MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem18 Structured version   Visualization version   GIF version

Theorem ackbij1lem18 9993
Description: Lemma for ackbij1 9994. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1lem18 (𝐴 ∈ (𝒫 ω ∩ Fin) → ∃𝑏 ∈ (𝒫 ω ∩ Fin)(𝐹𝑏) = suc (𝐹𝐴))
Distinct variable groups:   𝐹,𝑏,𝑥,𝑦   𝐴,𝑏,𝑥,𝑦

Proof of Theorem ackbij1lem18
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 difss 4066 . . . 4 (𝐴 (ω ∖ 𝐴)) ⊆ 𝐴
2 ackbij.f . . . . 5 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
32ackbij1lem11 9986 . . . 4 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴 (ω ∖ 𝐴)) ⊆ 𝐴) → (𝐴 (ω ∖ 𝐴)) ∈ (𝒫 ω ∩ Fin))
41, 3mpan2 688 . . 3 (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐴 (ω ∖ 𝐴)) ∈ (𝒫 ω ∩ Fin))
5 difss 4066 . . . . . . 7 (ω ∖ 𝐴) ⊆ ω
6 omsson 7716 . . . . . . 7 ω ⊆ On
75, 6sstri 3930 . . . . . 6 (ω ∖ 𝐴) ⊆ On
8 ominf 9035 . . . . . . . 8 ¬ ω ∈ Fin
9 elinel2 4130 . . . . . . . 8 (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ Fin)
10 difinf 9084 . . . . . . . 8 ((¬ ω ∈ Fin ∧ 𝐴 ∈ Fin) → ¬ (ω ∖ 𝐴) ∈ Fin)
118, 9, 10sylancr 587 . . . . . . 7 (𝐴 ∈ (𝒫 ω ∩ Fin) → ¬ (ω ∖ 𝐴) ∈ Fin)
12 0fin 8954 . . . . . . . . 9 ∅ ∈ Fin
13 eleq1 2826 . . . . . . . . 9 ((ω ∖ 𝐴) = ∅ → ((ω ∖ 𝐴) ∈ Fin ↔ ∅ ∈ Fin))
1412, 13mpbiri 257 . . . . . . . 8 ((ω ∖ 𝐴) = ∅ → (ω ∖ 𝐴) ∈ Fin)
1514necon3bi 2970 . . . . . . 7 (¬ (ω ∖ 𝐴) ∈ Fin → (ω ∖ 𝐴) ≠ ∅)
1611, 15syl 17 . . . . . 6 (𝐴 ∈ (𝒫 ω ∩ Fin) → (ω ∖ 𝐴) ≠ ∅)
17 onint 7640 . . . . . 6 (((ω ∖ 𝐴) ⊆ On ∧ (ω ∖ 𝐴) ≠ ∅) → (ω ∖ 𝐴) ∈ (ω ∖ 𝐴))
187, 16, 17sylancr 587 . . . . 5 (𝐴 ∈ (𝒫 ω ∩ Fin) → (ω ∖ 𝐴) ∈ (ω ∖ 𝐴))
1918eldifad 3899 . . . 4 (𝐴 ∈ (𝒫 ω ∩ Fin) → (ω ∖ 𝐴) ∈ ω)
20 ackbij1lem4 9979 . . . 4 ( (ω ∖ 𝐴) ∈ ω → { (ω ∖ 𝐴)} ∈ (𝒫 ω ∩ Fin))
2119, 20syl 17 . . 3 (𝐴 ∈ (𝒫 ω ∩ Fin) → { (ω ∖ 𝐴)} ∈ (𝒫 ω ∩ Fin))
22 ackbij1lem6 9981 . . 3 (((𝐴 (ω ∖ 𝐴)) ∈ (𝒫 ω ∩ Fin) ∧ { (ω ∖ 𝐴)} ∈ (𝒫 ω ∩ Fin)) → ((𝐴 (ω ∖ 𝐴)) ∪ { (ω ∖ 𝐴)}) ∈ (𝒫 ω ∩ Fin))
