MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem18 Structured version   Visualization version   GIF version

Theorem ackbij1lem18 10196
Description: Lemma for ackbij1 10197. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1lem18 (𝐴 ∈ (𝒫 ω ∩ Fin) → ∃𝑏 ∈ (𝒫 ω ∩ Fin)(𝐹𝑏) = suc (𝐹𝐴))
Distinct variable groups:   𝐹,𝑏,𝑥,𝑦   𝐴,𝑏,𝑥,𝑦

Proof of Theorem ackbij1lem18
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 difss 4102 . . . 4 (𝐴 (ω ∖ 𝐴)) ⊆ 𝐴
2 ackbij.f . . . . 5 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
32ackbij1lem11 10189 . . . 4 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴 (ω ∖ 𝐴)) ⊆ 𝐴) → (𝐴 (ω ∖ 𝐴)) ∈ (𝒫 ω ∩ Fin))
41, 3mpan2 691 . . 3 (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐴 (ω ∖ 𝐴)) ∈ (𝒫 ω ∩ Fin))
5 difss 4102 . . . . . . 7 (ω ∖ 𝐴) ⊆ ω
6 omsson 7849 . . . . . . 7 ω ⊆ On
75, 6sstri 3959 . . . . . 6 (ω ∖ 𝐴) ⊆ On
8 ominf 9212 . . . . . . . 8 ¬ ω ∈ Fin
9 elinel2 4168 . . . . . . . 8 (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ Fin)
10 difinf 9267 . . . . . . . 8 ((¬ ω ∈ Fin ∧ 𝐴 ∈ Fin) → ¬ (ω ∖ 𝐴) ∈ Fin)
118, 9, 10sylancr 587 . . . . . . 7 (𝐴 ∈ (𝒫 ω ∩ Fin) → ¬ (ω ∖ 𝐴) ∈ Fin)
12 0fi 9016 . . . . . . . . 9 ∅ ∈ Fin
13 eleq1 2817 . . . . . . . . 9 ((ω ∖ 𝐴) = ∅ → ((ω ∖ 𝐴) ∈ Fin ↔ ∅ ∈ Fin))
1412, 13mpbiri 258 . . . . . . . 8 ((ω ∖ 𝐴) = ∅ → (ω ∖ 𝐴) ∈ Fin)
1514necon3bi 2952 . . . . . . 7 (¬ (ω ∖ 𝐴) ∈ Fin → (ω ∖ 𝐴) ≠ ∅)
1611, 15syl 17 . . . . . 6 (𝐴 ∈ (𝒫 ω ∩ Fin) → (ω ∖ 𝐴) ≠ ∅)
17 onint 7769 . . . . . 6 (((ω ∖ 𝐴) ⊆ On ∧ (ω ∖ 𝐴) ≠ ∅) → (ω ∖ 𝐴) ∈ (ω ∖ 𝐴))
187, 16, 17sylancr 587 . . . . 5 (𝐴 ∈ (𝒫 ω ∩ Fin) → (ω ∖ 𝐴) ∈ (ω ∖ 𝐴))
1918eldifad 3929 . . . 4 (𝐴 ∈ (𝒫 ω ∩ Fin) → (ω ∖ 𝐴) ∈ ω)
20 ackbij1lem4 10182 . . . 4 ( (ω ∖ 𝐴) ∈ ω → { (ω ∖ 𝐴)} ∈ (𝒫 ω ∩ Fin))
2119, 20syl 17 . . 3 (𝐴 ∈ (𝒫 ω ∩ Fin) → { (ω ∖ 𝐴)} ∈ (𝒫 ω ∩ Fin))
22 ackbij1lem6 10184 . . 3 (((𝐴 (ω ∖ 𝐴)) ∈ (𝒫 ω ∩ Fin) ∧ { (ω ∖ 𝐴)} ∈ (𝒫 ω ∩ Fin)) → ((𝐴 (ω ∖ 𝐴)) ∪ { (ω ∖ 𝐴)}) ∈ (𝒫 ω ∩ Fin))
