Step | Hyp | Ref
| Expression |
1 | | simplll 771 |
. . 3
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → 𝐼 ∈ 𝑉) |
2 | | simpr 484 |
. . 3
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) |
3 | | simplr 765 |
. . 3
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) |
4 | | rrxmval.1 |
. . . . . . . . 9
⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} |
5 | | simprl 767 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → 𝐹 ∈ 𝑋) |
6 | 4, 5 | rrxfsupp 24471 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (𝐹 supp 0) ∈ Fin) |
7 | | simprr 769 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → 𝐺 ∈ 𝑋) |
8 | 4, 7 | rrxfsupp 24471 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (𝐺 supp 0) ∈ Fin) |
9 | | unfi 8917 |
. . . . . . . 8
⊢ (((𝐹 supp 0) ∈ Fin ∧ (𝐺 supp 0) ∈ Fin) →
((𝐹 supp 0) ∪ (𝐺 supp 0)) ∈
Fin) |
10 | 6, 8, 9 | syl2anc 583 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∈ Fin) |
11 | 4, 5 | rrxsuppss 24472 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (𝐹 supp 0) ⊆ 𝐼) |
12 | 4, 7 | rrxsuppss 24472 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (𝐺 supp 0) ⊆ 𝐼) |
13 | 11, 12 | unssd 4116 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐼) |
14 | 13 | sselda 3917 |
. . . . . . . 8
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → 𝑘 ∈ 𝐼) |
15 | 4, 5 | rrxf 24470 |
. . . . . . . . . . 11
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → 𝐹:𝐼⟶ℝ) |
16 | 15 | ffvelrnda 6943 |
. . . . . . . . . 10
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝑘 ∈ 𝐼) → (𝐹‘𝑘) ∈ ℝ) |
17 | 4, 7 | rrxf 24470 |
. . . . . . . . . . 11
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → 𝐺:𝐼⟶ℝ) |
18 | 17 | ffvelrnda 6943 |
. . . . . . . . . 10
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝑘 ∈ 𝐼) → (𝐺‘𝑘) ∈ ℝ) |
19 | 16, 18 | resubcld 11333 |
. . . . . . . . 9
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝑘 ∈ 𝐼) → ((𝐹‘𝑘) − (𝐺‘𝑘)) ∈ ℝ) |
20 | 19 | resqcld 13893 |
. . . . . . . 8
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝑘 ∈ 𝐼) → (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) ∈ ℝ) |
21 | 14, 20 | syldan 590 |
. . . . . . 7
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) ∈ ℝ) |
22 | 19 | sqge0d 13894 |
. . . . . . . 8
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝑘 ∈ 𝐼) → 0 ≤ (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
23 | 14, 22 | syldan 590 |
. . . . . . 7
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → 0 ≤ (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
24 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑘 = 𝐴 → (𝐹‘𝑘) = (𝐹‘𝐴)) |
25 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑘 = 𝐴 → (𝐺‘𝑘) = (𝐺‘𝐴)) |
26 | 24, 25 | oveq12d 7273 |
. . . . . . . 8
⊢ (𝑘 = 𝐴 → ((𝐹‘𝑘) − (𝐺‘𝑘)) = ((𝐹‘𝐴) − (𝐺‘𝐴))) |
27 | 26 | oveq1d 7270 |
. . . . . . 7
⊢ (𝑘 = 𝐴 → (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) = (((𝐹‘𝐴) − (𝐺‘𝐴))↑2)) |
28 | | simplr 765 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) |
29 | 10, 21, 23, 27, 28 | fsumge1 15437 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (((𝐹‘𝐴) − (𝐺‘𝐴))↑2) ≤ Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
30 | 13, 28 | sseldd 3918 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → 𝐴 ∈ 𝐼) |
31 | 15, 30 | ffvelrnd 6944 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (𝐹‘𝐴) ∈ ℝ) |
32 | 17, 30 | ffvelrnd 6944 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (𝐺‘𝐴) ∈ ℝ) |
33 | 31, 32 | resubcld 11333 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → ((𝐹‘𝐴) − (𝐺‘𝐴)) ∈ ℝ) |
34 | | absresq 14942 |
. . . . . . 7
⊢ (((𝐹‘𝐴) − (𝐺‘𝐴)) ∈ ℝ → ((abs‘((𝐹‘𝐴) − (𝐺‘𝐴)))↑2) = (((𝐹‘𝐴) − (𝐺‘𝐴))↑2)) |
35 | 33, 34 | syl 17 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → ((abs‘((𝐹‘𝐴) − (𝐺‘𝐴)))↑2) = (((𝐹‘𝐴) − (𝐺‘𝐴))↑2)) |
36 | 10, 21 | fsumrecl 15374 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2) ∈ ℝ) |
37 | 10, 21, 23 | fsumge0 15435 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → 0 ≤ Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
38 | | resqrtth 14895 |
. . . . . . 7
⊢
((Σ𝑘 ∈
