Step | Hyp | Ref
| Expression |
1 | | difss 4062 |
. . . 4
⊢ (𝐴 ∖ ∩ (ω ∖ 𝐴)) ⊆ 𝐴 |
2 | | ackbij.f |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦
(card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) |
3 | 2 | ackbij1lem11 9917 |
. . . 4
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ (𝐴 ∖ ∩ (ω ∖ 𝐴)) ⊆ 𝐴) → (𝐴 ∖ ∩
(ω ∖ 𝐴)) ∈
(𝒫 ω ∩ Fin)) |
4 | 1, 3 | mpan2 687 |
. . 3
⊢ (𝐴 ∈ (𝒫 ω ∩
Fin) → (𝐴 ∖
∩ (ω ∖ 𝐴)) ∈ (𝒫 ω ∩
Fin)) |
5 | | difss 4062 |
. . . . . . 7
⊢ (ω
∖ 𝐴) ⊆
ω |
6 | | omsson 7691 |
. . . . . . 7
⊢ ω
⊆ On |
7 | 5, 6 | sstri 3926 |
. . . . . 6
⊢ (ω
∖ 𝐴) ⊆
On |
8 | | ominf 8964 |
. . . . . . . 8
⊢ ¬
ω ∈ Fin |
9 | | elinel2 4126 |
. . . . . . . 8
⊢ (𝐴 ∈ (𝒫 ω ∩
Fin) → 𝐴 ∈
Fin) |
10 | | difinf 9014 |
. . . . . . . 8
⊢ ((¬
ω ∈ Fin ∧ 𝐴
∈ Fin) → ¬ (ω ∖ 𝐴) ∈ Fin) |
11 | 8, 9, 10 | sylancr 586 |
. . . . . . 7
⊢ (𝐴 ∈ (𝒫 ω ∩
Fin) → ¬ (ω ∖ 𝐴) ∈ Fin) |
12 | | 0fin 8916 |
. . . . . . . . 9
⊢ ∅
∈ Fin |
13 | | eleq1 2826 |
. . . . . . . . 9
⊢ ((ω
∖ 𝐴) = ∅ →
((ω ∖ 𝐴) ∈
Fin ↔ ∅ ∈ Fin)) |
14 | 12, 13 | mpbiri 257 |
. . . . . . . 8
⊢ ((ω
∖ 𝐴) = ∅ →
(ω ∖ 𝐴) ∈
Fin) |
15 | 14 | necon3bi 2969 |
. . . . . . 7
⊢ (¬
(ω ∖ 𝐴) ∈
Fin → (ω ∖ 𝐴) ≠ ∅) |
16 | 11, 15 | syl 17 |
. . . . . 6
⊢ (𝐴 ∈ (𝒫 ω ∩
Fin) → (ω ∖ 𝐴) ≠ ∅) |
17 | | onint 7617 |
. . . . . 6
⊢
(((ω ∖ 𝐴) ⊆ On ∧ (ω ∖ 𝐴) ≠ ∅) → ∩ (ω ∖ 𝐴) ∈ (ω ∖ 𝐴)) |
18 | 7, 16, 17 | sylancr 586 |
. . . . 5
⊢ (𝐴 ∈ (𝒫 ω ∩
Fin) → ∩ (ω ∖ 𝐴) ∈ (ω ∖ 𝐴)) |
19 | 18 | eldifad 3895 |
. . . 4
⊢ (𝐴 ∈ (𝒫 ω ∩
Fin) → ∩ (ω ∖ 𝐴) ∈ ω) |
20 | | ackbij1lem4 9910 |
. . . 4
⊢ (∩ (ω ∖ 𝐴) ∈ ω → {∩ (ω ∖ 𝐴)} ∈ (𝒫 ω ∩
