MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxdstprj1 Structured version   Visualization version   GIF version

Theorem rrxdstprj1 24478
Description: The distance between two points in Euclidean space is greater than the distance between the projections onto one coordinate. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Sep-2015.) (Revised by Thierry Arnoux, 7-Jul-2019.)
Hypotheses
Ref Expression
rrxmval.1 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
rrxmval.d 𝐷 = (dist‘(ℝ^‘𝐼))
rrxdstprj1.1 𝑀 = ((abs ∘ − ) ↾ (ℝ × ℝ))
Assertion
Ref Expression
rrxdstprj1 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐴)𝑀(𝐺𝐴)) ≤ (𝐹𝐷𝐺))
Distinct variable groups:   ,𝐹   ,𝐺   ,𝐼   ,𝑉
Allowed substitution hints:   𝐴()   𝐷()   𝑀()   𝑋()

Proof of Theorem rrxdstprj1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simplll 771 . . 3 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → 𝐼𝑉)
2 simpr 484 . . 3 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
3 simplr 765 . . 3 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (𝐹𝑋𝐺𝑋))
4 rrxmval.1 . . . . . . . . 9 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
5 simprl 767 . . . . . . . . 9 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 𝐹𝑋)
64, 5rrxfsupp 24471 . . . . . . . 8 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (𝐹 supp 0) ∈ Fin)
7 simprr 769 . . . . . . . . 9 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 𝐺𝑋)
84, 7rrxfsupp 24471 . . . . . . . 8 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (𝐺 supp 0) ∈ Fin)
9 unfi 8917 . . . . . . . 8 (((𝐹 supp 0) ∈ Fin ∧ (𝐺 supp 0) ∈ Fin) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∈ Fin)
106, 8, 9syl2anc 583 . . . . . . 7 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∈ Fin)
114, 5rrxsuppss 24472 . . . . . . . . . 10 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (𝐹 supp 0) ⊆ 𝐼)
124, 7rrxsuppss 24472 . . . . . . . . . 10 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (𝐺 supp 0) ⊆ 𝐼)
1311, 12unssd 4116 . . . . . . . . 9 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐼)
1413sselda 3917 . . . . . . . 8 ((((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → 𝑘𝐼)
154, 5rrxf 24470 . . . . . . . . . . 11 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 𝐹:𝐼⟶ℝ)
1615ffvelrnda 6943 . . . . . . . . . 10 ((((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → (𝐹𝑘) ∈ ℝ)
174, 7rrxf 24470 . . . . . . . . . . 11 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 𝐺:𝐼⟶ℝ)
1817ffvelrnda 6943 . . . . . . . . . 10 ((((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → (𝐺𝑘) ∈ ℝ)
1916, 18resubcld 11333 . . . . . . . . 9 ((((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → ((𝐹𝑘) − (𝐺𝑘)) ∈ ℝ)
2019resqcld 13893 . . . . . . . 8 ((((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℝ)
2114, 20syldan 590 . . . . . . 7 ((((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℝ)
2219sqge0d 13894 . . . . . . . 8 ((((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → 0 ≤ (((𝐹𝑘) − (𝐺𝑘))↑2))
2314, 22syldan 590 . . . . . . 7 ((((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → 0 ≤ (((𝐹𝑘) − (𝐺𝑘))↑2))
24 fveq2 6756 . . . . . . . . 9 (𝑘 = 𝐴 → (𝐹𝑘) = (𝐹𝐴))
25 fveq2 6756 . . . . . . . . 9 (𝑘 = 𝐴 → (𝐺𝑘) = (𝐺𝐴))
2624, 25oveq12d 7273 . . . . . . . 8 (𝑘 = 𝐴 → ((𝐹𝑘) − (𝐺𝑘)) = ((𝐹𝐴) − (𝐺𝐴)))
2726oveq1d 7270 . . . . . . 7 (𝑘 = 𝐴 → (((𝐹𝑘) − (𝐺𝑘))↑2) = (((𝐹𝐴) − (𝐺𝐴))↑2))
28 simplr 765 . . . . . . 7 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
2910, 21, 23, 27, 28fsumge1 15437 . . . . . 6 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (((𝐹𝐴) − (𝐺𝐴))↑2) ≤ Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))
3013, 28sseldd 3918 . . . . . . . . 9 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 𝐴𝐼)
3115, 30ffvelrnd 6944 . . . . . . . 8 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (𝐹𝐴) ∈ ℝ)
3217, 30ffvelrnd 6944 . . . . . . . 8 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (𝐺𝐴) ∈ ℝ)
3331, 32resubcld 11333 . . . . . . 7 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐴) − (𝐺𝐴)) ∈ ℝ)
34 absresq 14942 . . . . . . 7 (((𝐹𝐴) − (𝐺𝐴)) ∈ ℝ → ((abs‘((𝐹𝐴) − (𝐺𝐴)))↑2) = (((𝐹𝐴) − (𝐺𝐴))↑2))
3533, 34syl 17 . . . . . 6 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((abs‘((𝐹𝐴) − (𝐺𝐴)))↑2) = (((𝐹𝐴) − (𝐺𝐴))↑2))
