Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pthhashvtx Structured version   Visualization version   GIF version

Theorem pthhashvtx 34868
Description: A graph containing a path has at least as many vertices as there are edges in the path. (Contributed by BTernaryTau, 5-Oct-2023.)
Hypothesis
Ref Expression
pthhashvtx.1 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
pthhashvtx (𝐹(Paths‘𝐺)𝑃 → (♯‘𝐹) ≤ (♯‘𝑉))

Proof of Theorem pthhashvtx
StepHypRef Expression
1 hashfz0 14427 . . . 4 (((♯‘𝐹) − 1) ∈ ℕ0 → (♯‘(0...((♯‘𝐹) − 1))) = (((♯‘𝐹) − 1) + 1))
2 pthiswlk 29613 . . . . . 6 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
3 wlkcl 29501 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
42, 3syl 17 . . . . 5 (𝐹(Paths‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
5 nn0cn 12515 . . . . 5 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℂ)
6 npcan1 11671 . . . . 5 ((♯‘𝐹) ∈ ℂ → (((♯‘𝐹) − 1) + 1) = (♯‘𝐹))
74, 5, 63syl 18 . . . 4 (𝐹(Paths‘𝐺)𝑃 → (((♯‘𝐹) − 1) + 1) = (♯‘𝐹))
81, 7sylan9eqr 2787 . . 3 ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0) → (♯‘(0...((♯‘𝐹) − 1))) = (♯‘𝐹))
9 pthhashvtx.1 . . . . . . . 8 𝑉 = (Vtx‘𝐺)
109wlkp 29502 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶𝑉)
112, 10syl 17 . . . . . 6 (𝐹(Paths‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶𝑉)
1211ffnd 6724 . . . . 5 (𝐹(Paths‘𝐺)𝑃𝑃 Fn (0...(♯‘𝐹)))
13 fzfi 13973 . . . . 5 (0...((♯‘𝐹) − 1)) ∈ Fin
14 resfnfinfin 9358 . . . . 5 ((𝑃 Fn (0...(♯‘𝐹)) ∧ (0...((♯‘𝐹) − 1)) ∈ Fin) → (𝑃 ↾ (0...((♯‘𝐹) − 1))) ∈ Fin)
1512, 13, 14sylancl 584 . . . 4 (𝐹(Paths‘𝐺)𝑃 → (𝑃 ↾ (0...((♯‘𝐹) − 1))) ∈ Fin)
16 simpr 483 . . . . 5 ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0) → ((♯‘𝐹) − 1) ∈ ℕ0)
17 fzssp1 13579 . . . . . . . 8 (0...((♯‘𝐹) − 1)) ⊆ (0...(((♯‘𝐹) − 1) + 1))
187oveq2d 7435 . . . . . . . 8 (𝐹(Paths‘𝐺)𝑃 → (0...(((♯‘𝐹) − 1) + 1)) = (0...(♯‘𝐹)))
1917, 18sseqtrid 4029 . . . . . . 7 (𝐹(Paths‘𝐺)𝑃 → (0...((♯‘𝐹) − 1)) ⊆ (0...(♯‘𝐹)))
2011, 19fssresd 6764 . . . . . 6 (𝐹(Paths‘𝐺)𝑃 → (𝑃 ↾ (0...((♯‘𝐹) − 1))):(0...((♯‘𝐹) − 1))⟶𝑉)
2120adantr 479 . . . . 5 ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0) → (𝑃 ↾ (0...((♯‘𝐹) − 1))):(0...((♯‘𝐹) − 1))⟶𝑉)
22 fz1ssfz0 13632 . . . . . . . . 9 (1...((♯‘𝐹) − 1)) ⊆ (0...((♯‘𝐹) − 1))
2322a1i 11 . . . . . . . 8 (𝐹(Paths‘𝐺)𝑃 → (1...((♯‘𝐹) − 1)) ⊆ (0...((♯‘𝐹) − 1)))
2420, 23fssresd 6764 . . . . . . 7 (𝐹(Paths‘𝐺)𝑃 → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))):(1...((♯‘𝐹) − 1))⟶𝑉)
25 ispth 29609 . . . . . . . . 9 (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅))
2625simp2bi 1143 . . . . . . . 8 (𝐹(Paths‘𝐺)𝑃 → Fun (𝑃 ↾ (1..^(♯‘𝐹))))
27 nn0z 12616 . . . . . . . . . . . . . 14 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℤ)
28 fzoval 13668 . . . . . . . . . . . . . 14 ((♯‘𝐹) ∈ ℤ → (1..^(♯‘𝐹)) = (1...((♯‘𝐹) − 1)))
2927, 28syl 17 . . . . . . . . . . . . 13 ((♯‘𝐹) ∈ ℕ0 → (1..^(♯‘𝐹)) = (1...((♯‘𝐹) − 1)))
304, 29syl 17 . . . . . . . . . . . 12 (𝐹(Paths‘𝐺)𝑃 → (1..^(♯‘𝐹)) = (1...((♯‘𝐹) − 1)))