234, 21, 22syl2anc 584 . 2 (𝐴 ∈ (𝒫 ω ∩ Fin) → ((𝐴 (ω ∖ 𝐴)) ∪ { (ω ∖ 𝐴)}) ∈ (𝒫 ω ∩ Fin))
2418eldifbd 3900 . . . . . 6 (𝐴 ∈ (𝒫 ω ∩ Fin) → ¬ (ω ∖ 𝐴) ∈ 𝐴)
25 disjsn 4647 . . . . . 6 ((𝐴 ∩ { (ω ∖ 𝐴)}) = ∅ ↔ ¬ (ω ∖ 𝐴) ∈ 𝐴)
2624, 25sylibr 233 . . . . 5 (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐴 ∩ { (ω ∖ 𝐴)}) = ∅)
27 ssdisj 4393 . . . . 5 (((𝐴 (ω ∖ 𝐴)) ⊆ 𝐴 ∧ (𝐴 ∩ { (ω ∖ 𝐴)}) = ∅) → ((𝐴 (ω ∖ 𝐴)) ∩ { (ω ∖ 𝐴)}) = ∅)
281, 26, 27sylancr 587 . . . 4 (𝐴 ∈ (𝒫 ω ∩ Fin) → ((𝐴 (ω ∖ 𝐴)) ∩ { (ω ∖ 𝐴)}) = ∅)
292ackbij1lem9 9984 . . . 4 (((𝐴 (ω ∖ 𝐴)) ∈ (𝒫 ω ∩ Fin) ∧ { (ω ∖ 𝐴)} ∈ (𝒫 ω ∩ Fin) ∧ ((𝐴 (ω ∖ 𝐴)) ∩ { (ω ∖ 𝐴)}) = ∅) → (𝐹‘((𝐴 (ω ∖ 𝐴)) ∪ { (ω ∖ 𝐴)})) = ((𝐹‘(𝐴 (ω ∖ 𝐴))) +o (𝐹‘{ (ω ∖ 𝐴)})))
304, 21, 28, 29syl3anc 1370 . . 3 (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐹‘((𝐴 (ω ∖ 𝐴)) ∪ { (ω ∖ 𝐴)})) = ((𝐹‘(𝐴 (ω ∖ 𝐴))) +o (𝐹‘{ (ω ∖ 𝐴)})))
312ackbij1lem14 9989 . . . . 5 ( (ω ∖ 𝐴) ∈ ω → (𝐹‘{ (ω ∖ 𝐴)}) = suc (𝐹 (ω ∖ 𝐴)))
3219, 31syl 17 . . . 4 (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐹‘{ (ω ∖ 𝐴)}) = suc (𝐹 (ω ∖ 𝐴)))
3332oveq2d 7291 . . 3 (𝐴 ∈ (𝒫 ω ∩ Fin) → ((𝐹‘(𝐴 (ω ∖ 𝐴))) +o (𝐹‘{ (ω ∖ 𝐴)})) = ((𝐹‘(𝐴 (ω ∖ 𝐴))) +o suc (𝐹 (ω ∖ 𝐴))))
342ackbij1lem10 9985 . . . . . . 7 𝐹:(𝒫 ω ∩ Fin)⟶ω
3534ffvelrni 6960 . . . . . 6 ((𝐴 (ω ∖ 𝐴)) ∈ (𝒫 ω ∩ Fin) → (𝐹‘(𝐴 (ω ∖ 𝐴))) ∈ ω)
364, 35syl 17 . . . . 5 (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐹‘(𝐴 (ω ∖ 𝐴))) ∈ ω)
37 ackbij1lem3 9978 . . . . . . 7 ( (ω ∖ 𝐴) ∈ ω → (ω ∖ 𝐴) ∈ (𝒫 ω ∩ Fin))
3819, 37syl 17 . . . . . 6 (𝐴 ∈ (𝒫 ω ∩ Fin) → (ω ∖ 𝐴) ∈ (𝒫 ω ∩ Fin))
3934ffvelrni 6960 . . . . . 6 ( (ω ∖ 𝐴) ∈ (𝒫 ω ∩ Fin) → (𝐹 (ω ∖ 𝐴)) ∈ ω)
4038, 39syl 17 . . . . 5 (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐹 (ω ∖ 𝐴)) ∈ ω)
41 nnasuc 8437 . . . . 5 (((𝐹‘(𝐴 (ω ∖ 𝐴))) ∈ ω ∧ (𝐹 (ω ∖ 𝐴)) ∈ ω) → ((𝐹‘(𝐴 (ω ∖ 𝐴))) +o suc (𝐹 (ω ∖ 𝐴))) = suc ((𝐹‘(𝐴 (ω ∖ 𝐴))) +o (𝐹 (ω ∖ 𝐴))))
