MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxdstprj1 Structured version   Visualization version   GIF version

Theorem rrxdstprj1 24278
Description: The distance between two points in Euclidean space is greater than the distance between the projections onto one coordinate. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Sep-2015.) (Revised by Thierry Arnoux, 7-Jul-2019.)
Hypotheses
Ref Expression
rrxmval.1 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
rrxmval.d 𝐷 = (dist‘(ℝ^‘𝐼))
rrxdstprj1.1 𝑀 = ((abs ∘ − ) ↾ (ℝ × ℝ))
Assertion
Ref Expression
rrxdstprj1 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐴)𝑀(𝐺𝐴)) ≤ (𝐹𝐷𝐺))
Distinct variable groups:   ,𝐹   ,𝐺   ,𝐼   ,𝑉
Allowed substitution hints:   𝐴()   𝐷()   𝑀()   𝑋()

Proof of Theorem rrxdstprj1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simplll 775 . . 3 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → 𝐼𝑉)
2 simpr 488 . . 3 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
3 simplr 769 . . 3 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (𝐹𝑋𝐺𝑋))
4 rrxmval.1 . . . . . . . . 9 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
5 simprl 771 . . . . . . . . 9 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 𝐹𝑋)
64, 5rrxfsupp 24271 . . . . . . . 8 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (𝐹 supp 0) ∈ Fin)
7 simprr 773 . . . . . . . . 9 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 𝐺𝑋)
84, 7rrxfsupp 24271 . . . . . . . 8 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (𝐺 supp 0) ∈ Fin)
9 unfi 8839 . . . . . . . 8 (((𝐹 supp 0) ∈ Fin ∧ (𝐺 supp 0) ∈ Fin) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∈ Fin)
106, 8, 9syl2anc 587 . . . . . . 7 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∈ Fin)
114, 5rrxsuppss 24272 . . . . . . . . . 10 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (𝐹 supp 0) ⊆ 𝐼)
124, 7rrxsuppss 24272 . . . . . . . . . 10 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (𝐺 supp 0) ⊆ 𝐼)
1311, 12unssd 4090 . . . . . . . . 9 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐼)
1413sselda 3891 . . . . . . . 8 ((((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → 𝑘𝐼)
154, 5rrxf 24270 . . . . . . . . . . 11 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 𝐹:𝐼⟶ℝ)
1615ffvelrnda 6893 . . . . . . . . . 10 ((((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → (𝐹𝑘) ∈ ℝ)
174, 7rrxf 24270 . . . . . . . . . . 11 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 𝐺:𝐼⟶ℝ)
1817ffvelrnda 6893 . . . . . . . . . 10 ((((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → (𝐺𝑘) ∈ ℝ)
1916, 18resubcld 11243 . . . . . . . . 9 ((((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → ((𝐹𝑘) − (𝐺𝑘)) ∈ ℝ)
2019resqcld 13800 . . . . . . . 8 ((((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℝ)
2114, 20syldan 594 . . . . . . 7 ((((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℝ)
2219sqge0d 13801 . . . . . . . 8 ((((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → 0 ≤ (((𝐹𝑘) − (𝐺𝑘))↑2))
2314, 22syldan 594 . . . . . . 7 ((((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → 0 ≤ (((𝐹𝑘) − (𝐺𝑘))↑2))
24 fveq2 6706 . . . . . . . . 9 (𝑘 = 𝐴 → (𝐹𝑘) = (𝐹𝐴))
25 fveq2 6706 . . . . . . . . 9 (𝑘 = 𝐴 → (𝐺𝑘) = (𝐺𝐴))
2624, 25oveq12d 7220 . . . . . . . 8 (𝑘 = 𝐴 → ((𝐹𝑘) − (𝐺𝑘)) = ((𝐹𝐴) − (𝐺𝐴)))
2726oveq1d 7217 . . . . . . 7 (𝑘 = 𝐴 → (((𝐹𝑘) − (𝐺𝑘))↑2) = (((𝐹𝐴) − (𝐺𝐴))↑2))
28 simplr 769 . . . . . . 7 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