3610, 21fsumrecl 15374 . . . . . . 7 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℝ)
3710, 21, 23fsumge0 15435 . . . . . . 7 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 0 ≤ Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))
38 resqrtth 14895 . . . . . . 7 ((Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)) → ((√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))↑2) = Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))
3936, 37, 38syl2anc 583 . . . . . 6 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))↑2) = Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))
4029, 35, 393brtr4d 5102 . . . . 5 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((abs‘((𝐹𝐴) − (𝐺𝐴)))↑2) ≤ ((√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))↑2))
4133recnd 10934 . . . . . . 7 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐴) − (𝐺𝐴)) ∈ ℂ)
4241abscld 15076 . . . . . 6 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (abs‘((𝐹𝐴) − (𝐺𝐴))) ∈ ℝ)
4336, 37resqrtcld 15057 . . . . . 6 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)) ∈ ℝ)
4441absge0d 15084 . . . . . 6 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 0 ≤ (abs‘((𝐹𝐴) − (𝐺𝐴))))
4536, 37sqrtge0d 15060 . . . . . 6 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 0 ≤ (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)))
4642, 43, 44, 45le2sqd 13902 . . . . 5 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((abs‘((𝐹𝐴) − (𝐺𝐴))) ≤ (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)) ↔ ((abs‘((𝐹𝐴) − (𝐺𝐴)))↑2) ≤ ((√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))↑2)))
4740, 46mpbird 256 . . . 4 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (abs‘((𝐹𝐴) − (𝐺𝐴))) ≤ (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)))
48 rrxdstprj1.1 . . . . . 6 𝑀 = ((abs ∘ − ) ↾ (ℝ × ℝ))
4948remetdval 23858 . . . . 5 (((𝐹𝐴) ∈ ℝ ∧ (𝐺𝐴) ∈ ℝ) → ((𝐹𝐴)𝑀(𝐺𝐴)) = (abs‘((𝐹𝐴) − (𝐺𝐴))))
5031, 32, 49syl2anc 583 . . . 4 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐴)𝑀(𝐺𝐴)) = (abs‘((𝐹𝐴) − (𝐺𝐴))))
51 rrxmval.d . . . . . . 7 𝐷 = (dist‘(ℝ^‘𝐼))
524, 51rrxmval 24474 . . . . . 6 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)))
53523expb 1118 . . . . 5 ((𝐼𝑉 ∧ (𝐹𝑋𝐺𝑋)) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)))
5453adantlr 711 . . . 4 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)))
5547, 50, 543brtr4d 5102 . . 3 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐴)𝑀(𝐺𝐴)) ≤ (𝐹𝐷𝐺))
561, 2, 3, 55syl21anc 834 . 2 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → ((𝐹𝐴)𝑀(𝐺𝐴)) ≤ (𝐹𝐷𝐺))
57 simplll 771 . . . . . . 7 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝐼𝑉)
58 simplrl 773 . . . . . . 7 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝐹𝑋)
59 ssun1 4102 . . . . . . . . . 10 (𝐹 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))
6059a1i 11 . . . . . . . . 9 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (𝐹 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
6160sscond 4072 . . . . . . . 8 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ⊆ (𝐼 ∖ (𝐹 supp 0)))
6261sselda 3917 . . . . . . 7 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝐴 ∈ (𝐼 ∖ (𝐹 supp 0)))
63 simpr 484 . . . . . . . . 9 ((𝐼𝑉𝐹𝑋) → 𝐹𝑋)
644, 63rrxf 24470 . . . . . . . 8 ((𝐼𝑉𝐹𝑋) → 𝐹:𝐼⟶ℝ)
65 ssidd 3940 . . . . . . . 8 ((𝐼𝑉𝐹𝑋) → (𝐹 supp 0) ⊆ (𝐹 supp 0))
66 simpl 482 . . . . . . . 8 ((𝐼𝑉𝐹𝑋) → 𝐼𝑉)
67 0red 10909 . . . . . . . 8 ((𝐼𝑉𝐹𝑋) → 0 ∈ ℝ)
6864, 65, 66, 67suppssr 7983 . . . . . . 7 (((𝐼𝑉𝐹𝑋) ∧ 𝐴 ∈ (𝐼 ∖ (𝐹 supp 0))) → (𝐹𝐴) = 0)
6957, 58, 62, 68syl21anc 834 . . . . . 6 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹𝐴) = 0)
70 0red 10909 . . . . . 6 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 0 ∈ ℝ)
7169, 70eqeltrd 2839 . . . . 5 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹𝐴) ∈ ℝ)
72 simplrr 774 . . . . . . 7 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝐺𝑋)
73 ssun2 4103 . . . . . . . . . 10 (𝐺 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))
7473a1i 11 . . . . . . . . 9 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (𝐺 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
7574sscond 4072 . . . . . . . 8 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ⊆ (𝐼 ∖ (𝐺 supp 0)))