((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2) ∈ ℝ ∧ 0 ≤
Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) →
((√‘Σ𝑘
∈ ((𝐹 supp 0) ∪
(𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2))↑2) = Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
39 | 36, 37, 38 | syl2anc 583 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → ((√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2))↑2) = Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
40 | 29, 35, 39 | 3brtr4d 5102 |
. . . . 5
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → ((abs‘((𝐹‘𝐴) − (𝐺‘𝐴)))↑2) ≤
((√‘Σ𝑘
∈ ((𝐹 supp 0) ∪
(𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2))↑2)) |
41 | 33 | recnd 10934 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → ((𝐹‘𝐴) − (𝐺‘𝐴)) ∈ ℂ) |
42 | 41 | abscld 15076 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (abs‘((𝐹‘𝐴) − (𝐺‘𝐴))) ∈ ℝ) |
43 | 36, 37 | resqrtcld 15057 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) ∈ ℝ) |
44 | 41 | absge0d 15084 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → 0 ≤ (abs‘((𝐹‘𝐴) − (𝐺‘𝐴)))) |
45 | 36, 37 | sqrtge0d 15060 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → 0 ≤ (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) |
46 | 42, 43, 44, 45 | le2sqd 13902 |
. . . . 5
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → ((abs‘((𝐹‘𝐴) − (𝐺‘𝐴))) ≤ (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) ↔ ((abs‘((𝐹‘𝐴) − (𝐺‘𝐴)))↑2) ≤
((√‘Σ𝑘
∈ ((𝐹 supp 0) ∪
(𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2))↑2))) |
47 | 40, 46 | mpbird 256 |
. . . 4
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (abs‘((𝐹‘𝐴) − (𝐺‘𝐴))) ≤ (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) |
48 | | rrxdstprj1.1 |
. . . . . 6
⊢ 𝑀 = ((abs ∘ − )
↾ (ℝ × ℝ)) |
49 | 48 | remetdval 23858 |
. . . . 5
⊢ (((𝐹‘𝐴) ∈ ℝ ∧ (𝐺‘𝐴) ∈ ℝ) → ((𝐹‘𝐴)𝑀(𝐺‘𝐴)) = (abs‘((𝐹‘𝐴) − (𝐺‘𝐴)))) |
50 | 31, 32, 49 | syl2anc 583 |
. . . 4
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → ((𝐹‘𝐴)𝑀(𝐺‘𝐴)) = (abs‘((𝐹‘𝐴) − (𝐺‘𝐴)))) |
51 | | rrxmval.d |
. . . . . . 7
⊢ 𝐷 =
(dist‘(ℝ^‘𝐼)) |
52 | 4, 51 | rrxmval 24474 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) |
53 | 52 | 3expb 1118 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) |
54 | 53 | adantlr 711 |
. . . 4
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) |
55 | 47, 50, 54 | 3brtr4d 5102 |
. . 3
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → ((𝐹‘𝐴)𝑀(𝐺‘𝐴)) ≤ (𝐹𝐷𝐺)) |
56 | 1, 2, 3, 55 | syl21anc 834 |
. 2
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → ((𝐹‘𝐴)𝑀(𝐺‘𝐴)) ≤ (𝐹𝐷𝐺)) |
57 | | simplll 771 |
. . . . . . 7
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝐼 ∈ 𝑉) |
58 | | simplrl 773 |
. . . . . . 7
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝐹 ∈ 𝑋) |
59 | | ssun1 4102 |
. . . . . . . . . 10
⊢ (𝐹 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)) |
60 | 59 | a1i 11 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (𝐹 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))) |
61 | 60 | sscond 4072 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ⊆ (𝐼 ∖ (𝐹 supp 0))) |
62 | 61 | sselda 3917 |
. . . . . . 7
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝐴 ∈ (𝐼 ∖ (𝐹 supp 0))) |
63 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋) → 𝐹 ∈ 𝑋) |
64 | 4, 63 | rrxf 24470 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋) → 𝐹:𝐼⟶ℝ) |
65 | | ssidd 3940 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋) → (𝐹 supp 0) ⊆ (𝐹 supp 0)) |
66 | | simpl 482 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋) → 𝐼 ∈ 𝑉) |
67 | | 0red 10909 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋) → 0 ∈ ℝ) |
68 | 64, 65, 66, 67 | suppssr 7983 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋) ∧ 𝐴 ∈ (𝐼 ∖ (𝐹 supp 0))) → (𝐹‘𝐴) = 0) |
69 | 57, 58, 62, 68 | syl21anc 834 |
. . . . . 6
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹‘𝐴) = 0) |
70 | | 0red 10909 |
. . . . . 6
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 0 ∈
ℝ) |
71 | 69, 70 | eqeltrd 2839 |
. . . . 5
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹‘𝐴) ∈ ℝ) |
72 | | simplrr 774 |
. . . . . . 7