3130reseq2d 5985 . . . . . . . . . . 11 (𝐹(Paths‘𝐺)𝑃 → (𝑃 ↾ (1..^(♯‘𝐹))) = (𝑃 ↾ (1...((♯‘𝐹) − 1))))
32 resabs1 6012 . . . . . . . . . . . 12 ((1...((♯‘𝐹) − 1)) ⊆ (0...((♯‘𝐹) − 1)) → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))) = (𝑃 ↾ (1...((♯‘𝐹) − 1))))
3322, 32ax-mp 5 . . . . . . . . . . 11 ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))) = (𝑃 ↾ (1...((♯‘𝐹) − 1)))
3431, 33eqtr4di 2783 . . . . . . . . . 10 (𝐹(Paths‘𝐺)𝑃 → (𝑃 ↾ (1..^(♯‘𝐹))) = ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))))
3534cnveqd 5878 . . . . . . . . 9 (𝐹(Paths‘𝐺)𝑃(𝑃 ↾ (1..^(♯‘𝐹))) = ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))))
3635funeqd 6576 . . . . . . . 8 (𝐹(Paths‘𝐺)𝑃 → (Fun (𝑃 ↾ (1..^(♯‘𝐹))) ↔ Fun ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1)))))
3726, 36mpbid 231 . . . . . . 7 (𝐹(Paths‘𝐺)𝑃 → Fun ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))))
38 df-f1 6554 . . . . . . 7 (((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))):(1...((♯‘𝐹) − 1))–1-1𝑉 ↔ (((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))):(1...((♯‘𝐹) − 1))⟶𝑉 ∧ Fun ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1)))))
3924, 37, 38sylanbrc 581 . . . . . 6 (𝐹(Paths‘𝐺)𝑃 → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))):(1...((♯‘𝐹) − 1))–1-1𝑉)
4039adantr 479 . . . . 5 ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0) → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))):(1...((♯‘𝐹) − 1))–1-1𝑉)
41 snsspr1 4819 . . . . . . . 8 {0} ⊆ {0, (♯‘𝐹)}
42 imass2 6107 . . . . . . . 8 ({0} ⊆ {0, (♯‘𝐹)} → (𝑃 “ {0}) ⊆ (𝑃 “ {0, (♯‘𝐹)}))
4341, 42ax-mp 5 . . . . . . 7 (𝑃 “ {0}) ⊆ (𝑃 “ {0, (♯‘𝐹)})
44 0elfz 13633 . . . . . . . . 9 (((♯‘𝐹) − 1) ∈ ℕ0 → 0 ∈ (0...((♯‘𝐹) − 1)))
4544snssd 4814 . . . . . . . 8 (((♯‘𝐹) − 1) ∈ ℕ0 → {0} ⊆ (0...((♯‘𝐹) − 1)))
46 resima2 6021 . . . . . . . 8 ({0} ⊆ (0...((♯‘𝐹) − 1)) → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0}) = (𝑃 “ {0}))
47 sseq1 4002 . . . . . . . 8 (((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0}) = (𝑃 “ {0}) → (((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0}) ⊆ (𝑃 “ {0, (♯‘𝐹)}) ↔ (𝑃 “ {0}) ⊆ (𝑃 “ {0, (♯‘𝐹)})))
4845, 46, 473syl 18 . . . . . . 7 (((♯‘𝐹) − 1) ∈ ℕ0 → (((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0}) ⊆ (𝑃 “ {0, (♯‘𝐹)}) ↔ (𝑃 “ {0}) ⊆ (𝑃 “ {0, (♯‘𝐹)})))
4943, 48mpbiri 257 . . . . . 6 (((♯‘𝐹) − 1) ∈ ℕ0 → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0}) ⊆ (𝑃 “ {0, (♯‘𝐹)}))
50 resima2 6021 . . . . . . . . . 10 ((1...((♯‘𝐹) − 1)) ⊆ (0...((♯‘𝐹) − 1)) → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ (1...((♯‘𝐹) − 1))) = (𝑃 “ (1...((♯‘𝐹) − 1))))
5122, 50ax-mp 5 . . . . . . . . 9 ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ (1...((♯‘𝐹) − 1))) = (𝑃 “ (1...((♯‘𝐹) − 1)))
5230imaeq2d 6064 . . . . . . . . 9 (𝐹(Paths‘𝐺)𝑃 → (𝑃 “ (1..^(♯‘𝐹))) = (𝑃 “ (1...((♯‘𝐹) − 1))))
5351, 52eqtr4id 2784 . . . . . . . 8 (𝐹(Paths‘𝐺)𝑃 → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ (1...((♯‘𝐹) − 1))) = (𝑃 “ (1..^(♯‘𝐹))))
