MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxdstprj1 Structured version   Visualization version   GIF version

Theorem rrxdstprj1 25285
Description: The distance between two points in Euclidean space is greater than the distance between the projections onto one coordinate. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Sep-2015.) (Revised by Thierry Arnoux, 7-Jul-2019.)
Hypotheses
Ref Expression
rrxmval.1 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
rrxmval.d 𝐷 = (dist‘(ℝ^‘𝐼))
rrxdstprj1.1 𝑀 = ((abs ∘ − ) ↾ (ℝ × ℝ))
Assertion
Ref Expression
rrxdstprj1 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐴)𝑀(𝐺𝐴)) ≤ (𝐹𝐷𝐺))
Distinct variable groups:   ,𝐹   ,𝐺   ,𝐼   ,𝑉
Allowed substitution hints:   𝐴()   𝐷()   𝑀()   𝑋()

Proof of Theorem rrxdstprj1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simplll 774 . . 3 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → 𝐼𝑉)
2 simpr 484 . . 3 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
3 simplr 768 . . 3 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (𝐹𝑋𝐺𝑋))
4 rrxmval.1 . . . . . . . . 9 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
5 simprl 770 . . . . . . . . 9 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 𝐹𝑋)
64, 5rrxfsupp 25278 . . . . . . . 8 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (𝐹 supp 0) ∈ Fin)
7 simprr 772 . . . . . . . . 9 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 𝐺𝑋)
84, 7rrxfsupp 25278 . . . . . . . 8 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (𝐺 supp 0) ∈ Fin)
9 unfi 9112 . . . . . . . 8 (((𝐹 supp 0) ∈ Fin ∧ (𝐺 supp 0) ∈ Fin) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∈ Fin)
106, 8, 9syl2anc 584 . . . . . . 7 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∈ Fin)
114, 5rrxsuppss 25279 . . . . . . . . . 10 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (𝐹 supp 0) ⊆ 𝐼)
124, 7rrxsuppss 25279 . . . . . . . . . 10 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (𝐺 supp 0) ⊆ 𝐼)
1311, 12unssd 4151 . . . . . . . . 9 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐼)
1413sselda 3943 . . . . . . . 8 ((((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → 𝑘𝐼)
154, 5rrxf 25277 . . . . . . . . . . 11 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 𝐹:𝐼⟶ℝ)
1615ffvelcdmda 7038 . . . . . . . . . 10 ((((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → (𝐹𝑘) ∈ ℝ)
174, 7rrxf 25277 . . . . . . . . . . 11 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 𝐺:𝐼⟶ℝ)
1817ffvelcdmda 7038 . . . . . . . . . 10 ((((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → (𝐺𝑘) ∈ ℝ)
1916, 18resubcld 11582 . . . . . . . . 9 ((((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → ((𝐹𝑘) − (𝐺𝑘)) ∈ ℝ)
2019resqcld 14066 . . . . . . . 8 ((((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℝ)
2114, 20syldan 591 . . . . . . 7 ((((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℝ)
2219sqge0d 14078 . . . . . . . 8 ((((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → 0 ≤ (((𝐹𝑘) − (𝐺𝑘))↑2))
2314, 22syldan 591 . . . . . . 7 ((((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → 0 ≤ (((𝐹𝑘) − (𝐺𝑘))↑2))
24 fveq2 6840 . . . . . . . . 9 (𝑘 = 𝐴 → (𝐹𝑘) = (𝐹𝐴))
25 fveq2 6840 . . . . . . . . 9 (𝑘 = 𝐴 → (𝐺𝑘) = (𝐺𝐴))
2624, 25oveq12d 7387 . . . . . . . 8 (𝑘 = 𝐴 → ((𝐹𝑘) − (𝐺𝑘)) = ((𝐹𝐴) − (𝐺𝐴)))
2726oveq1d 7384 . . . . . . 7 (𝑘 = 𝐴 → (((𝐹𝑘) − (𝐺𝑘))↑2) = (((𝐹𝐴) − (𝐺𝐴))↑2))
28 simplr 768 . . . . . . 7 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
2910, 21, 23, 27, 28fsumge1 15739 . . . . . 6 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (((𝐹𝐴) − (𝐺𝐴))↑2) ≤ Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))
3013, 28sseldd 3944 . . . . . . . . 9 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 𝐴𝐼)
3115, 30ffvelcdmd 7039 . . . . . . . 8 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (𝐹𝐴) ∈ ℝ)
3217, 30ffvelcdmd 7039 . . . . . . . 8 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (𝐺𝐴) ∈ ℝ)
3331, 32resubcld 11582 . . . . . . 7 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐴) − (𝐺𝐴)) ∈ ℝ)
34 absresq 15244 . . . . . . 7 (((𝐹𝐴) − (𝐺𝐴)) ∈ ℝ → ((abs‘((𝐹𝐴) − (𝐺𝐴)))↑2) = (((𝐹𝐴) − (𝐺𝐴))↑2))
3533, 34syl 17 . . . . . 6 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((abs‘((𝐹𝐴) − (𝐺𝐴)))↑2) = (((𝐹𝐴) − (𝐺𝐴))↑2))