2910, 21, 23, 27, 28fsumge1 15342 . . . . . 6 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (((𝐹𝐴) − (𝐺𝐴))↑2) ≤ Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))
3013, 28sseldd 3892 . . . . . . . . 9 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 𝐴𝐼)
3115, 30ffvelrnd 6894 . . . . . . . 8 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (𝐹𝐴) ∈ ℝ)
3217, 30ffvelrnd 6894 . . . . . . . 8 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (𝐺𝐴) ∈ ℝ)
3331, 32resubcld 11243 . . . . . . 7 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐴) − (𝐺𝐴)) ∈ ℝ)
34 absresq 14849 . . . . . . 7 (((𝐹𝐴) − (𝐺𝐴)) ∈ ℝ → ((abs‘((𝐹𝐴) − (𝐺𝐴)))↑2) = (((𝐹𝐴) − (𝐺𝐴))↑2))
3533, 34syl 17 . . . . . 6 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((abs‘((𝐹𝐴) − (𝐺𝐴)))↑2) = (((𝐹𝐴) − (𝐺𝐴))↑2))
3610, 21fsumrecl 15281 . . . . . . 7 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℝ)
3710, 21, 23fsumge0 15340 . . . . . . 7 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 0 ≤ Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))
38 resqrtth 14802 . . . . . . 7 ((Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)) → ((√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))↑2) = Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))
3936, 37, 38syl2anc 587 . . . . . 6 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))↑2) = Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))
4029, 35, 393brtr4d 5075 . . . . 5 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((abs‘((𝐹𝐴) − (𝐺𝐴)))↑2) ≤ ((√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))↑2))
4133recnd 10844 . . . . . . 7 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐴) − (𝐺𝐴)) ∈ ℂ)
4241abscld 14983 . . . . . 6 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (abs‘((𝐹𝐴) − (𝐺𝐴))) ∈ ℝ)
4336, 37resqrtcld 14964 . . . . . 6 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)) ∈ ℝ)
4441absge0d 14991 . . . . . 6 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 0 ≤ (abs‘((𝐹𝐴) − (𝐺𝐴))))
4536, 37sqrtge0d 14967 . . . . . 6 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 0 ≤ (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)))
4642, 43, 44, 45le2sqd 13809 . . . . 5 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((abs‘((𝐹𝐴) − (𝐺𝐴))) ≤ (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)) ↔ ((abs‘((𝐹𝐴) − (𝐺𝐴)))↑2) ≤ ((√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))↑2)))
4740, 46mpbird 260 . . . 4 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (abs‘((𝐹𝐴) − (𝐺𝐴))) ≤ (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)))
48 rrxdstprj1.1 . . . . . 6 𝑀 = ((abs ∘ − ) ↾ (ℝ × ℝ))
4948remetdval 23658 . . . . 5 (((𝐹𝐴) ∈ ℝ ∧ (𝐺𝐴) ∈ ℝ) → ((𝐹𝐴)𝑀(𝐺𝐴)) = (abs‘((𝐹𝐴) − (𝐺𝐴))))
5031, 32, 49syl2anc 587 . . . 4 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐴)𝑀(𝐺𝐴)) = (abs‘((𝐹𝐴) − (𝐺𝐴))))
51 rrxmval.d . . . . . . 7 𝐷 = (dist‘(ℝ^‘𝐼))
524, 51rrxmval 24274 . . . . . 6 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)))
53523expb 1122 . . . . 5 ((𝐼𝑉 ∧ (𝐹𝑋𝐺𝑋)) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)))
5453adantlr 715 . . . 4 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)))
5547, 50, 543brtr4d 5075 . . 3 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐴)𝑀(𝐺𝐴)) ≤ (𝐹𝐷𝐺))
561, 2, 3, 55syl21anc 838 . 2 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → ((𝐹𝐴)𝑀(𝐺𝐴)) ≤ (𝐹𝐷𝐺))
57 simplll 775 . . . . . . 7 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝐼𝑉)
58 simplrl 777 . . . . . . 7 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝐹𝑋)