234, 21, 22syl2anc 584 . 2 (𝐴 ∈ (𝒫 ω ∩ Fin) → ((𝐴 (ω ∖ 𝐴)) ∪ { (ω ∖ 𝐴)}) ∈ (𝒫 ω ∩ Fin))
2418eldifbd 3930 . . . . . 6 (𝐴 ∈ (𝒫 ω ∩ Fin) → ¬ (ω ∖ 𝐴) ∈ 𝐴)
25 disjsn 4678 . . . . . 6 ((𝐴 ∩ { (ω ∖ 𝐴)}) = ∅ ↔ ¬ (ω ∖ 𝐴) ∈ 𝐴)
2624, 25sylibr 234 . . . . 5 (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐴 ∩ { (ω ∖ 𝐴)}) = ∅)
27 ssdisj 4426 . . . . 5 (((𝐴 (ω ∖ 𝐴)) ⊆ 𝐴 ∧ (𝐴 ∩ { (ω ∖ 𝐴)}) = ∅) → ((𝐴 (ω ∖ 𝐴)) ∩ { (ω ∖ 𝐴)}) = ∅)
281, 26, 27sylancr 587 . . . 4 (𝐴 ∈ (𝒫 ω ∩ Fin) → ((𝐴 (ω ∖ 𝐴)) ∩ { (ω ∖ 𝐴)}) = ∅)
292ackbij1lem9 10187 . . . 4 (((𝐴 (ω ∖ 𝐴)) ∈ (𝒫 ω ∩ Fin) ∧ { (ω ∖ 𝐴)} ∈ (𝒫 ω ∩ Fin) ∧ ((𝐴 (ω ∖ 𝐴)) ∩ { (ω ∖ 𝐴)}) = ∅) → (𝐹‘((𝐴 (ω ∖ 𝐴)) ∪ { (ω ∖ 𝐴)})) = ((𝐹‘(𝐴 (ω ∖ 𝐴))) +o (𝐹‘{ (ω ∖ 𝐴)})))
304, 21, 28, 29syl3anc 1373 . . 3 (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐹‘((𝐴 (ω ∖ 𝐴)) ∪ { (ω ∖ 𝐴)})) = ((𝐹‘(𝐴 (ω ∖ 𝐴))) +o (𝐹‘{ (ω ∖ 𝐴)})))
312ackbij1lem14 10192 . . . . 5 ( (ω ∖ 𝐴) ∈ ω → (𝐹‘{ (ω ∖ 𝐴)}) = suc (𝐹 (ω ∖ 𝐴)))
3219, 31syl 17 . . . 4 (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐹‘{ (ω ∖ 𝐴)}) = suc (𝐹 (ω ∖ 𝐴)))
3332oveq2d 7406 . . 3 (𝐴 ∈ (𝒫 ω ∩ Fin) → ((𝐹‘(𝐴 (ω ∖ 𝐴))) +o (𝐹‘{ (ω ∖ 𝐴)})) = ((𝐹‘(𝐴 (ω ∖ 𝐴))) +o suc (𝐹 (ω ∖ 𝐴))))
342ackbij1lem10 10188 . . . . . . 7 𝐹:(𝒫 ω ∩ Fin)⟶ω
3534ffvelcdmi 7058 . . . . . 6 ((𝐴 (ω ∖ 𝐴)) ∈ (𝒫 ω ∩ Fin) → (𝐹‘(𝐴 (ω ∖ 𝐴))) ∈ ω)
364, 35syl 17 . . . . 5 (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐹‘(𝐴 (ω ∖ 𝐴))) ∈ ω)
37 ackbij1lem3 10181 . . . . . . 7 ( (ω ∖ 𝐴) ∈ ω → (ω ∖ 𝐴) ∈ (𝒫 ω ∩ Fin))
3819, 37syl 17 . . . . . 6 (𝐴 ∈ (𝒫 ω ∩ Fin) → (ω ∖ 𝐴) ∈ (𝒫 ω ∩ Fin))
3934ffvelcdmi 7058 . . . . . 6 ( (ω ∖ 𝐴) ∈ (𝒫 ω ∩ Fin) → (𝐹 (ω ∖ 𝐴)) ∈ ω)
4038, 39syl 17 . . . . 5 (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐹 (ω ∖ 𝐴)) ∈ ω)
41 nnasuc 8573 . . . . 5 (((𝐹‘(𝐴 (ω ∖ 𝐴))) ∈ ω ∧ (𝐹 (ω ∖ 𝐴)) ∈ ω) → ((𝐹‘(𝐴 (ω ∖ 𝐴))) +o suc (𝐹 (ω ∖ 𝐴))) = suc ((𝐹‘(𝐴 (ω ∖ 𝐴))) +o (𝐹 (ω ∖ 𝐴))))