4236, 40, 41syl2anc 584 . . . 4 (𝐴 ∈ (𝒫 ω ∩ Fin) → ((𝐹‘(𝐴 (ω ∖ 𝐴))) +o suc (𝐹 (ω ∖ 𝐴))) = suc ((𝐹‘(𝐴 (ω ∖ 𝐴))) +o (𝐹 (ω ∖ 𝐴))))
43 disjdifr 4406 . . . . . . . 8 ((𝐴 (ω ∖ 𝐴)) ∩ (ω ∖ 𝐴)) = ∅
4443a1i 11 . . . . . . 7 (𝐴 ∈ (𝒫 ω ∩ Fin) → ((𝐴 (ω ∖ 𝐴)) ∩ (ω ∖ 𝐴)) = ∅)
452ackbij1lem9 9984 . . . . . . 7 (((𝐴 (ω ∖ 𝐴)) ∈ (𝒫 ω ∩ Fin) ∧ (ω ∖ 𝐴) ∈ (𝒫 ω ∩ Fin) ∧ ((𝐴 (ω ∖ 𝐴)) ∩ (ω ∖ 𝐴)) = ∅) → (𝐹‘((𝐴 (ω ∖ 𝐴)) ∪ (ω ∖ 𝐴))) = ((𝐹‘(𝐴 (ω ∖ 𝐴))) +o (𝐹 (ω ∖ 𝐴))))
464, 38, 44, 45syl3anc 1370 . . . . . 6 (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐹‘((𝐴 (ω ∖ 𝐴)) ∪ (ω ∖ 𝐴))) = ((𝐹‘(𝐴 (ω ∖ 𝐴))) +o (𝐹 (ω ∖ 𝐴))))
47 uncom 4087 . . . . . . . 8 ((𝐴 (ω ∖ 𝐴)) ∪ (ω ∖ 𝐴)) = ( (ω ∖ 𝐴) ∪ (𝐴 (ω ∖ 𝐴)))
48 onnmin 7648 . . . . . . . . . . . . . . 15 (((ω ∖ 𝐴) ⊆ On ∧ 𝑎 ∈ (ω ∖ 𝐴)) → ¬ 𝑎 (ω ∖ 𝐴))
497, 48mpan 687 . . . . . . . . . . . . . 14 (𝑎 ∈ (ω ∖ 𝐴) → ¬ 𝑎 (ω ∖ 𝐴))
5049con2i 139 . . . . . . . . . . . . 13 (𝑎 (ω ∖ 𝐴) → ¬ 𝑎 ∈ (ω ∖ 𝐴))
5150adantl 482 . . . . . . . . . . . 12 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝑎 (ω ∖ 𝐴)) → ¬ 𝑎 ∈ (ω ∖ 𝐴))
52 ordom 7722 . . . . . . . . . . . . . . 15 Ord ω
53 ordelss 6282 . . . . . . . . . . . . . . 15 ((Ord ω ∧ (ω ∖ 𝐴) ∈ ω) → (ω ∖ 𝐴) ⊆ ω)
5452, 19, 53sylancr 587 . . . . . . . . . . . . . 14 (𝐴 ∈ (𝒫 ω ∩ Fin) → (ω ∖ 𝐴) ⊆ ω)
5554sselda 3921 . . . . . . . . . . . . 13 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝑎 (ω ∖ 𝐴)) → 𝑎 ∈ ω)
56 eldif 3897 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (ω ∖ 𝐴) ↔ (𝑎 ∈ ω ∧ ¬ 𝑎𝐴))
5756simplbi2 501 . . . . . . . . . . . . . . 15 (𝑎 ∈ ω → (¬ 𝑎𝐴𝑎 ∈ (ω ∖ 𝐴)))
5857orrd 860 . . . . . . . . . . . . . 14 (𝑎 ∈ ω → (𝑎𝐴𝑎 ∈ (ω ∖ 𝐴)))
5958orcomd 868 . . . . . . . . . . . . 13 (𝑎 ∈ ω → (𝑎 ∈ (ω ∖ 𝐴) ∨ 𝑎𝐴))
6055, 59syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝑎 (ω ∖ 𝐴)) → (𝑎 ∈ (ω ∖ 𝐴) ∨ 𝑎𝐴))
61 orel1 886 . . . . . . . . . . . 12 𝑎 ∈ (ω ∖ 𝐴) → ((𝑎 ∈ (ω ∖ 𝐴) ∨ 𝑎𝐴) → 𝑎𝐴))
6251, 60, 61sylc 65 . . . . . . . . . . 11 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝑎 (ω ∖ 𝐴)) → 𝑎𝐴)
