MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem18 Structured version   Visualization version   GIF version

Theorem ackbij1lem18 9648
Description: Lemma for ackbij1 9649. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1lem18 (𝐴 ∈ (𝒫 ω ∩ Fin) → ∃𝑏 ∈ (𝒫 ω ∩ Fin)(𝐹𝑏) = suc (𝐹𝐴))
Distinct variable groups:   𝐹,𝑏,𝑥,𝑦   𝐴,𝑏,𝑥,𝑦

Proof of Theorem ackbij1lem18
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 difss 4059 . . . 4 (𝐴 (ω ∖ 𝐴)) ⊆ 𝐴
2 ackbij.f . . . . 5 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
32ackbij1lem11 9641 . . . 4 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴 (ω ∖ 𝐴)) ⊆ 𝐴) → (𝐴 (ω ∖ 𝐴)) ∈ (𝒫 ω ∩ Fin))
41, 3mpan2 690 . . 3 (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐴 (ω ∖ 𝐴)) ∈ (𝒫 ω ∩ Fin))
5 difss 4059 . . . . . . 7 (ω ∖ 𝐴) ⊆ ω
6 omsson 7564 . . . . . . 7 ω ⊆ On
75, 6sstri 3924 . . . . . 6 (ω ∖ 𝐴) ⊆ On
8 ominf 8714 . . . . . . . 8 ¬ ω ∈ Fin
9 elinel2 4123 . . . . . . . 8 (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ Fin)
10 difinf 8772 . . . . . . . 8 ((¬ ω ∈ Fin ∧ 𝐴 ∈ Fin) → ¬ (ω ∖ 𝐴) ∈ Fin)
118, 9, 10sylancr 590 . . . . . . 7 (𝐴 ∈ (𝒫 ω ∩ Fin) → ¬ (ω ∖ 𝐴) ∈ Fin)
12 0fin 8730 . . . . . . . . 9 ∅ ∈ Fin
13 eleq1 2877 . . . . . . . . 9 ((ω ∖ 𝐴) = ∅ → ((ω ∖ 𝐴) ∈ Fin ↔ ∅ ∈ Fin))
1412, 13mpbiri 261 . . . . . . . 8 ((ω ∖ 𝐴) = ∅ → (ω ∖ 𝐴) ∈ Fin)
1514necon3bi 3013 . . . . . . 7 (¬ (ω ∖ 𝐴) ∈ Fin → (ω ∖ 𝐴) ≠ ∅)
1611, 15syl 17 . . . . . 6 (𝐴 ∈ (𝒫 ω ∩ Fin) → (ω ∖ 𝐴) ≠ ∅)
17 onint 7490 . . . . . 6 (((ω ∖ 𝐴) ⊆ On ∧ (ω ∖ 𝐴) ≠ ∅) → (ω ∖ 𝐴) ∈ (ω ∖ 𝐴))
187, 16, 17sylancr 590 . . . . 5 (𝐴 ∈ (𝒫 ω ∩ Fin) → (ω ∖ 𝐴) ∈ (ω ∖ 𝐴))
1918eldifad 3893 . . . 4 (𝐴 ∈ (𝒫 ω ∩ Fin) → (ω ∖ 𝐴) ∈ ω)
20 ackbij1lem4 9634 . . . 4 ( (ω ∖ 𝐴) ∈ ω → { (ω ∖ 𝐴)} ∈ (𝒫 ω ∩ Fin))
2119, 20syl 17 . . 3 (𝐴 ∈ (𝒫 ω ∩ Fin) → { (ω ∖ 𝐴)} ∈ (𝒫 ω ∩ Fin))
22 ackbij1lem6 9636 . . 3 (((𝐴 (ω ∖ 𝐴)) ∈ (𝒫 ω ∩ Fin) ∧ { (ω ∖ 𝐴)} ∈ (𝒫 ω ∩ Fin)) → ((𝐴 (ω ∖ 𝐴)) ∪ { (ω ∖ 𝐴)}) ∈ (𝒫 ω ∩ Fin))