Fin)) |
21 | 19, 20 | syl 17 |
. . 3
⊢ (𝐴 ∈ (𝒫 ω ∩
Fin) → {∩ (ω ∖ 𝐴)} ∈ (𝒫 ω ∩
Fin)) |
22 | | ackbij1lem6 9912 |
. . 3
⊢ (((𝐴 ∖ ∩ (ω ∖ 𝐴)) ∈ (𝒫 ω ∩ Fin)
∧ {∩ (ω ∖ 𝐴)} ∈ (𝒫 ω ∩ Fin))
→ ((𝐴 ∖ ∩ (ω ∖ 𝐴)) ∪ {∩
(ω ∖ 𝐴)})
∈ (𝒫 ω ∩ Fin)) |
23 | 4, 21, 22 | syl2anc 583 |
. 2
⊢ (𝐴 ∈ (𝒫 ω ∩
Fin) → ((𝐴 ∖
∩ (ω ∖ 𝐴)) ∪ {∩
(ω ∖ 𝐴)})
∈ (𝒫 ω ∩ Fin)) |
24 | 18 | eldifbd 3896 |
. . . . . 6
⊢ (𝐴 ∈ (𝒫 ω ∩
Fin) → ¬ ∩ (ω ∖ 𝐴) ∈ 𝐴) |
25 | | disjsn 4644 |
. . . . . 6
⊢ ((𝐴 ∩ {∩ (ω ∖ 𝐴)}) = ∅ ↔ ¬ ∩ (ω ∖ 𝐴) ∈ 𝐴) |
26 | 24, 25 | sylibr 233 |
. . . . 5
⊢ (𝐴 ∈ (𝒫 ω ∩
Fin) → (𝐴 ∩ {∩ (ω ∖ 𝐴)}) = ∅) |
27 | | ssdisj 4390 |
. . . . 5
⊢ (((𝐴 ∖ ∩ (ω ∖ 𝐴)) ⊆ 𝐴 ∧ (𝐴 ∩ {∩
(ω ∖ 𝐴)}) =
∅) → ((𝐴 ∖
∩ (ω ∖ 𝐴)) ∩ {∩
(ω ∖ 𝐴)}) =
∅) |
28 | 1, 26, 27 | sylancr 586 |
. . . 4
⊢ (𝐴 ∈ (𝒫 ω ∩
Fin) → ((𝐴 ∖
∩ (ω ∖ 𝐴)) ∩ {∩
(ω ∖ 𝐴)}) =
∅) |
29 | 2 | ackbij1lem9 9915 |
. . . 4
⊢ (((𝐴 ∖ ∩ (ω ∖ 𝐴)) ∈ (𝒫 ω ∩ Fin)
∧ {∩ (ω ∖ 𝐴)} ∈ (𝒫 ω ∩ Fin)
∧ ((𝐴 ∖ ∩ (ω ∖ 𝐴)) ∩ {∩
(ω ∖ 𝐴)}) =
∅) → (𝐹‘((𝐴 ∖ ∩
(ω ∖ 𝐴)) ∪
{∩ (ω ∖ 𝐴)})) = ((𝐹‘(𝐴 ∖ ∩
(ω ∖ 𝐴)))
+o (𝐹‘{∩
(ω ∖ 𝐴)}))) |
30 | 4, 21, 28, 29 | syl3anc 1369 |
. . 3
⊢ (𝐴 ∈ (𝒫 ω ∩
Fin) → (𝐹‘((𝐴 ∖ ∩
(ω ∖ 𝐴)) ∪
{∩ (ω ∖ 𝐴)})) = ((𝐹‘(𝐴 ∖ ∩
(ω ∖ 𝐴)))
+o (𝐹‘{∩
(ω ∖ 𝐴)}))) |
31 | 2 | ackbij1lem14 9920 |
. . . . 5
⊢ (∩ (ω ∖ 𝐴) ∈ ω → (𝐹‘{∩
(ω ∖ 𝐴)}) = suc
(𝐹‘∩ (ω ∖ 𝐴))) |
32 | 19, 31 | syl 17 |
. . . 4
⊢ (𝐴 ∈ (𝒫 ω ∩
Fin) → (𝐹‘{∩ (ω ∖ 𝐴)}) = suc (𝐹‘∩ (ω
∖ 𝐴))) |
33 | 32 | oveq2d 7271 |
. . 3
⊢ (𝐴 ∈ (𝒫 ω ∩
Fin) → ((𝐹‘(𝐴 ∖ ∩
(ω ∖ 𝐴)))
+o (𝐹‘{∩
(ω ∖ 𝐴)})) =
((𝐹‘(𝐴 ∖ ∩ (ω ∖ 𝐴))) +o suc (𝐹‘∩ (ω
∖ 𝐴)))) |
34 | 2 | ackbij1lem10 9916 |