3610, 21fsumrecl 15676 . . . . . . 7 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℝ)
3710, 21, 23fsumge0 15737 . . . . . . 7 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 0 ≤ Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))
38 resqrtth 15197 . . . . . . 7 ((Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)) → ((√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))↑2) = Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))
3936, 37, 38syl2anc 584 . . . . . 6 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))↑2) = Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))
4029, 35, 393brtr4d 5134 . . . . 5 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((abs‘((𝐹𝐴) − (𝐺𝐴)))↑2) ≤ ((√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))↑2))
4133recnd 11178 . . . . . . 7 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐴) − (𝐺𝐴)) ∈ ℂ)
4241abscld 15381 . . . . . 6 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (abs‘((𝐹𝐴) − (𝐺𝐴))) ∈ ℝ)
4336, 37resqrtcld 15360 . . . . . 6 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)) ∈ ℝ)
4441absge0d 15389 . . . . . 6 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 0 ≤ (abs‘((𝐹𝐴) − (𝐺𝐴))))
4536, 37sqrtge0d 15363 . . . . . 6 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 0 ≤ (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)))
4642, 43, 44, 45le2sqd 14198 . . . . 5 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((abs‘((𝐹𝐴) − (𝐺𝐴))) ≤ (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)) ↔ ((abs‘((𝐹𝐴) − (𝐺𝐴)))↑2) ≤ ((√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))↑2)))
4740, 46mpbird 257 . . . 4 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (abs‘((𝐹𝐴) − (𝐺𝐴))) ≤ (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)))
48 rrxdstprj1.1 . . . . . 6 𝑀 = ((abs ∘ − ) ↾ (ℝ × ℝ))
4948remetdval 24653 . . . . 5 (((𝐹𝐴) ∈ ℝ ∧ (𝐺𝐴) ∈ ℝ) → ((𝐹𝐴)𝑀(𝐺𝐴)) = (abs‘((𝐹𝐴) − (𝐺𝐴))))
5031, 32, 49syl2anc 584 . . . 4 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐴)𝑀(𝐺𝐴)) = (abs‘((𝐹𝐴) − (𝐺𝐴))))
51 rrxmval.d . . . . . . 7 𝐷 = (dist‘(ℝ^‘𝐼))
524, 51rrxmval 25281 . . . . . 6 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)))
53523expb 1120 . . . . 5 ((𝐼𝑉 ∧ (𝐹𝑋𝐺𝑋)) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)))
5453adantlr 715 . . . 4 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)))
5547, 50, 543brtr4d 5134 . . 3 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐴)𝑀(𝐺𝐴)) ≤ (𝐹𝐷𝐺))
561, 2, 3, 55syl21anc 837 . 2 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → ((𝐹𝐴)𝑀(𝐺𝐴)) ≤ (𝐹𝐷𝐺))
57 simplll 774 . . . . . . 7 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝐼𝑉)
58 simplrl 776 . . . . . . 7 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝐹𝑋)
59 ssun1 4137 . . . . . . . . . 10 (𝐹 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))
6059a1i 11 . . . . . . . . 9 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (𝐹 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
6160sscond 4105 . . . . . . . 8 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ⊆ (𝐼 ∖ (𝐹 supp 0)))
6261sselda 3943 . . . . . . 7 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝐴 ∈ (𝐼 ∖ (𝐹 supp 0)))
63 simpr 484 . . . . . . . . 9 ((𝐼𝑉𝐹𝑋) → 𝐹𝑋)
644, 63rrxf 25277 . . . . . . . 8 ((𝐼𝑉𝐹𝑋) → 𝐹:𝐼⟶ℝ)
65 ssidd 3967 . . . . . . . 8 ((𝐼𝑉𝐹𝑋) → (𝐹 supp 0) ⊆ (𝐹 supp 0))
66 simpl 482 . . . . . . . 8 ((𝐼𝑉𝐹𝑋) → 𝐼𝑉)
67 0red 11153 . . . . . . . 8 ((𝐼𝑉𝐹𝑋) → 0 ∈ ℝ)
6864, 65, 66, 67suppssr 8151 . . . . . . 7 (((𝐼𝑉𝐹𝑋) ∧ 𝐴 ∈ (𝐼 ∖ (𝐹 supp 0))) → (𝐹𝐴) = 0)
6957, 58, 62, 68syl21anc 837 . . . . . 6 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹𝐴) = 0)
70 0red 11153 . . . . . 6 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 0 ∈ ℝ)
7169, 70eqeltrd 2828 . . . . 5 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹𝐴) ∈ ℝ)
72 simplrr 777 . . . . . . 7 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝐺𝑋)
73 ssun2 4138 . . . . . . . . . 10 (𝐺 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))
7473a1i 11 . . . . . . . . 9 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (𝐺 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
7574sscond 4105 . . . . . . . 8 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ⊆ (𝐼 ∖ (𝐺 supp 0)))