234, 21, 22syl2anc 587 . 2 (𝐴 ∈ (𝒫 ω ∩ Fin) → ((𝐴 (ω ∖ 𝐴)) ∪ { (ω ∖ 𝐴)}) ∈ (𝒫 ω ∩ Fin))
2418eldifbd 3894 . . . . . 6 (𝐴 ∈ (𝒫 ω ∩ Fin) → ¬ (ω ∖ 𝐴) ∈ 𝐴)
25 disjsn 4607 . . . . . 6 ((𝐴 ∩ { (ω ∖ 𝐴)}) = ∅ ↔ ¬ (ω ∖ 𝐴) ∈ 𝐴)
2624, 25sylibr 237 . . . . 5 (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐴 ∩ { (ω ∖ 𝐴)}) = ∅)
27 ssdisj 4367 . . . . 5 (((𝐴 (ω ∖ 𝐴)) ⊆ 𝐴 ∧ (𝐴 ∩ { (ω ∖ 𝐴)}) = ∅) → ((𝐴 (ω ∖ 𝐴)) ∩ { (ω ∖ 𝐴)}) = ∅)
281, 26, 27sylancr 590 . . . 4 (𝐴 ∈ (𝒫 ω ∩ Fin) → ((𝐴 (ω ∖ 𝐴)) ∩ { (ω ∖ 𝐴)}) = ∅)
292ackbij1lem9 9639 . . . 4 (((𝐴 (ω ∖ 𝐴)) ∈ (𝒫 ω ∩ Fin) ∧ { (ω ∖ 𝐴)} ∈ (𝒫 ω ∩ Fin) ∧ ((𝐴 (ω ∖ 𝐴)) ∩ { (ω ∖ 𝐴)}) = ∅) → (𝐹‘((𝐴 (ω ∖ 𝐴)) ∪ { (ω ∖ 𝐴)})) = ((𝐹‘(𝐴 (ω ∖ 𝐴))) +o (𝐹‘{ (ω ∖ 𝐴)})))
304, 21, 28, 29syl3anc 1368 . . 3 (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐹‘((𝐴 (ω ∖ 𝐴)) ∪ { (ω ∖ 𝐴)})) = ((𝐹‘(𝐴 (ω ∖ 𝐴))) +o (𝐹‘{ (ω ∖ 𝐴)})))
312ackbij1lem14 9644 . . . . 5 ( (ω ∖ 𝐴) ∈ ω → (𝐹‘{ (ω ∖ 𝐴)}) = suc (𝐹 (ω ∖ 𝐴)))
3219, 31syl 17 . . . 4 (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐹‘{ (ω ∖ 𝐴)}) = suc (𝐹 (ω ∖ 𝐴)))
3332oveq2d 7151 . . 3 (𝐴 ∈ (𝒫 ω ∩ Fin) → ((𝐹‘(𝐴 (ω ∖ 𝐴))) +o (𝐹‘{ (ω ∖ 𝐴)})) = ((𝐹‘(𝐴 (ω ∖ 𝐴))) +o suc (𝐹 (ω ∖ 𝐴))))
342ackbij1lem10 9640 . . . . . . 7 𝐹:(𝒫 ω ∩ Fin)⟶ω
3534ffvelrni 6827 . . . . . 6 ((𝐴 (ω ∖ 𝐴)) ∈ (𝒫 ω ∩ Fin) → (𝐹‘(𝐴 (ω ∖ 𝐴))) ∈ ω)
364, 35syl 17 . . . . 5 (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐹‘(𝐴 (ω ∖ 𝐴))) ∈ ω)
37 ackbij1lem3 9633 . . . . . . 7 ( (ω ∖ 𝐴) ∈ ω → (ω ∖ 𝐴) ∈ (𝒫 ω ∩ Fin))
3819, 37syl 17 . . . . . 6 (𝐴 ∈ (𝒫 ω ∩ Fin) → (ω ∖ 𝐴) ∈ (𝒫 ω ∩ Fin))
3934ffvelrni 6827 . . . . . 6 ( (ω ∖ 𝐴) ∈ (𝒫 ω ∩ Fin) → (𝐹 (ω ∖ 𝐴)) ∈ ω)
4038, 39syl 17 . . . . 5 (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐹 (ω ∖ 𝐴)) ∈ ω)
41 nnasuc 8215 . . . . 5 (((𝐹‘(𝐴 (ω ∖ 𝐴))) ∈ ω ∧ (𝐹 (ω ∖ 𝐴)) ∈ ω) → ((𝐹‘(𝐴 (ω ∖ 𝐴))) +o suc (𝐹 (ω ∖ 𝐴))) = suc ((𝐹‘(𝐴 (ω ∖ 𝐴))) +o (𝐹 (ω ∖ 𝐴))))
4236, 40, 41syl2anc 587 . . . 4 (𝐴 ∈ (𝒫 ω ∩ Fin) → ((𝐹‘(𝐴 (ω ∖ 𝐴))) +o suc (𝐹 (ω ∖ 𝐴))) = suc ((𝐹‘(𝐴 (ω ∖ 𝐴))) +o (𝐹 (ω ∖ 𝐴))))