59 ssun1 4076 . . . . . . . . . 10 (𝐹 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))
6059a1i 11 . . . . . . . . 9 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (𝐹 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
6160sscond 4046 . . . . . . . 8 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ⊆ (𝐼 ∖ (𝐹 supp 0)))
6261sselda 3891 . . . . . . 7 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝐴 ∈ (𝐼 ∖ (𝐹 supp 0)))
63 simpr 488 . . . . . . . . 9 ((𝐼𝑉𝐹𝑋) → 𝐹𝑋)
644, 63rrxf 24270 . . . . . . . 8 ((𝐼𝑉𝐹𝑋) → 𝐹:𝐼⟶ℝ)
65 ssidd 3914 . . . . . . . 8 ((𝐼𝑉𝐹𝑋) → (𝐹 supp 0) ⊆ (𝐹 supp 0))
66 simpl 486 . . . . . . . 8 ((𝐼𝑉𝐹𝑋) → 𝐼𝑉)
67 0red 10819 . . . . . . . 8 ((𝐼𝑉𝐹𝑋) → 0 ∈ ℝ)
6864, 65, 66, 67suppssr 7927 . . . . . . 7 (((𝐼𝑉𝐹𝑋) ∧ 𝐴 ∈ (𝐼 ∖ (𝐹 supp 0))) → (𝐹𝐴) = 0)
6957, 58, 62, 68syl21anc 838 . . . . . 6 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹𝐴) = 0)
70 0red 10819 . . . . . 6 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 0 ∈ ℝ)
7169, 70eqeltrd 2834 . . . . 5 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹𝐴) ∈ ℝ)
72 simplrr 778 . . . . . . 7 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝐺𝑋)
73 ssun2 4077 . . . . . . . . . 10 (𝐺 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))
7473a1i 11 . . . . . . . . 9 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (𝐺 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
7574sscond 4046 . . . . . . . 8 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ⊆ (𝐼 ∖ (𝐺 supp 0)))
7675sselda 3891 . . . . . . 7 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝐴 ∈ (𝐼 ∖ (𝐺 supp 0)))
77 simpr 488 . . . . . . . . 9 ((𝐼𝑉𝐺𝑋) → 𝐺𝑋)
784, 77rrxf 24270 . . . . . . . 8 ((𝐼𝑉𝐺𝑋) → 𝐺:𝐼⟶ℝ)
79 ssidd 3914 . . . . . . . 8 ((𝐼𝑉𝐺𝑋) → (𝐺 supp 0) ⊆ (𝐺 supp 0))
80 simpl 486 . . . . . . . 8 ((𝐼𝑉𝐺𝑋) → 𝐼𝑉)
81 0red 10819 . . . . . . . 8 ((𝐼𝑉𝐺𝑋) → 0 ∈ ℝ)
8278, 79, 80, 81suppssr 7927 . . . . . . 7 (((𝐼𝑉𝐺𝑋) ∧ 𝐴 ∈ (𝐼 ∖ (𝐺 supp 0))) → (𝐺𝐴) = 0)
8357, 72, 76, 82syl21anc 838 . . . . . 6 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐺𝐴) = 0)
8483, 70eqeltrd 2834 . . . . 5 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐺𝐴) ∈ ℝ)
8571, 84, 49syl2anc 587 . . . 4 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹𝐴)𝑀(𝐺𝐴)) = (abs‘((𝐹𝐴) − (𝐺𝐴))))
8669, 83oveq12d 7220 . . . . . 6 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹𝐴) − (𝐺𝐴)) = (0 − 0))
87 0m0e0 11933 . . . . . 6 (0 − 0) = 0
8886, 87eqtrdi 2790 . . . . 5 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹𝐴) − (𝐺𝐴)) = 0)
8988abs00bd 14838 . . . 4 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (abs‘((𝐹𝐴) − (𝐺𝐴))) = 0)
9085, 89eqtrd 2774 . . 3 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹𝐴)𝑀(𝐺𝐴)) = 0)
914, 51rrxmet 24277 . . . . 5 (𝐼𝑉𝐷 ∈ (Met‘𝑋))
9291ad3antrrr 730 . . . 4 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝐷 ∈ (Met‘𝑋))
93 metge0 23215 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐹𝑋𝐺𝑋) → 0 ≤ (𝐹𝐷𝐺))
9492, 58, 72, 93syl3anc 1373 . . 3 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 0 ≤ (𝐹𝐷𝐺))
9590, 94eqbrtrd 5065 . 2 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹𝐴)𝑀(𝐺𝐴)) ≤ (𝐹𝐷𝐺))
96 simplr 769 . . . 4 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → 𝐴𝐼)
97 simprl 771 . . . . . . 7 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → 𝐹𝑋)
984, 97rrxsuppss 24272 . . . . . 6 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (𝐹 supp 0) ⊆ 𝐼)
99 simprr 773 . . . . . . 7 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → 𝐺𝑋)