4236, 40, 41syl2anc 584 . . . 4 (𝐴 ∈ (𝒫 ω ∩ Fin) → ((𝐹‘(𝐴 (ω ∖ 𝐴))) +o suc (𝐹 (ω ∖ 𝐴))) = suc ((𝐹‘(𝐴 (ω ∖ 𝐴))) +o (𝐹 (ω ∖ 𝐴))))
43 disjdifr 4439 . . . . . . . 8 ((𝐴 (ω ∖ 𝐴)) ∩ (ω ∖ 𝐴)) = ∅
4443a1i 11 . . . . . . 7 (𝐴 ∈ (𝒫 ω ∩ Fin) → ((𝐴 (ω ∖ 𝐴)) ∩ (ω ∖ 𝐴)) = ∅)
452ackbij1lem9 10187 . . . . . . 7 (((𝐴 (ω ∖ 𝐴)) ∈ (𝒫 ω ∩ Fin) ∧ (ω ∖ 𝐴) ∈ (𝒫 ω ∩ Fin) ∧ ((𝐴 (ω ∖ 𝐴)) ∩ (ω ∖ 𝐴)) = ∅) → (𝐹‘((𝐴 (ω ∖ 𝐴)) ∪ (ω ∖ 𝐴))) = ((𝐹‘(𝐴 (ω ∖ 𝐴))) +o (𝐹 (ω ∖ 𝐴))))
464, 38, 44, 45syl3anc 1373 . . . . . 6 (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐹‘((𝐴 (ω ∖ 𝐴)) ∪ (ω ∖ 𝐴))) = ((𝐹‘(𝐴 (ω ∖ 𝐴))) +o (𝐹 (ω ∖ 𝐴))))
47 uncom 4124 . . . . . . . 8 ((𝐴 (ω ∖ 𝐴)) ∪ (ω ∖ 𝐴)) = ( (ω ∖ 𝐴) ∪ (𝐴 (ω ∖ 𝐴)))
48 onnmin 7777 . . . . . . . . . . . . . . 15 (((ω ∖ 𝐴) ⊆ On ∧ 𝑎 ∈ (ω ∖ 𝐴)) → ¬ 𝑎 (ω ∖ 𝐴))
497, 48mpan 690 . . . . . . . . . . . . . 14 (𝑎 ∈ (ω ∖ 𝐴) → ¬ 𝑎 (ω ∖ 𝐴))
5049con2i 139 . . . . . . . . . . . . 13 (𝑎 (ω ∖ 𝐴) → ¬ 𝑎 ∈ (ω ∖ 𝐴))
5150adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝑎 (ω ∖ 𝐴)) → ¬ 𝑎 ∈ (ω ∖ 𝐴))
52 ordom 7855 . . . . . . . . . . . . . . 15 Ord ω
53 ordelss 6351 . . . . . . . . . . . . . . 15 ((Ord ω ∧ (ω ∖ 𝐴) ∈ ω) → (ω ∖ 𝐴) ⊆ ω)
5452, 19, 53sylancr 587 . . . . . . . . . . . . . 14 (𝐴 ∈ (𝒫 ω ∩ Fin) → (ω ∖ 𝐴) ⊆ ω)
5554sselda 3949 . . . . . . . . . . . . 13 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝑎 (ω ∖ 𝐴)) → 𝑎 ∈ ω)
56 eldif 3927 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (ω ∖ 𝐴) ↔ (𝑎 ∈ ω ∧ ¬ 𝑎𝐴))
5756simplbi2 500 . . . . . . . . . . . . . . 15 (𝑎 ∈ ω → (¬ 𝑎𝐴𝑎 ∈ (ω ∖ 𝐴)))
5857orrd 863 . . . . . . . . . . . . . 14 (𝑎 ∈ ω → (𝑎𝐴𝑎 ∈ (ω ∖ 𝐴)))
5958orcomd 871 . . . . . . . . . . . . 13 (𝑎 ∈ ω → (𝑎 ∈ (ω ∖ 𝐴) ∨ 𝑎𝐴))
6055, 59syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝑎 (ω ∖ 𝐴)) → (𝑎 ∈ (ω ∖ 𝐴) ∨ 𝑎𝐴))
61 orel1 888 . . . . . . . . . . . 12 𝑎 ∈ (ω ∖ 𝐴) → ((𝑎 ∈ (ω ∖ 𝐴) ∨ 𝑎𝐴) → 𝑎𝐴))
6251, 60, 61sylc 65 . . . . . . . . . . 11 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝑎 (ω ∖ 𝐴)) → 𝑎𝐴)