43 incom 4128 . . . . . . . . 9 ((𝐴 (ω ∖ 𝐴)) ∩ (ω ∖ 𝐴)) = ( (ω ∖ 𝐴) ∩ (𝐴 (ω ∖ 𝐴)))
44 disjdif 4379 . . . . . . . . 9 ( (ω ∖ 𝐴) ∩ (𝐴 (ω ∖ 𝐴))) = ∅
4543, 44eqtri 2821 . . . . . . . 8 ((𝐴 (ω ∖ 𝐴)) ∩ (ω ∖ 𝐴)) = ∅
4645a1i 11 . . . . . . 7 (𝐴 ∈ (𝒫 ω ∩ Fin) → ((𝐴 (ω ∖ 𝐴)) ∩ (ω ∖ 𝐴)) = ∅)
472ackbij1lem9 9639 . . . . . . 7 (((𝐴 (ω ∖ 𝐴)) ∈ (𝒫 ω ∩ Fin) ∧ (ω ∖ 𝐴) ∈ (𝒫 ω ∩ Fin) ∧ ((𝐴 (ω ∖ 𝐴)) ∩ (ω ∖ 𝐴)) = ∅) → (𝐹‘((𝐴 (ω ∖ 𝐴)) ∪ (ω ∖ 𝐴))) = ((𝐹‘(𝐴 (ω ∖ 𝐴))) +o (𝐹 (ω ∖ 𝐴))))
484, 38, 46, 47syl3anc 1368 . . . . . 6 (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐹‘((𝐴 (ω ∖ 𝐴)) ∪ (ω ∖ 𝐴))) = ((𝐹‘(𝐴 (ω ∖ 𝐴))) +o (𝐹 (ω ∖ 𝐴))))
49 uncom 4080 . . . . . . . 8 ((𝐴 (ω ∖ 𝐴)) ∪ (ω ∖ 𝐴)) = ( (ω ∖ 𝐴) ∪ (𝐴 (ω ∖ 𝐴)))
50 onnmin 7498 . . . . . . . . . . . . . . 15 (((ω ∖ 𝐴) ⊆ On ∧ 𝑎 ∈ (ω ∖ 𝐴)) → ¬ 𝑎 (ω ∖ 𝐴))
517, 50mpan 689 . . . . . . . . . . . . . 14 (𝑎 ∈ (ω ∖ 𝐴) → ¬ 𝑎 (ω ∖ 𝐴))
5251con2i 141 . . . . . . . . . . . . 13 (𝑎 (ω ∖ 𝐴) → ¬ 𝑎 ∈ (ω ∖ 𝐴))
5352adantl 485 . . . . . . . . . . . 12 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝑎 (ω ∖ 𝐴)) → ¬ 𝑎 ∈ (ω ∖ 𝐴))
54 ordom 7569 . . . . . . . . . . . . . . 15 Ord ω
55 ordelss 6175 . . . . . . . . . . . . . . 15 ((Ord ω ∧ (ω ∖ 𝐴) ∈ ω) → (ω ∖ 𝐴) ⊆ ω)
5654, 19, 55sylancr 590 . . . . . . . . . . . . . 14 (𝐴 ∈ (𝒫 ω ∩ Fin) → (ω ∖ 𝐴) ⊆ ω)
5756sselda 3915 . . . . . . . . . . . . 13 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝑎 (ω ∖ 𝐴)) → 𝑎 ∈ ω)
58 eldif 3891 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (ω ∖ 𝐴) ↔ (𝑎 ∈ ω ∧ ¬ 𝑎𝐴))
5958simplbi2 504 . . . . . . . . . . . . . . 15 (𝑎 ∈ ω → (¬ 𝑎𝐴𝑎 ∈ (ω ∖ 𝐴)))
6059orrd 860 . . . . . . . . . . . . . 14 (𝑎 ∈ ω → (𝑎𝐴𝑎 ∈ (ω ∖ 𝐴)))
6160orcomd 868 . . . . . . . . . . . . 13 (𝑎 ∈ ω → (𝑎 ∈ (ω ∖ 𝐴) ∨ 𝑎𝐴))
6257, 61syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝑎 (ω ∖ 𝐴)) → (𝑎 ∈ (ω ∖ 𝐴) ∨ 𝑎𝐴))
63 orel1 886 . . . . . . . . . . . 12 𝑎 ∈ (ω ∖ 𝐴) → ((𝑎 ∈ (ω ∖ 𝐴) ∨ 𝑎𝐴) → 𝑎𝐴))
6453, 62, 63sylc 65 . . . . . . . . . . 11 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝑎 (ω ∖ 𝐴)) → 𝑎𝐴)