5453ineq2d 4210 . . . . . . 7 (𝐹(Paths‘𝐺)𝑃 → ((𝑃 “ {0, (♯‘𝐹)}) ∩ ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ (1...((♯‘𝐹) − 1)))) = ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))))
5525simp3bi 1144 . . . . . . 7 (𝐹(Paths‘𝐺)𝑃 → ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)
5654, 55eqtrd 2765 . . . . . 6 (𝐹(Paths‘𝐺)𝑃 → ((𝑃 “ {0, (♯‘𝐹)}) ∩ ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ (1...((♯‘𝐹) − 1)))) = ∅)
57 ssdisj 4461 . . . . . 6 ((((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0}) ⊆ (𝑃 “ {0, (♯‘𝐹)}) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ (1...((♯‘𝐹) − 1)))) = ∅) → (((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0}) ∩ ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ (1...((♯‘𝐹) − 1)))) = ∅)
5849, 56, 57syl2anr 595 . . . . 5 ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0) → (((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0}) ∩ ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ (1...((♯‘𝐹) − 1)))) = ∅)
5916, 21, 40, 58f1resfz0f1d 34854 . . . 4 ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0) → (𝑃 ↾ (0...((♯‘𝐹) − 1))):(0...((♯‘𝐹) − 1))–1-1𝑉)
609fvexi 6910 . . . . 5 𝑉 ∈ V
61 hashf1dmcdm 14439 . . . . 5 (((𝑃 ↾ (0...((♯‘𝐹) − 1))) ∈ Fin ∧ 𝑉 ∈ V ∧ (𝑃 ↾ (0...((♯‘𝐹) − 1))):(0...((♯‘𝐹) − 1))–1-1𝑉) → (♯‘(0...((♯‘𝐹) − 1))) ≤ (♯‘𝑉))
6260, 61mp3an2 1445 . . . 4 (((𝑃 ↾ (0...((♯‘𝐹) − 1))) ∈ Fin ∧ (𝑃 ↾ (0...((♯‘𝐹) − 1))):(0...((♯‘𝐹) − 1))–1-1𝑉) → (♯‘(0...((♯‘𝐹) − 1))) ≤ (♯‘𝑉))
6315, 59, 62syl2an2r 683 . . 3 ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0) → (♯‘(0...((♯‘𝐹) − 1))) ≤ (♯‘𝑉))
648, 63eqbrtrrd 5173 . 2 ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0) → (♯‘𝐹) ≤ (♯‘𝑉))
65 0nn0m1nnn0 34853 . . . . 5 ((♯‘𝐹) = 0 ↔ ((♯‘𝐹) ∈ ℕ0 ∧ ¬ ((♯‘𝐹) − 1) ∈ ℕ0))
6665biimpri 227 . . . 4 (((♯‘𝐹) ∈ ℕ0 ∧ ¬ ((♯‘𝐹) − 1) ∈ ℕ0) → (♯‘𝐹) = 0)
674, 66sylan 578 . . 3 ((𝐹(Paths‘𝐺)𝑃 ∧ ¬ ((♯‘𝐹) − 1) ∈ ℕ0) → (♯‘𝐹) = 0)
68 hashge0 14382 . . . 4 (𝑉 ∈ V → 0 ≤ (♯‘𝑉))
6960, 68ax-mp 5 . . 3 0 ≤ (♯‘𝑉)
7067, 69eqbrtrdi 5188 . 2 ((𝐹(Paths‘𝐺)𝑃 ∧ ¬ ((♯‘𝐹) − 1) ∈ ℕ0) → (♯‘𝐹) ≤ (♯‘𝑉))
7164, 70pm2.61dan 811 1 (𝐹(Paths‘𝐺)𝑃 → (♯‘𝐹) ≤ (♯‘𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  Vcvv 3461  cin 3943  wss 3944  c0 4322  {csn 4630  {cpr 4632   class class class wbr 5149  ccnv 5677  cres 5680  cima 5681  Fun wfun 6543   Fn wfn 6544  wf 6545  1-1wf1 6546  cfv 6549  (class class class)co 7419  Fincfn 8964  cc 11138  0cc0 11140  1c1 11141   + caddc 11143  cle 11281  cmin 11476  0cn0 12505  cz 12591  ...cfz 13519  ..^cfzo 13662  chash 14325  Vtxcvtx 28881  Walkscwlks 29482  Trailsctrls 29576  Pathscpths 29598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ifp 1061  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-oadd 8491  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9926  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-n0 12506  df-xnn0 12578  df-z 12592  df-uz 12856  df-fz 13520  df-fzo 13663  df-hash 14326  df-word 14501  df-wlks 29485  df-trls 29578  df-pths 29602
This theorem is referenced by:  usgrcyclgt2v  34872  acycgr1v  34890
  Copyright terms: Public domain W3C validator