| Step | Hyp | Ref
| Expression |
| 1 | | simplll 775 |
. . 3
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → 𝐼 ∈ 𝑉) |
| 2 | | simpr 484 |
. . 3
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) |
| 3 | | simplr 769 |
. . 3
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) |
| 4 | | rrxmval.1 |
. . . . . . . . 9
⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} |
| 5 | | simprl 771 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → 𝐹 ∈ 𝑋) |
| 6 | 4, 5 | rrxfsupp 25436 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (𝐹 supp 0) ∈ Fin) |
| 7 | | simprr 773 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → 𝐺 ∈ 𝑋) |
| 8 | 4, 7 | rrxfsupp 25436 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (𝐺 supp 0) ∈ Fin) |
| 9 | | unfi 9211 |
. . . . . . . 8
⊢ (((𝐹 supp 0) ∈ Fin ∧ (𝐺 supp 0) ∈ Fin) →
((𝐹 supp 0) ∪ (𝐺 supp 0)) ∈
Fin) |
| 10 | 6, 8, 9 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∈ Fin) |
| 11 | 4, 5 | rrxsuppss 25437 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (𝐹 supp 0) ⊆ 𝐼) |
| 12 | 4, 7 | rrxsuppss 25437 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (𝐺 supp 0) ⊆ 𝐼) |
| 13 | 11, 12 | unssd 4192 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐼) |
| 14 | 13 | sselda 3983 |
. . . . . . . 8
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → 𝑘 ∈ 𝐼) |
| 15 | 4, 5 | rrxf 25435 |
. . . . . . . . . . 11
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → 𝐹:𝐼⟶ℝ) |
| 16 | 15 | ffvelcdmda 7104 |
. . . . . . . . . 10
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝑘 ∈ 𝐼) → (𝐹‘𝑘) ∈ ℝ) |
| 17 | 4, 7 | rrxf 25435 |
. . . . . . . . . . 11
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → 𝐺:𝐼⟶ℝ) |
| 18 | 17 | ffvelcdmda 7104 |
. . . . . . . . . 10
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝑘 ∈ 𝐼) → (𝐺‘𝑘) ∈ ℝ) |
| 19 | 16, 18 | resubcld 11691 |
. . . . . . . . 9
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝑘 ∈ 𝐼) → ((𝐹‘𝑘) − (𝐺‘𝑘)) ∈ ℝ) |
| 20 | 19 | resqcld 14165 |
. . . . . . . 8
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝑘 ∈ 𝐼) → (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) ∈ ℝ) |
| 21 | 14, 20 | syldan 591 |
. . . . . . 7
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) ∈ ℝ) |
| 22 | 19 | sqge0d 14177 |
. . . . . . . 8
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝑘 ∈ 𝐼) → 0 ≤ (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
| 23 | 14, 22 | syldan 591 |
. . . . . . 7
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → 0 ≤ (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
| 24 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑘 = 𝐴 → (𝐹‘𝑘) = (𝐹‘𝐴)) |
| 25 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑘 = 𝐴 → (𝐺‘𝑘) = (𝐺‘𝐴)) |
| 26 | 24, 25 | oveq12d 7449 |
. . . . . . . 8
⊢ (𝑘 = 𝐴 → ((𝐹‘𝑘) − (𝐺‘𝑘)) = ((𝐹‘𝐴) − (𝐺‘𝐴))) |
| 27 | 26 | oveq1d 7446 |
. . . . . . 7
⊢ (𝑘 = 𝐴 → (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) = (((𝐹‘𝐴) − (𝐺‘𝐴))↑2)) |
| 28 | | simplr 769 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) |
| 29 | 10, 21, 23, 27, 28 | fsumge1 15833 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (((𝐹‘𝐴) − (𝐺‘𝐴))↑2) ≤ Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
| 30 | 13, 28 | sseldd 3984 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → 𝐴 ∈ 𝐼) |
| 31 | 15, 30 | ffvelcdmd 7105 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (𝐹‘𝐴) ∈ ℝ) |
| 32 | 17, 30 | ffvelcdmd 7105 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (𝐺‘𝐴) ∈ ℝ) |
| 33 | 31, 32 | resubcld 11691 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → ((𝐹‘𝐴) − (𝐺‘𝐴)) ∈ ℝ) |
| 34 | | absresq 15341 |
. . . . . . 7
⊢ (((𝐹‘𝐴) − (𝐺‘𝐴)) ∈ ℝ → ((abs‘((𝐹‘𝐴) − (𝐺‘𝐴)))↑2) = (((𝐹‘𝐴) − (𝐺‘𝐴))↑2)) |
| 35 | 33, 34 | syl 17 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → ((abs‘((𝐹‘𝐴) − (𝐺‘𝐴)))↑2) = (((𝐹‘𝐴) − (𝐺‘𝐴))↑2)) |
| 36 | 10, 21 | fsumrecl 15770 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2) ∈ ℝ) |
| 37 | 10, 21, 23 | fsumge0 15831 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → 0 ≤ Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
| 38 | | resqrtth 15294 |
. . . . . . 7
⊢
((Σ𝑘 ∈