. . . . . . 7
⊢ 𝐹:(𝒫 ω ∩
Fin)⟶ω |
35 | 34 | ffvelrni 6942 |
. . . . . 6
⊢ ((𝐴 ∖ ∩ (ω ∖ 𝐴)) ∈ (𝒫 ω ∩ Fin)
→ (𝐹‘(𝐴 ∖ ∩ (ω ∖ 𝐴))) ∈ ω) |
36 | 4, 35 | syl 17 |
. . . . 5
⊢ (𝐴 ∈ (𝒫 ω ∩
Fin) → (𝐹‘(𝐴 ∖ ∩ (ω ∖ 𝐴))) ∈ ω) |
37 | | ackbij1lem3 9909 |
. . . . . . 7
⊢ (∩ (ω ∖ 𝐴) ∈ ω → ∩ (ω ∖ 𝐴) ∈ (𝒫 ω ∩
Fin)) |
38 | 19, 37 | syl 17 |
. . . . . 6
⊢ (𝐴 ∈ (𝒫 ω ∩
Fin) → ∩ (ω ∖ 𝐴) ∈ (𝒫 ω ∩
Fin)) |
39 | 34 | ffvelrni 6942 |
. . . . . 6
⊢ (∩ (ω ∖ 𝐴) ∈ (𝒫 ω ∩ Fin)
→ (𝐹‘∩ (ω ∖ 𝐴)) ∈ ω) |
40 | 38, 39 | syl 17 |
. . . . 5
⊢ (𝐴 ∈ (𝒫 ω ∩
Fin) → (𝐹‘∩ (ω ∖ 𝐴)) ∈ ω) |
41 | | nnasuc 8399 |
. . . . 5
⊢ (((𝐹‘(𝐴 ∖ ∩
(ω ∖ 𝐴)))
∈ ω ∧ (𝐹‘∩ (ω
∖ 𝐴)) ∈ ω)
→ ((𝐹‘(𝐴 ∖ ∩ (ω ∖ 𝐴))) +o suc (𝐹‘∩ (ω
∖ 𝐴))) = suc ((𝐹‘(𝐴 ∖ ∩
(ω ∖ 𝐴)))
+o (𝐹‘∩ (ω
∖ 𝐴)))) |
42 | 36, 40, 41 | syl2anc 583 |
. . . 4
⊢ (𝐴 ∈ (𝒫 ω ∩
Fin) → ((𝐹‘(𝐴 ∖ ∩
(ω ∖ 𝐴)))
+o suc (𝐹‘∩ (ω
∖ 𝐴))) = suc ((𝐹‘(𝐴 ∖ ∩
(ω ∖ 𝐴)))
+o (𝐹‘∩ (ω
∖ 𝐴)))) |
43 | | disjdifr 4403 |
. . . . . . . 8
⊢ ((𝐴 ∖ ∩ (ω ∖ 𝐴)) ∩ ∩
(ω ∖ 𝐴)) =
∅ |
44 | 43 | a1i 11 |
. . . . . . 7
⊢ (𝐴 ∈ (𝒫 ω ∩
Fin) → ((𝐴 ∖
∩ (ω ∖ 𝐴)) ∩ ∩
(ω ∖ 𝐴)) =
∅) |
45 | 2 | ackbij1lem9 9915 |
. . . . . . 7
⊢ (((𝐴 ∖ ∩ (ω ∖ 𝐴)) ∈ (𝒫 ω ∩ Fin)
∧ ∩ (ω ∖ 𝐴) ∈ (𝒫 ω ∩ Fin) ∧
((𝐴 ∖ ∩ (ω ∖ 𝐴)) ∩ ∩
(ω ∖ 𝐴)) =
∅) → (𝐹‘((𝐴 ∖ ∩
(ω ∖ 𝐴)) ∪
∩ (ω ∖ 𝐴))) = ((𝐹‘(𝐴 ∖ ∩
(ω ∖ 𝐴)))
+o (𝐹‘∩ (ω
∖ 𝐴)))) |
46 | 4, 38, 44, 45 | syl3anc 1369 |
. . . . . 6
⊢ (𝐴 ∈ (𝒫 ω ∩
Fin) → (𝐹‘((𝐴 ∖ ∩
(ω ∖ 𝐴)) ∪
∩ (ω ∖ 𝐴))) = ((𝐹‘(𝐴 ∖ ∩
(ω ∖ 𝐴)))
+o (𝐹‘∩ (ω
∖ 𝐴)))) |
47 | | uncom 4083 |
. . . . . . . 8
⊢ ((𝐴 ∖ ∩ (ω ∖ 𝐴)) ∪ ∩
(ω ∖ 𝐴)) =
(∩ (ω ∖ 𝐴) ∪ (𝐴 ∖ ∩
(ω ∖ 𝐴))) |
48 | | onnmin 7625 |