6564ex 416 . . . . . . . . . 10 (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝑎 (ω ∖ 𝐴) → 𝑎𝐴))
6665ssrdv 3921 . . . . . . . . 9 (𝐴 ∈ (𝒫 ω ∩ Fin) → (ω ∖ 𝐴) ⊆ 𝐴)
67 undif 4388 . . . . . . . . 9 ( (ω ∖ 𝐴) ⊆ 𝐴 ↔ ( (ω ∖ 𝐴) ∪ (𝐴 (ω ∖ 𝐴))) = 𝐴)
6866, 67sylib 221 . . . . . . . 8 (𝐴 ∈ (𝒫 ω ∩ Fin) → ( (ω ∖ 𝐴) ∪ (𝐴 (ω ∖ 𝐴))) = 𝐴)
6949, 68syl5eq 2845 . . . . . . 7 (𝐴 ∈ (𝒫 ω ∩ Fin) → ((𝐴 (ω ∖ 𝐴)) ∪ (ω ∖ 𝐴)) = 𝐴)
7069fveq2d 6649 . . . . . 6 (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐹‘((𝐴 (ω ∖ 𝐴)) ∪ (ω ∖ 𝐴))) = (𝐹𝐴))
7148, 70eqtr3d 2835 . . . . 5 (𝐴 ∈ (𝒫 ω ∩ Fin) → ((𝐹‘(𝐴 (ω ∖ 𝐴))) +o (𝐹 (ω ∖ 𝐴))) = (𝐹𝐴))
72 suceq 6224 . . . . 5 (((𝐹‘(𝐴 (ω ∖ 𝐴))) +o (𝐹 (ω ∖ 𝐴))) = (𝐹𝐴) → suc ((𝐹‘(𝐴 (ω ∖ 𝐴))) +o (𝐹 (ω ∖ 𝐴))) = suc (𝐹𝐴))
7371, 72syl 17 . . . 4 (𝐴 ∈ (𝒫 ω ∩ Fin) → suc ((𝐹‘(𝐴 (ω ∖ 𝐴))) +o (𝐹 (ω ∖ 𝐴))) = suc (𝐹𝐴))
7442, 73eqtrd 2833 . . 3 (𝐴 ∈ (𝒫 ω ∩ Fin) → ((𝐹‘(𝐴 (ω ∖ 𝐴))) +o suc (𝐹 (ω ∖ 𝐴))) = suc (𝐹𝐴))
7530, 33, 743eqtrd 2837 . 2 (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐹‘((𝐴 (ω ∖ 𝐴)) ∪ { (ω ∖ 𝐴)})) = suc (𝐹𝐴))
76 fveqeq2 6654 . . 3 (𝑏 = ((𝐴 (ω ∖ 𝐴)) ∪ { (ω ∖ 𝐴)}) → ((𝐹𝑏) = suc (𝐹𝐴) ↔ (𝐹‘((𝐴 (ω ∖ 𝐴)) ∪ { (ω ∖ 𝐴)})) = suc (𝐹𝐴)))
7776rspcev 3571 . 2 ((((𝐴 (ω ∖ 𝐴)) ∪ { (ω ∖ 𝐴)}) ∈ (𝒫 ω ∩ Fin) ∧ (𝐹‘((𝐴 (ω ∖ 𝐴)) ∪ { (ω ∖ 𝐴)})) = suc (𝐹𝐴)) → ∃𝑏 ∈ (𝒫 ω ∩ Fin)(𝐹𝑏) = suc (𝐹𝐴))
7823, 75, 77syl2anc 587 1 (𝐴 ∈ (𝒫 ω ∩ Fin) → ∃𝑏 ∈ (𝒫 ω ∩ Fin)(𝐹𝑏) = suc (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 844   = wceq 1538  wcel 2111  wne 2987  wrex 3107  cdif 3878  cun 3879  cin 3880  wss 3881  c0 4243  𝒫 cpw 4497  {csn 4525   cint 4838   ciun 4881  cmpt 5110   × cxp 5517  Ord word 6158  Oncon0 6159  suc csuc 6161  cfv 6324  (class class class)co 7135  ωcom 7560   +o coa 8082  Fincfn 8492  cardccrd 9348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352
This theorem is referenced by:  ackbij1  9649
  Copyright terms: Public domain W3C validator