7675sselda 3917 . . . . . . 7 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝐴 ∈ (𝐼 ∖ (𝐺 supp 0)))
77 simpr 484 . . . . . . . . 9 ((𝐼𝑉𝐺𝑋) → 𝐺𝑋)
784, 77rrxf 24470 . . . . . . . 8 ((𝐼𝑉𝐺𝑋) → 𝐺:𝐼⟶ℝ)
79 ssidd 3940 . . . . . . . 8 ((𝐼𝑉𝐺𝑋) → (𝐺 supp 0) ⊆ (𝐺 supp 0))
80 simpl 482 . . . . . . . 8 ((𝐼𝑉𝐺𝑋) → 𝐼𝑉)
81 0red 10909 . . . . . . . 8 ((𝐼𝑉𝐺𝑋) → 0 ∈ ℝ)
8278, 79, 80, 81suppssr 7983 . . . . . . 7 (((𝐼𝑉𝐺𝑋) ∧ 𝐴 ∈ (𝐼 ∖ (𝐺 supp 0))) → (𝐺𝐴) = 0)
8357, 72, 76, 82syl21anc 834 . . . . . 6 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐺𝐴) = 0)
8483, 70eqeltrd 2839 . . . . 5 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐺𝐴) ∈ ℝ)
8571, 84, 49syl2anc 583 . . . 4 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹𝐴)𝑀(𝐺𝐴)) = (abs‘((𝐹𝐴) − (𝐺𝐴))))
8669, 83oveq12d 7273 . . . . . 6 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹𝐴) − (𝐺𝐴)) = (0 − 0))
87 0m0e0 12023 . . . . . 6 (0 − 0) = 0
8886, 87eqtrdi 2795 . . . . 5 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹𝐴) − (𝐺𝐴)) = 0)
8988abs00bd 14931 . . . 4 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (abs‘((𝐹𝐴) − (𝐺𝐴))) = 0)
9085, 89eqtrd 2778 . . 3 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹𝐴)𝑀(𝐺𝐴)) = 0)
914, 51rrxmet 24477 . . . . 5 (𝐼𝑉𝐷 ∈ (Met‘𝑋))
9291ad3antrrr 726 . . . 4 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝐷 ∈ (Met‘𝑋))
93 metge0 23406 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐹𝑋𝐺𝑋) → 0 ≤ (𝐹𝐷𝐺))
9492, 58, 72, 93syl3anc 1369 . . 3 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 0 ≤ (𝐹𝐷𝐺))
9590, 94eqbrtrd 5092 . 2 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹𝐴)𝑀(𝐺𝐴)) ≤ (𝐹𝐷𝐺))
96 simplr 765 . . . 4 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → 𝐴𝐼)
97 simprl 767 . . . . . . 7 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → 𝐹𝑋)
984, 97rrxsuppss 24472 . . . . . 6 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (𝐹 supp 0) ⊆ 𝐼)
99 simprr 769 . . . . . . 7 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → 𝐺𝑋)
1004, 99rrxsuppss 24472 . . . . . 6 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (𝐺 supp 0) ⊆ 𝐼)
10198, 100unssd 4116 . . . . 5 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐼)
102 undif 4412 . . . . 5 (((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐼 ↔ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∪ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) = 𝐼)
103101, 102sylib 217 . . . 4 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∪ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) = 𝐼)
10496, 103eleqtrrd 2842 . . 3 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → 𝐴 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∪ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))))
105 elun 4079 . . 3 (𝐴 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∪ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) ↔ (𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∨ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))))
106104, 105sylib 217 . 2 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∨ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))))
10756, 95, 106mpjaodan 955 1 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐴)𝑀(𝐺𝐴)) ≤ (𝐹𝐷𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108  {crab 3067  cdif 3880  cun 3881  wss 3883   class class class wbr 5070   × cxp 5578  cres 5582  ccom 5584  cfv 6418  (class class class)co 7255   supp csupp 7948  m cmap 8573  Fincfn 8691   finSupp cfsupp 9058  cr 10801  0cc0 10802  cle 10941  cmin 11135  2c2 11958  cexp 13710  csqrt 14872  abscabs 14873  Σcsu 15325  distcds 16897  Metcmet 20496  ℝ^crrx 24452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ico 13014  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-0g 17069  df-gsum 17070  df-prds 17075  df-pws 17077  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-rnghom 19874  df-drng 19908  df-field 19909  df-subrg 19937  df-staf 20020  df-srng 20021  df-lmod 20040  df-lss 20109  df-sra 20349  df-rgmod 20350  df-xmet 20503  df-met 20504  df-cnfld 20511  df-refld 20722  df-dsmm 20849  df-frlm 20864  df-nm 23644  df-tng 23646  df-tcph 24238  df-rrx 24454
This theorem is referenced by:  rrnprjdstle  43732
  Copyright terms: Public domain W3C validator