. . . . . . . . . . . . . . 15
⊢
(((ω ∖ 𝐴) ⊆ On ∧ 𝑎 ∈ (ω ∖ 𝐴)) → ¬ 𝑎 ∈ ∩ (ω
∖ 𝐴)) |
49 | 7, 48 | mpan 686 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∈ (ω ∖ 𝐴) → ¬ 𝑎 ∈ ∩ (ω ∖ 𝐴)) |
50 | 49 | con2i 139 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ ∩ (ω ∖ 𝐴) → ¬ 𝑎 ∈ (ω ∖ 𝐴)) |
51 | 50 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝑎 ∈ ∩ (ω ∖ 𝐴)) → ¬ 𝑎 ∈ (ω ∖ 𝐴)) |
52 | | ordom 7697 |
. . . . . . . . . . . . . . 15
⊢ Ord
ω |
53 | | ordelss 6267 |
. . . . . . . . . . . . . . 15
⊢ ((Ord
ω ∧ ∩ (ω ∖ 𝐴) ∈ ω) → ∩ (ω ∖ 𝐴) ⊆ ω) |
54 | 52, 19, 53 | sylancr 586 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ (𝒫 ω ∩
Fin) → ∩ (ω ∖ 𝐴) ⊆ ω) |
55 | 54 | sselda 3917 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝑎 ∈ ∩ (ω ∖ 𝐴)) → 𝑎 ∈ ω) |
56 | | eldif 3893 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 ∈ (ω ∖ 𝐴) ↔ (𝑎 ∈ ω ∧ ¬ 𝑎 ∈ 𝐴)) |
57 | 56 | simplbi2 500 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ ω → (¬
𝑎 ∈ 𝐴 → 𝑎 ∈ (ω ∖ 𝐴))) |
58 | 57 | orrd 859 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∈ ω → (𝑎 ∈ 𝐴 ∨ 𝑎 ∈ (ω ∖ 𝐴))) |
59 | 58 | orcomd 867 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ ω → (𝑎 ∈ (ω ∖ 𝐴) ∨ 𝑎 ∈ 𝐴)) |
60 | 55, 59 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝑎 ∈ ∩ (ω ∖ 𝐴)) → (𝑎 ∈ (ω ∖ 𝐴) ∨ 𝑎 ∈ 𝐴)) |
61 | | orel1 885 |
. . . . . . . . . . . 12
⊢ (¬
𝑎 ∈ (ω ∖
𝐴) → ((𝑎 ∈ (ω ∖ 𝐴) ∨ 𝑎 ∈ 𝐴) → 𝑎 ∈ 𝐴)) |
62 | 51, 60, 61 | sylc 65 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝑎 ∈ ∩ (ω ∖ 𝐴)) → 𝑎 ∈ 𝐴) |