((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2) ∈ ℝ ∧ 0 ≤
Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) →
((√‘Σ𝑘
∈ ((𝐹 supp 0) ∪
(𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2))↑2) = Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
| 39 | 36, 37, 38 | syl2anc 584 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → ((√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2))↑2) = Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
| 40 | 29, 35, 39 | 3brtr4d 5175 |
. . . . 5
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → ((abs‘((𝐹‘𝐴) − (𝐺‘𝐴)))↑2) ≤
((√‘Σ𝑘
∈ ((𝐹 supp 0) ∪
(𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2))↑2)) |
| 41 | 33 | recnd 11289 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → ((𝐹‘𝐴) − (𝐺‘𝐴)) ∈ ℂ) |
| 42 | 41 | abscld 15475 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (abs‘((𝐹‘𝐴) − (𝐺‘𝐴))) ∈ ℝ) |
| 43 | 36, 37 | resqrtcld 15456 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) ∈ ℝ) |
| 44 | 41 | absge0d 15483 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → 0 ≤ (abs‘((𝐹‘𝐴) − (𝐺‘𝐴)))) |
| 45 | 36, 37 | sqrtge0d 15459 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → 0 ≤ (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) |
| 46 | 42, 43, 44, 45 | le2sqd 14296 |
. . . . 5
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → ((abs‘((𝐹‘𝐴) − (𝐺‘𝐴))) ≤ (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) ↔ ((abs‘((𝐹‘𝐴) − (𝐺‘𝐴)))↑2) ≤
((√‘Σ𝑘
∈ ((𝐹 supp 0) ∪
(𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2))↑2))) |
| 47 | 40, 46 | mpbird 257 |
. . . 4
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (abs‘((𝐹‘𝐴) − (𝐺‘𝐴))) ≤ (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) |
| 48 | | rrxdstprj1.1 |
. . . . . 6
⊢ 𝑀 = ((abs ∘ − )
↾ (ℝ × ℝ)) |
| 49 | 48 | remetdval 24810 |
. . . . 5
⊢ (((𝐹‘𝐴) ∈ ℝ ∧ (𝐺‘𝐴) ∈ ℝ) → ((𝐹‘𝐴)𝑀(𝐺‘𝐴)) = (abs‘((𝐹‘𝐴) − (𝐺‘𝐴)))) |
| 50 | 31, 32, 49 | syl2anc 584 |
. . . 4
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → ((𝐹‘𝐴)𝑀(𝐺‘𝐴)) = (abs‘((𝐹‘𝐴) − (𝐺‘𝐴)))) |
| 51 | | rrxmval.d |
. . . . . . 7
⊢ 𝐷 =
(dist‘(ℝ^‘𝐼)) |
| 52 | 4, 51 | rrxmval 25439 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) |
| 53 | 52 | 3expb 1121 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) |
| 54 | 53 | adantlr 715 |
. . . 4
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) |
| 55 | 47, 50, 54 | 3brtr4d 5175 |
. . 3
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → ((𝐹‘𝐴)𝑀(𝐺‘𝐴)) ≤ (𝐹𝐷𝐺)) |
| 56 | 1, 2, 3, 55 | syl21anc 838 |
. 2
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → ((𝐹‘𝐴)𝑀(𝐺‘𝐴)) ≤ (𝐹𝐷𝐺)) |
| 57 | | simplll 775 |
. . . . . . 7
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝐼 ∈ 𝑉) |
| 58 | | simplrl 777 |
. . . . . . 7
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝐹 ∈ 𝑋) |
| 59 | | ssun1 4178 |
. . . . . . . . . 10
⊢ (𝐹 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)) |
| 60 | 59 | a1i 11 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (𝐹 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))) |
| 61 | 60 | sscond 4146 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ⊆ (𝐼 ∖ (𝐹 supp 0))) |
| 62 | 61 | sselda 3983 |
. . . . . . 7
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝐴 ∈ (𝐼 ∖ (𝐹 supp 0))) |
| 63 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋) → 𝐹 ∈ 𝑋) |
| 64 | 4, 63 | rrxf 25435 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋) → 𝐹:𝐼⟶ℝ) |
| 65 | | ssidd 4007 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋) → (𝐹 supp 0) ⊆ (𝐹 supp 0)) |
| 66 | | simpl 482 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋) → 𝐼 ∈ 𝑉) |
| 67 | | 0red 11264 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋) → 0 ∈ ℝ) |
| 68 | 64, 65, 66, 67 | suppssr 8220 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋) ∧ 𝐴 ∈ (𝐼 ∖ (𝐹 supp 0))) → (𝐹‘𝐴) = 0) |
| 69 | 57, 58, 62, 68 | syl21anc 838 |
. . . . . 6
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹‘𝐴) = 0) |
| 70 | | 0red 11264 |
. . . . . 6
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 0 ∈
ℝ) |
| 71 | 69, 70 | eqeltrd 2841 |
. . . . 5
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹‘𝐴) ∈ ℝ) |
| 72 | | simplrr 778 |
. . . . . . 7
