . . . . 7 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐴) − (𝐺𝐴)) ∈ ℝ)
34 absresq 15209 . . . . . . 7 (((𝐹𝐴) − (𝐺𝐴)) ∈ ℝ → ((abs‘((𝐹𝐴) − (𝐺𝐴)))↑2) = (((𝐹𝐴) − (𝐺𝐴))↑2))
3533, 34syl 17 . . . . . 6 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((abs‘((𝐹𝐴) − (𝐺𝐴)))↑2) = (((𝐹𝐴) − (𝐺𝐴))↑2))
3610, 21fsumrecl 15641 . . . . . . 7 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℝ)
3710, 21, 23fsumge0 15702 . . . . . . 7 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 0 ≤ Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))
38 resqrtth 15162 . . . . . . 7 ((Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)) → ((√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))↑2) = Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))
3936, 37, 38syl2anc 584 . . . . . 6 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))↑2) = Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))
4029, 35, 393brtr4d 5121 . . . . 5 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((abs‘((𝐹𝐴) − (𝐺𝐴)))↑2) ≤ ((√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))↑2))
4133recnd 11140 . . . . . . 7 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐴) − (𝐺𝐴)) ∈ ℂ)
4241abscld 15346 . . . . . 6 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (abs‘((𝐹𝐴) − (𝐺𝐴))) ∈ ℝ)
4336, 37resqrtcld 15325 . . . . . 6 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)) ∈ ℝ)
4441absge0d 15354 . . . . . 6 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 0 ≤ (abs‘((𝐹𝐴) − (𝐺𝐴))))
4536, 37sqrtge0d 15328 . . . . . 6 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 0 ≤ (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)))
4642, 43, 44, 45le2sqd 14164 . . . . 5 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((abs‘((𝐹𝐴) − (𝐺𝐴))) ≤ (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)) ↔ ((abs‘((𝐹𝐴) − (𝐺𝐴)))↑2) ≤ ((√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))↑2)))
4740, 46mpbird 257 . . . 4 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (abs‘((𝐹𝐴) − (𝐺𝐴))) ≤ (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)))
48 rrxdstprj1.1 . . . . . 6 𝑀 = ((abs ∘ − ) ↾ (ℝ × ℝ))
4948remetdval 24704 . . . . 5 (((𝐹𝐴) ∈ ℝ ∧ (𝐺𝐴) ∈ ℝ) → ((𝐹𝐴)𝑀(𝐺𝐴)) = (abs‘((𝐹𝐴) − (𝐺𝐴))))
5031, 32, 49syl2anc 584 . . . 4 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐴)𝑀(𝐺𝐴)) = (abs‘((𝐹𝐴) − (𝐺𝐴))))
51 rrxmval.d . . . . . . 7 𝐷 = (dist‘(ℝ^‘𝐼))
524, 51rrxmval 25332 . . . . . 6 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)))
53523expb 1120 . . . . 5 ((𝐼𝑉 ∧ (𝐹𝑋𝐺𝑋)) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)))
5453adantlr 715 . . . 4 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)))
5547, 50, 543brtr4d 5121 . . 3 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐴)𝑀(𝐺𝐴)) ≤ (𝐹𝐷𝐺))
561, 2, 3, 55syl21anc 837 . 2 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → ((𝐹𝐴)𝑀(𝐺𝐴)) ≤ (𝐹𝐷𝐺))
57 simplll 774 . . . . . . 7 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝐼𝑉)
58 simplrl 776 . . . . . . 7 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝐹𝑋)
59 ssun1 4125 . . . . . . . . . 10 (𝐹 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))
6059a1i 11 . . . . . . . . 9 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (𝐹 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
6160sscond 4093 . . . . . . . 8 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ⊆ (𝐼 ∖ (𝐹 supp 0)))
6261sselda 3929 . . . . . . 7 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝐴 ∈ (𝐼 ∖ (𝐹 supp 0)))
63 simpr 484 . . . . . . . . 9 ((𝐼𝑉𝐹𝑋) → 𝐹𝑋)
644, 63rrxf 25328 . . . . . . . 8 ((𝐼𝑉𝐹𝑋) → 𝐹:𝐼⟶ℝ)
65 ssidd 3953 . . . . . . . 8 ((𝐼𝑉𝐹𝑋) → (𝐹 supp 0) ⊆ (𝐹 supp 0))
66 simpl 482 . . . . . . . 8 ((𝐼𝑉𝐹𝑋) → 𝐼𝑉)
67 0red 11115 . . . . . . . 8 ((𝐼𝑉𝐹𝑋) → 0 ∈ ℝ)
6864, 65, 66, 67suppssr 8125 . . . . . . 7 (((𝐼𝑉𝐹𝑋) ∧ 𝐴 ∈ (𝐼 ∖ (𝐹 supp 0))) → (𝐹𝐴) = 0)
6957, 58, 62, 68syl21anc 837 . . . . . 6 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹𝐴) = 0)
70 0red 11115 . . . . . 6 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 0 ∈ ℝ)
7169, 70eqeltrd 2831 . . . . 5 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹𝐴) ∈ ℝ)
72 simplrr 777 . . . . . . 7 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝐺𝑋)
73 ssun2 4126 . . . . . . . . . 10 (𝐺 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))
7473a1i 11 . . . . . . . . 9 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (𝐺 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