63 | 62 | ex 412 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (𝒫 ω ∩
Fin) → (𝑎 ∈ ∩ (ω ∖ 𝐴) → 𝑎 ∈ 𝐴)) |
64 | 63 | ssrdv 3923 |
. . . . . . . . 9
⊢ (𝐴 ∈ (𝒫 ω ∩
Fin) → ∩ (ω ∖ 𝐴) ⊆ 𝐴) |
65 | | undif 4412 |
. . . . . . . . 9
⊢ (∩ (ω ∖ 𝐴) ⊆ 𝐴 ↔ (∩
(ω ∖ 𝐴) ∪
(𝐴 ∖ ∩ (ω ∖ 𝐴))) = 𝐴) |
66 | 64, 65 | sylib 217 |
. . . . . . . 8
⊢ (𝐴 ∈ (𝒫 ω ∩
Fin) → (∩ (ω ∖ 𝐴) ∪ (𝐴 ∖ ∩
(ω ∖ 𝐴))) =
𝐴) |
67 | 47, 66 | eqtrid 2790 |
. . . . . . 7
⊢ (𝐴 ∈ (𝒫 ω ∩
Fin) → ((𝐴 ∖
∩ (ω ∖ 𝐴)) ∪ ∩
(ω ∖ 𝐴)) =
𝐴) |
68 | 67 | fveq2d 6760 |
. . . . . 6
⊢ (𝐴 ∈ (𝒫 ω ∩
Fin) → (𝐹‘((𝐴 ∖ ∩
(ω ∖ 𝐴)) ∪
∩ (ω ∖ 𝐴))) = (𝐹‘𝐴)) |
69 | 46, 68 | eqtr3d 2780 |
. . . . 5
⊢ (𝐴 ∈ (𝒫 ω ∩
Fin) → ((𝐹‘(𝐴 ∖ ∩
(ω ∖ 𝐴)))
+o (𝐹‘∩ (ω
∖ 𝐴))) = (𝐹‘𝐴)) |
70 | | suceq 6316 |
. . . . 5
⊢ (((𝐹‘(𝐴 ∖ ∩
(ω ∖ 𝐴)))
+o (𝐹‘∩ (ω
∖ 𝐴))) = (𝐹‘𝐴) → suc ((𝐹‘(𝐴 ∖ ∩
(ω ∖ 𝐴)))
+o (𝐹‘∩ (ω
∖ 𝐴))) = suc (𝐹‘𝐴)) |
71 | 69, 70 | syl 17 |
. . . 4
⊢ (𝐴 ∈ (𝒫 ω ∩
Fin) → suc ((𝐹‘(𝐴 ∖ ∩
(ω ∖ 𝐴)))
+o (𝐹‘∩ (ω
∖ 𝐴))) = suc (𝐹‘𝐴)) |
72 | 42, 71 | eqtrd 2778 |
. . 3
⊢ (𝐴 ∈ (𝒫 ω ∩
Fin) → ((𝐹‘(𝐴 ∖ ∩
(ω ∖ 𝐴)))
+o suc (𝐹‘∩ (ω
∖ 𝐴))) = suc (𝐹‘𝐴)) |
73 | 30, 33, 72 | 3eqtrd 2782 |
. 2
⊢ (𝐴 ∈ (𝒫 ω ∩
Fin) → (𝐹‘((𝐴 ∖ ∩
(ω ∖ 𝐴)) ∪
{∩ (ω ∖ 𝐴)})) = suc (𝐹‘𝐴)) |
74 | | fveqeq2 6765 |
. . 3
⊢ (𝑏 = ((𝐴 ∖ ∩
(ω ∖ 𝐴)) ∪
{∩ (ω ∖ 𝐴)}) → ((𝐹‘𝑏) = suc (𝐹‘𝐴) ↔ (𝐹‘((𝐴 ∖ ∩
(ω ∖ 𝐴)) ∪
{∩ (ω ∖ 𝐴)})) = suc (𝐹‘𝐴))) |
75 | 74 | rspcev 3552 |
. 2
⊢ ((((𝐴 ∖ ∩ (ω ∖ 𝐴)) ∪ {∩
(ω ∖ 𝐴)})
∈ (𝒫 ω ∩ Fin) ∧ (𝐹‘((𝐴 ∖ ∩
(ω ∖ 𝐴)) ∪
{∩ (ω ∖ 𝐴)})) = suc (𝐹‘𝐴)) → ∃𝑏 ∈ (𝒫 ω ∩ Fin)(𝐹‘𝑏) = suc (𝐹‘𝐴)) |
76 | 23, 73, 75 | syl2anc 583 |
1
⊢ (𝐴 ∈ (𝒫 ω ∩
Fin) → ∃𝑏 ∈
(𝒫 ω ∩ Fin)(𝐹‘𝑏) = suc (𝐹‘𝐴)) |