6362ex 413 . . . . . . . . . 10 (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝑎 (ω ∖ 𝐴) → 𝑎𝐴))
6463ssrdv 3927 . . . . . . . . 9 (𝐴 ∈ (𝒫 ω ∩ Fin) → (ω ∖ 𝐴) ⊆ 𝐴)
65 undif 4415 . . . . . . . . 9 ( (ω ∖ 𝐴) ⊆ 𝐴 ↔ ( (ω ∖ 𝐴) ∪ (𝐴 (ω ∖ 𝐴))) = 𝐴)
6664, 65sylib 217 . . . . . . . 8 (𝐴 ∈ (𝒫 ω ∩ Fin) → ( (ω ∖ 𝐴) ∪ (𝐴 (ω ∖ 𝐴))) = 𝐴)
6747, 66eqtrid 2790 . . . . . . 7 (𝐴 ∈ (𝒫 ω ∩ Fin) → ((𝐴 (ω ∖ 𝐴)) ∪ (ω ∖ 𝐴)) = 𝐴)
6867fveq2d 6778 . . . . . 6 (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐹‘((𝐴 (ω ∖ 𝐴)) ∪ (ω ∖ 𝐴))) = (𝐹𝐴))
6946, 68eqtr3d 2780 . . . . 5 (𝐴 ∈ (𝒫 ω ∩ Fin) → ((𝐹‘(𝐴 (ω ∖ 𝐴))) +o (𝐹 (ω ∖ 𝐴))) = (𝐹𝐴))
70 suceq 6331 . . . . 5 (((𝐹‘(𝐴 (ω ∖ 𝐴))) +o (𝐹 (ω ∖ 𝐴))) = (𝐹𝐴) → suc ((𝐹‘(𝐴 (ω ∖ 𝐴))) +o (𝐹 (ω ∖ 𝐴))) = suc (𝐹𝐴))
7169, 70syl 17 . . . 4 (𝐴 ∈ (𝒫 ω ∩ Fin) → suc ((𝐹‘(𝐴 (ω ∖ 𝐴))) +o (𝐹 (ω ∖ 𝐴))) = suc (𝐹𝐴))
7242, 71eqtrd 2778 . . 3 (𝐴 ∈ (𝒫 ω ∩ Fin) → ((𝐹‘(𝐴 (ω ∖ 𝐴))) +o suc (𝐹 (ω ∖ 𝐴))) = suc (𝐹𝐴))
7330, 33, 723eqtrd 2782 . 2 (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐹‘((𝐴 (ω ∖ 𝐴)) ∪ { (ω ∖ 𝐴)})) = suc (𝐹𝐴))
74 fveqeq2 6783 . . 3 (𝑏 = ((𝐴 (ω ∖ 𝐴)) ∪ { (ω ∖ 𝐴)}) → ((𝐹𝑏) = suc (𝐹𝐴) ↔ (𝐹‘((𝐴 (ω ∖ 𝐴)) ∪ { (ω ∖ 𝐴)})) = suc (𝐹𝐴)))
7574rspcev 3561 . 2 ((((𝐴 (ω ∖ 𝐴)) ∪ { (ω ∖ 𝐴)}) ∈ (𝒫 ω ∩ Fin) ∧ (𝐹‘((𝐴 (ω ∖ 𝐴)) ∪ { (ω ∖ 𝐴)})) = suc (𝐹𝐴)) → ∃𝑏 ∈ (𝒫 ω ∩ Fin)(𝐹𝑏) = suc (𝐹𝐴))
7623, 73, 75syl2anc 584 1 (𝐴 ∈ (𝒫 ω ∩ Fin) → ∃𝑏 ∈ (𝒫 ω ∩ Fin)(𝐹𝑏) = suc (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  wrex 3065  cdif 3884  cun 3885  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533  {csn 4561   cint 4879   ciun 4924  cmpt 5157   × cxp 5587  Ord word 6265  Oncon0 6266  suc csuc 6268  cfv 6433  (class class class)co 7275  ωcom 7712   +o coa 8294  Fincfn 8733  cardccrd 9693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697
This theorem is referenced by:  ackbij1  9994
  Copyright terms: Public domain W3C validator