1004, 99rrxsuppss 24272 . . . . . 6 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (𝐺 supp 0) ⊆ 𝐼)
10198, 100unssd 4090 . . . . 5 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐼)
102 undif 4386 . . . . 5 (((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐼 ↔ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∪ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) = 𝐼)
103101, 102sylib 221 . . . 4 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∪ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) = 𝐼)
10496, 103eleqtrrd 2837 . . 3 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → 𝐴 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∪ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))))
105 elun 4053 . . 3 (𝐴 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∪ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) ↔ (𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∨ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))))
106104, 105sylib 221 . 2 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∨ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))))
10756, 95, 106mpjaodan 959 1 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐴)𝑀(𝐺𝐴)) ≤ (𝐹𝐷𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 847   = wceq 1543  wcel 2110  {crab 3058  cdif 3854  cun 3855  wss 3857   class class class wbr 5043   × cxp 5538  cres 5542  ccom 5544  cfv 6369  (class class class)co 7202   supp csupp 7892  m cmap 8497  Fincfn 8615   finSupp cfsupp 8974  cr 10711  0cc0 10712  cle 10851  cmin 11045  2c2 11868  cexp 13618  csqrt 14779  abscabs 14780  Σcsu 15232  distcds 16776  Metcmet 20321  ℝ^crrx 24252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-inf2 9245  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790  ax-addf 10791  ax-mulf 10792
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-of 7458  df-om 7634  df-1st 7750  df-2nd 7751  df-supp 7893  df-tpos 7957  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-map 8499  df-ixp 8568  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-fsupp 8975  df-sup 9047  df-oi 9115  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-4 11878  df-5 11879  df-6 11880  df-7 11881  df-8 11882  df-9 11883  df-n0 12074  df-z 12160  df-dec 12277  df-uz 12422  df-rp 12570  df-xneg 12687  df-xadd 12688  df-xmul 12689  df-ico 12924  df-fz 13079  df-fzo 13222  df-seq 13558  df-exp 13619  df-hash 13880  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782  df-clim 15032  df-sum 15233  df-struct 16686  df-ndx 16687  df-slot 16688  df-base 16690  df-sets 16691  df-ress 16692  df-plusg 16780  df-mulr 16781  df-starv 16782  df-sca 16783  df-vsca 16784  df-ip 16785  df-tset 16786  df-ple 16787  df-ds 16789  df-unif 16790  df-hom 16791  df-cco 16792  df-0g 16918  df-gsum 16919  df-prds 16924  df-pws 16926  df-mgm 18086  df-sgrp 18135  df-mnd 18146  df-mhm 18190  df-grp 18340  df-minusg 18341  df-sbg 18342  df-subg 18512  df-ghm 18592  df-cntz 18683  df-cmn 19144  df-abl 19145  df-mgp 19477  df-ur 19489  df-ring 19536  df-cring 19537  df-oppr 19613  df-dvdsr 19631  df-unit 19632  df-invr 19662  df-dvr 19673  df-rnghom 19707  df-drng 19741  df-field 19742  df-subrg 19770  df-staf 19853  df-srng 19854  df-lmod 19873  df-lss 19941  df-sra 20181  df-rgmod 20182  df-xmet 20328  df-met 20329  df-cnfld 20336  df-refld 20539  df-dsmm 20666  df-frlm 20681  df-nm 23452  df-tng 23454  df-tcph 24038  df-rrx 24254
This theorem is referenced by:  rrnprjdstle  43471
  Copyright terms: Public domain W3C validator