7675sselda 3943 . . . . . . 7 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝐴 ∈ (𝐼 ∖ (𝐺 supp 0)))
77 simpr 484 . . . . . . . . 9 ((𝐼𝑉𝐺𝑋) → 𝐺𝑋)
784, 77rrxf 25277 . . . . . . . 8 ((𝐼𝑉𝐺𝑋) → 𝐺:𝐼⟶ℝ)
79 ssidd 3967 . . . . . . . 8 ((𝐼𝑉𝐺𝑋) → (𝐺 supp 0) ⊆ (𝐺 supp 0))
80 simpl 482 . . . . . . . 8 ((𝐼𝑉𝐺𝑋) → 𝐼𝑉)
81 0red 11153 . . . . . . . 8 ((𝐼𝑉𝐺𝑋) → 0 ∈ ℝ)
8278, 79, 80, 81suppssr 8151 . . . . . . 7 (((𝐼𝑉𝐺𝑋) ∧ 𝐴 ∈ (𝐼 ∖ (𝐺 supp 0))) → (𝐺𝐴) = 0)
8357, 72, 76, 82syl21anc 837 . . . . . 6 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐺𝐴) = 0)
8483, 70eqeltrd 2828 . . . . 5 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐺𝐴) ∈ ℝ)
8571, 84, 49syl2anc 584 . . . 4 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹𝐴)𝑀(𝐺𝐴)) = (abs‘((𝐹𝐴) − (𝐺𝐴))))
8669, 83oveq12d 7387 . . . . . 6 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹𝐴) − (𝐺𝐴)) = (0 − 0))
87 0m0e0 12277 . . . . . 6 (0 − 0) = 0
8886, 87eqtrdi 2780 . . . . 5 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹𝐴) − (𝐺𝐴)) = 0)
8988abs00bd 15233 . . . 4 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (abs‘((𝐹𝐴) − (𝐺𝐴))) = 0)
9085, 89eqtrd 2764 . . 3 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹𝐴)𝑀(𝐺𝐴)) = 0)
914, 51rrxmet 25284 . . . . 5 (𝐼𝑉𝐷 ∈ (Met‘𝑋))
9291ad3antrrr 730 . . . 4 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝐷 ∈ (Met‘𝑋))
93 metge0 24209 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐹𝑋𝐺𝑋) → 0 ≤ (𝐹𝐷𝐺))
9492, 58, 72, 93syl3anc 1373 . . 3 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 0 ≤ (𝐹𝐷𝐺))
9590, 94eqbrtrd 5124 . 2 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹𝐴)𝑀(𝐺𝐴)) ≤ (𝐹𝐷𝐺))
96 simplr 768 . . . 4 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → 𝐴𝐼)
97 simprl 770 . . . . . . 7 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → 𝐹𝑋)
984, 97rrxsuppss 25279 . . . . . 6 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (𝐹 supp 0) ⊆ 𝐼)
99 simprr 772 . . . . . . 7 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → 𝐺𝑋)
1004, 99rrxsuppss 25279 . . . . . 6 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (𝐺 supp 0) ⊆ 𝐼)
10198, 100unssd 4151 . . . . 5 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐼)
102 undif 4441 . . . . 5 (((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐼 ↔ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∪ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) = 𝐼)
103101, 102sylib 218 . . . 4 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∪ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) = 𝐼)
10496, 103eleqtrrd 2831 . . 3 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → 𝐴 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∪ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))))
105 elun 4112 . . 3 (𝐴 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∪ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) ↔ (𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∨ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))))
106104, 105sylib 218 . 2 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∨ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))))
10756, 95, 106mpjaodan 960 1 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐴)𝑀(𝐺𝐴)) ≤ (𝐹𝐷𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  {crab 3402  cdif 3908  cun 3909  wss 3911   class class class wbr 5102   × cxp 5629  cres 5633  ccom 5635  cfv 6499  (class class class)co 7369   supp csupp 8116  m cmap 8776  Fincfn 8895   finSupp cfsupp 9288  cr 11043  0cc0 11044  cle 11185  cmin 11381  2c2 12217  cexp 14002  csqrt 15175  abscabs 15176  Σcsu 15628  distcds 17205  Metcmet 21226  ℝ^crrx 25259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ico 13288  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-grp 18844  df-minusg 18845  df-sbg 18846  df-subg 19031  df-ghm 19121  df-cntz 19225  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-rhm 20357  df-subrng 20431  df-subrg 20455  df-drng 20616  df-field 20617  df-staf 20724  df-srng 20725  df-lmod 20744  df-lss 20814  df-sra 21056  df-rgmod 21057  df-xmet 21233  df-met 21234  df-cnfld 21241  df-refld 21490  df-dsmm 21617  df-frlm 21632  df-nm 24446  df-tng 24448  df-tcph 25045  df-rrx 25261
This theorem is referenced by:  rrnprjdstle  46272
  Copyright terms: Public domain W3C validator