6362ex 412 . . . . . . . . . 10 (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝑎 (ω ∖ 𝐴) → 𝑎𝐴))
6463ssrdv 3955 . . . . . . . . 9 (𝐴 ∈ (𝒫 ω ∩ Fin) → (ω ∖ 𝐴) ⊆ 𝐴)
65 undif 4448 . . . . . . . . 9 ( (ω ∖ 𝐴) ⊆ 𝐴 ↔ ( (ω ∖ 𝐴) ∪ (𝐴 (ω ∖ 𝐴))) = 𝐴)
6664, 65sylib 218 . . . . . . . 8 (𝐴 ∈ (𝒫 ω ∩ Fin) → ( (ω ∖ 𝐴) ∪ (𝐴 (ω ∖ 𝐴))) = 𝐴)
6747, 66eqtrid 2777 . . . . . . 7 (𝐴 ∈ (𝒫 ω ∩ Fin) → ((𝐴 (ω ∖ 𝐴)) ∪ (ω ∖ 𝐴)) = 𝐴)
6867fveq2d 6865 . . . . . 6 (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐹‘((𝐴 (ω ∖ 𝐴)) ∪ (ω ∖ 𝐴))) = (𝐹𝐴))
6946, 68eqtr3d 2767 . . . . 5 (𝐴 ∈ (𝒫 ω ∩ Fin) → ((𝐹‘(𝐴 (ω ∖ 𝐴))) +o (𝐹 (ω ∖ 𝐴))) = (𝐹𝐴))
70 suceq 6403 . . . . 5 (((𝐹‘(𝐴 (ω ∖ 𝐴))) +o (𝐹 (ω ∖ 𝐴))) = (𝐹𝐴) → suc ((𝐹‘(𝐴 (ω ∖ 𝐴))) +o (𝐹 (ω ∖ 𝐴))) = suc (𝐹𝐴))
7169, 70syl 17 . . . 4 (𝐴 ∈ (𝒫 ω ∩ Fin) → suc ((𝐹‘(𝐴 (ω ∖ 𝐴))) +o (𝐹 (ω ∖ 𝐴))) = suc (𝐹𝐴))
7242, 71eqtrd 2765 . . 3 (𝐴 ∈ (𝒫 ω ∩ Fin) → ((𝐹‘(𝐴 (ω ∖ 𝐴))) +o suc (𝐹 (ω ∖ 𝐴))) = suc (𝐹𝐴))
7330, 33, 723eqtrd 2769 . 2 (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐹‘((𝐴 (ω ∖ 𝐴)) ∪ { (ω ∖ 𝐴)})) = suc (𝐹𝐴))
74 fveqeq2 6870 . . 3 (𝑏 = ((𝐴 (ω ∖ 𝐴)) ∪ { (ω ∖ 𝐴)}) → ((𝐹𝑏) = suc (𝐹𝐴) ↔ (𝐹‘((𝐴 (ω ∖ 𝐴)) ∪ { (ω ∖ 𝐴)})) = suc (𝐹𝐴)))
7574rspcev 3591 . 2 ((((𝐴 (ω ∖ 𝐴)) ∪ { (ω ∖ 𝐴)}) ∈ (𝒫 ω ∩ Fin) ∧ (𝐹‘((𝐴 (ω ∖ 𝐴)) ∪ { (ω ∖ 𝐴)})) = suc (𝐹𝐴)) → ∃𝑏 ∈ (𝒫 ω ∩ Fin)(𝐹𝑏) = suc (𝐹𝐴))
7623, 73, 75syl2anc 584 1 (𝐴 ∈ (𝒫 ω ∩ Fin) → ∃𝑏 ∈ (𝒫 ω ∩ Fin)(𝐹𝑏) = suc (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  wrex 3054  cdif 3914  cun 3915  cin 3916  wss 3917  c0 4299  𝒫 cpw 4566  {csn 4592   cint 4913   ciun 4958  cmpt 5191   × cxp 5639  Ord word 6334  Oncon0 6335  suc csuc 6337  cfv 6514  (class class class)co 7390  ωcom 7845   +o coa 8434  Fincfn 8921  cardccrd 9895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899
This theorem is referenced by:  ackbij1  10197
  Copyright terms: Public domain W3C validator