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝐺 ∈ 𝑋) |
| 73 | | ssun2 4179 |
. . . . . . . . . 10
⊢ (𝐺 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)) |
| 74 | 73 | a1i 11 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (𝐺 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))) |
| 75 | 74 | sscond 4146 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ⊆ (𝐼 ∖ (𝐺 supp 0))) |
| 76 | 75 | sselda 3983 |
. . . . . . 7
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝐴 ∈ (𝐼 ∖ (𝐺 supp 0))) |
| 77 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐺 ∈ 𝑋) → 𝐺 ∈ 𝑋) |
| 78 | 4, 77 | rrxf 25435 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐺 ∈ 𝑋) → 𝐺:𝐼⟶ℝ) |
| 79 | | ssidd 4007 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐺 ∈ 𝑋) → (𝐺 supp 0) ⊆ (𝐺 supp 0)) |
| 80 | | simpl 482 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐺 ∈ 𝑋) → 𝐼 ∈ 𝑉) |
| 81 | | 0red 11264 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐺 ∈ 𝑋) → 0 ∈ ℝ) |
| 82 | 78, 79, 80, 81 | suppssr 8220 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐺 ∈ 𝑋) ∧ 𝐴 ∈ (𝐼 ∖ (𝐺 supp 0))) → (𝐺‘𝐴) = 0) |
| 83 | 57, 72, 76, 82 | syl21anc 838 |
. . . . . 6
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐺‘𝐴) = 0) |
| 84 | 83, 70 | eqeltrd 2841 |
. . . . 5
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐺‘𝐴) ∈ ℝ) |
| 85 | 71, 84, 49 | syl2anc 584 |
. . . 4
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹‘𝐴)𝑀(𝐺‘𝐴)) = (abs‘((𝐹‘𝐴) − (𝐺‘𝐴)))) |
| 86 | 69, 83 | oveq12d 7449 |
. . . . . 6
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹‘𝐴) − (𝐺‘𝐴)) = (0 − 0)) |
| 87 | | 0m0e0 12386 |
. . . . . 6
⊢ (0
− 0) = 0 |
| 88 | 86, 87 | eqtrdi 2793 |
. . . . 5
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹‘𝐴) − (𝐺‘𝐴)) = 0) |
| 89 | 88 | abs00bd 15330 |
. . . 4
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (abs‘((𝐹‘𝐴) − (𝐺‘𝐴))) = 0) |
| 90 | 85, 89 | eqtrd 2777 |
. . 3
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹‘𝐴)𝑀(𝐺‘𝐴)) = 0) |
| 91 | 4, 51 | rrxmet 25442 |
. . . . 5
⊢ (𝐼 ∈ 𝑉 → 𝐷 ∈ (Met‘𝑋)) |
| 92 | 91 | ad3antrrr 730 |
. . . 4
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝐷 ∈ (Met‘𝑋)) |
| 93 | | metge0 24355 |
. . . 4
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → 0 ≤ (𝐹𝐷𝐺)) |
| 94 | 92, 58, 72, 93 | syl3anc 1373 |
. . 3
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 0 ≤ (𝐹𝐷𝐺)) |
| 95 | 90, 94 | eqbrtrd 5165 |
. 2
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹‘𝐴)𝑀(𝐺‘𝐴)) ≤ (𝐹𝐷𝐺)) |
| 96 | | simplr 769 |
. . . 4
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → 𝐴 ∈ 𝐼) |
| 97 | | simprl 771 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → 𝐹 ∈ 𝑋) |
| 98 | 4, 97 | rrxsuppss 25437 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (𝐹 supp 0) ⊆ 𝐼) |
| 99 | | simprr 773 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → 𝐺 ∈ 𝑋) |
| 100 | 4, 99 | rrxsuppss 25437 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (𝐺 supp 0) ⊆ 𝐼) |
| 101 | 98, 100 | unssd 4192 |
. . . . 5
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐼) |
| 102 | | undif 4482 |
. . . . 5
⊢ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐼 ↔ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∪ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) = 𝐼) |
| 103 | 101, 102 | sylib 218 |
. . . 4
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∪ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) = 𝐼) |
| 104 | 96, 103 | eleqtrrd 2844 |
. . 3
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → 𝐴 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∪ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))))) |
| 105 | | elun 4153 |
. . 3
⊢ (𝐴 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∪ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) ↔ (𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∨ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))))) |
| 106 | 104, 105 | sylib 218 |
. 2
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∨ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))))) |
| 107 | 56, 95, 106 | mpjaodan 961 |
1
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → ((𝐹‘𝐴)𝑀(𝐺‘𝐴)) ≤ (𝐹𝐷𝐺)) |