7574sscond 4093 . . . . . . . 8 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ⊆ (𝐼 ∖ (𝐺 supp 0)))
7675sselda 3929 . . . . . . 7 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝐴 ∈ (𝐼 ∖ (𝐺 supp 0)))
77 simpr 484 . . . . . . . . 9 ((𝐼𝑉𝐺𝑋) → 𝐺𝑋)
784, 77rrxf 25328 . . . . . . . 8 ((𝐼𝑉𝐺𝑋) → 𝐺:𝐼⟶ℝ)
79 ssidd 3953 . . . . . . . 8 ((𝐼𝑉𝐺𝑋) → (𝐺 supp 0) ⊆ (𝐺 supp 0))
80 simpl 482 . . . . . . . 8 ((𝐼𝑉𝐺𝑋) → 𝐼𝑉)
81 0red 11115 . . . . . . . 8 ((𝐼𝑉𝐺𝑋) → 0 ∈ ℝ)
8278, 79, 80, 81suppssr 8125 . . . . . . 7 (((𝐼𝑉𝐺𝑋) ∧ 𝐴 ∈ (𝐼 ∖ (𝐺 supp 0))) → (𝐺𝐴) = 0)
8357, 72, 76, 82syl21anc 837 . . . . . 6 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐺𝐴) = 0)
8483, 70eqeltrd 2831 . . . . 5 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐺𝐴) ∈ ℝ)
8571, 84, 49syl2anc 584 . . . 4 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹𝐴)𝑀(𝐺𝐴)) = (abs‘((𝐹𝐴) − (𝐺𝐴))))
8669, 83oveq12d 7364 . . . . . 6 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹𝐴) − (𝐺𝐴)) = (0 − 0))
87 0m0e0 12240 . . . . . 6 (0 − 0) = 0
8886, 87eqtrdi 2782 . . . . 5 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹𝐴) − (𝐺𝐴)) = 0)
8988abs00bd 15198 . . . 4 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (abs‘((𝐹𝐴) − (𝐺𝐴))) = 0)
9085, 89eqtrd 2766 . . 3 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹𝐴)𝑀(𝐺𝐴)) = 0)
914, 51rrxmet 25335 . . . . 5 (𝐼𝑉𝐷 ∈ (Met‘𝑋))
9291ad3antrrr 730 . . . 4 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝐷 ∈ (Met‘𝑋))
93 metge0 24260 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐹𝑋𝐺𝑋) → 0 ≤ (𝐹𝐷𝐺))
9492, 58, 72, 93syl3anc 1373 . . 3 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 0 ≤ (𝐹𝐷𝐺))
9590, 94eqbrtrd 5111 . 2 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹𝐴)𝑀(𝐺𝐴)) ≤ (𝐹𝐷𝐺))
96 simplr 768 . . . 4 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → 𝐴𝐼)
97 simprl 770 . . . . . . 7 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → 𝐹𝑋)
984, 97rrxsuppss 25330 . . . . . 6 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (𝐹 supp 0) ⊆ 𝐼)
99 simprr 772 . . . . . . 7 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → 𝐺𝑋)
1004, 99rrxsuppss 25330 . . . . . 6 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (𝐺 supp 0) ⊆ 𝐼)
10198, 100unssd 4139 . . . . 5 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐼)
102 undif 4429 . . . . 5 (((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐼 ↔ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∪ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) = 𝐼)
103101, 102sylib 218 . . . 4 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∪ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) = 𝐼)
10496, 103eleqtrrd 2834 . . 3 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → 𝐴 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∪ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))))
105 elun 4100 . . 3 (𝐴 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∪ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) ↔ (𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∨ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))))
106104, 105sylib 218 . 2 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∨ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))))
10756, 95, 106mpjaodan 960 1 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐴)𝑀(𝐺𝐴)) ≤ (𝐹𝐷𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  {crab 3395  cdif 3894  cun 3895  wss 3897   class class class wbr 5089   × cxp 5612  cres 5616  ccom 5618  cfv 6481  (class class class)co 7346   supp csupp 8090  m cmap 8750  Fincfn 8869   finSupp cfsupp 9245  cr 11005  0cc0 11006  cle 11147  cmin 11344  2c2 12180  cexp 13968  csqrt 15140  abscabs 15141  Σcsu 15593  distcds 17170  Metcmet 21277  ℝ^crrx 25310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ico 13251  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-ghm 19125  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-dvr 20319  df-rhm 20390  df-subrng 20461  df-subrg 20485  df-drng 20646  df-field 20647  df-staf 20754  df-srng 20755  df-lmod 20795  df-lss 20865  df-sra 21107  df-rgmod 21108  df-xmet 21284  df-met 21285  df-cnfld 21292  df-refld 21542  df-dsmm 21669  df-frlm 21684  df-nm 24497  df-tng 24499  df-tcph 25096  df-rrx 25312
This theorem is referenced by:  rrnprjdstle  46409
  Copyright terms: Public domain W3C validator