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝐺 ∈ 𝑋) |
73 | | ssun2 4103 |
. . . . . . . . . 10
⊢ (𝐺 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)) |
74 | 73 | a1i 11 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (𝐺 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))) |
75 | 74 | sscond 4072 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ⊆ (𝐼 ∖ (𝐺 supp 0))) |
76 | 75 | sselda 3917 |
. . . . . . 7
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝐴 ∈ (𝐼 ∖ (𝐺 supp 0))) |
77 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐺 ∈ 𝑋) → 𝐺 ∈ 𝑋) |
78 | 4, 77 | rrxf 24470 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐺 ∈ 𝑋) → 𝐺:𝐼⟶ℝ) |
79 | | ssidd 3940 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐺 ∈ 𝑋) → (𝐺 supp 0) ⊆ (𝐺 supp 0)) |
80 | | simpl 482 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐺 ∈ 𝑋) → 𝐼 ∈ 𝑉) |
81 | | 0red 10909 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐺 ∈ 𝑋) → 0 ∈ ℝ) |
82 | 78, 79, 80, 81 | suppssr 7983 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐺 ∈ 𝑋) ∧ 𝐴 ∈ (𝐼 ∖ (𝐺 supp 0))) → (𝐺‘𝐴) = 0) |
83 | 57, 72, 76, 82 | syl21anc 834 |
. . . . . 6
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐺‘𝐴) = 0) |
84 | 83, 70 | eqeltrd 2839 |
. . . . 5
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐺‘𝐴) ∈ ℝ) |
85 | 71, 84, 49 | syl2anc 583 |
. . . 4
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹‘𝐴)𝑀(𝐺‘𝐴)) = (abs‘((𝐹‘𝐴) − (𝐺‘𝐴)))) |
86 | 69, 83 | oveq12d 7273 |
. . . . . 6
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹‘𝐴) − (𝐺‘𝐴)) = (0 − 0)) |
87 | | 0m0e0 12023 |
. . . . . 6
⊢ (0
− 0) = 0 |
88 | 86, 87 | eqtrdi 2795 |
. . . . 5
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹‘𝐴) − (𝐺‘𝐴)) = 0) |
89 | 88 | abs00bd 14931 |
. . . 4
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (abs‘((𝐹‘𝐴) − (𝐺‘𝐴))) = 0) |
90 | 85, 89 | eqtrd 2778 |
. . 3
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹‘𝐴)𝑀(𝐺‘𝐴)) = 0) |
91 | 4, 51 | rrxmet 24477 |
. . . . 5
⊢ (𝐼 ∈ 𝑉 → 𝐷 ∈ (Met‘𝑋)) |
92 | 91 | ad3antrrr 726 |
. . . 4
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝐷 ∈ (Met‘𝑋)) |
93 | | metge0 23406 |
. . . 4
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → 0 ≤ (𝐹𝐷𝐺)) |
94 | 92, 58, 72, 93 | syl3anc 1369 |
. . 3
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 0 ≤ (𝐹𝐷𝐺)) |
95 | 90, 94 | eqbrtrd 5092 |
. 2
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹‘𝐴)𝑀(𝐺‘𝐴)) ≤ (𝐹𝐷𝐺)) |
96 | | simplr 765 |
. . . 4
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → 𝐴 ∈ 𝐼) |
97 | | simprl 767 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → 𝐹 ∈ 𝑋) |
98 | 4, 97 | rrxsuppss 24472 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (𝐹 supp 0) ⊆ 𝐼) |
99 | | simprr 769 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → 𝐺 ∈ 𝑋) |
100 | 4, 99 | rrxsuppss 24472 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (𝐺 supp 0) ⊆ 𝐼) |
101 | 98, 100 | unssd 4116 |
. . . . 5
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐼) |
102 | | undif 4412 |
. . . . 5
⊢ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐼 ↔ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∪ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) = 𝐼) |
103 | 101, 102 | sylib 217 |
. . . 4
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∪ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) = 𝐼) |
104 | 96, 103 | eleqtrrd 2842 |
. . 3
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → 𝐴 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∪ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))))) |
105 | | elun 4079 |
. . 3
⊢ (𝐴 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∪ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) ↔ (𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∨ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))))) |
106 | 104, 105 | sylib 217 |
. 2
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∨ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))))) |
107 | 56, 95, 106 | mpjaodan 955 |
1
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → ((𝐹‘𝐴)𝑀(𝐺‘𝐴)) ≤ (𝐹𝐷𝐺)) |