Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pthhashvtx Structured version   Visualization version   GIF version

Theorem pthhashvtx 32487
Description: A graph containing a path has at least as many vertices as there are edges in the path. (Contributed by BTernaryTau, 5-Oct-2023.)
Hypothesis
Ref Expression
pthhashvtx.1 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
pthhashvtx (𝐹(Paths‘𝐺)𝑃 → (♯‘𝐹) ≤ (♯‘𝑉))

Proof of Theorem pthhashvtx
StepHypRef Expression
1 hashfz0 13789 . . . 4 (((♯‘𝐹) − 1) ∈ ℕ0 → (♯‘(0...((♯‘𝐹) − 1))) = (((♯‘𝐹) − 1) + 1))
2 pthiswlk 27516 . . . . . 6 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
3 wlkcl 27405 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
42, 3syl 17 . . . . 5 (𝐹(Paths‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
5 nn0cn 11895 . . . . 5 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℂ)
6 npcan1 11054 . . . . 5 ((♯‘𝐹) ∈ ℂ → (((♯‘𝐹) − 1) + 1) = (♯‘𝐹))
74, 5, 63syl 18 . . . 4 (𝐹(Paths‘𝐺)𝑃 → (((♯‘𝐹) − 1) + 1) = (♯‘𝐹))
81, 7sylan9eqr 2855 . . 3 ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0) → (♯‘(0...((♯‘𝐹) − 1))) = (♯‘𝐹))
9 pthhashvtx.1 . . . . . . . 8 𝑉 = (Vtx‘𝐺)
109wlkp 27406 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶𝑉)
112, 10syl 17 . . . . . 6 (𝐹(Paths‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶𝑉)
1211ffnd 6488 . . . . 5 (𝐹(Paths‘𝐺)𝑃𝑃 Fn (0...(♯‘𝐹)))
13 fzfi 13335 . . . . 5 (0...((♯‘𝐹) − 1)) ∈ Fin
14 resfnfinfin 8788 . . . . 5 ((𝑃 Fn (0...(♯‘𝐹)) ∧ (0...((♯‘𝐹) − 1)) ∈ Fin) → (𝑃 ↾ (0...((♯‘𝐹) − 1))) ∈ Fin)
1512, 13, 14sylancl 589 . . . 4 (𝐹(Paths‘𝐺)𝑃 → (𝑃 ↾ (0...((♯‘𝐹) − 1))) ∈ Fin)
16 simpr 488 . . . . 5 ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0) → ((♯‘𝐹) − 1) ∈ ℕ0)
17 fzssp1 12945 . . . . . . . 8 (0...((♯‘𝐹) − 1)) ⊆ (0...(((♯‘𝐹) − 1) + 1))
187oveq2d 7151 . . . . . . . 8 (𝐹(Paths‘𝐺)𝑃 → (0...(((♯‘𝐹) − 1) + 1)) = (0...(♯‘𝐹)))
1917, 18sseqtrid 3967 . . . . . . 7 (𝐹(Paths‘𝐺)𝑃 → (0...((♯‘𝐹) − 1)) ⊆ (0...(♯‘𝐹)))
2011, 19fssresd 6519 . . . . . 6 (𝐹(Paths‘𝐺)𝑃 → (𝑃 ↾ (0...((♯‘𝐹) − 1))):(0...((♯‘𝐹) − 1))⟶𝑉)
2120adantr 484 . . . . 5 ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0) → (𝑃 ↾ (0...((♯‘𝐹) − 1))):(0...((♯‘𝐹) − 1))⟶𝑉)
22 fz1ssfz0 12998 . . . . . . . . 9 (1...((♯‘𝐹) − 1)) ⊆ (0...((♯‘𝐹) − 1))
2322a1i 11 . . . . . . . 8 (𝐹(Paths‘𝐺)𝑃 → (1...((♯‘𝐹) − 1)) ⊆ (0...((♯‘𝐹) − 1)))
2420, 23fssresd 6519 . . . . . . 7 (𝐹(Paths‘𝐺)𝑃 → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))):(1...((♯‘𝐹) − 1))⟶𝑉)
25 ispth 27512 . . . . . . . . 9 (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅))
2625simp2bi 1143 . . . . . . . 8 (𝐹(Paths‘𝐺)𝑃 → Fun (𝑃 ↾ (1..^(♯‘𝐹))))
27 nn0z 11993 . . . . . . . . . . . . . 14 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℤ)
28 fzoval 13034 . . . . . . . . . . . . . 14 ((♯‘𝐹) ∈ ℤ → (1..^(♯‘𝐹)) = (1...((♯‘𝐹) − 1)))
2927, 28syl 17 . . . . . . . . . . . . 13 ((♯‘𝐹) ∈ ℕ0 → (1..^(♯‘𝐹)) = (1...((♯‘𝐹) − 1)))
304, 29syl 17 . . . . . . . . . . . 12 (𝐹(Paths‘𝐺)𝑃 → (1..^(♯‘𝐹)) = (1...((♯‘𝐹) − 1)))
3130reseq2d 5818 . . . . . . . . . . 11 (𝐹(Paths‘𝐺)𝑃 → (𝑃 ↾ (1..^(♯‘𝐹))) = (𝑃 ↾ (1...((♯‘𝐹) − 1))))
32 resabs1 5848 . . . . . . . . . . . 12 ((1...((♯‘𝐹) − 1)) ⊆ (0...((♯‘𝐹) − 1)) → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))) = (𝑃 ↾ (1...((♯‘𝐹) − 1))))
3322, 32ax-mp 5 . . . . . . . . . . 11 ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))) = (𝑃 ↾ (1...((♯‘𝐹) − 1)))
3431, 33eqtr4di 2851 . . . . . . . . . 10 (𝐹(Paths‘𝐺)𝑃 → (𝑃 ↾ (1..^(♯‘𝐹))) = ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))))
3534cnveqd 5710 . . . . . . . . 9 (𝐹(Paths‘𝐺)𝑃(𝑃 ↾ (1..^(♯‘𝐹))) = ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))))
3635funeqd 6346 . . . . . . . 8 (𝐹(Paths‘𝐺)𝑃 → (Fun (𝑃 ↾ (1..^(♯‘𝐹))) ↔ Fun ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1)))))
3726, 36mpbid 235 . . . . . . 7 (𝐹(Paths‘𝐺)𝑃 → Fun ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))))
38 df-f1 6329 . . . . . . 7 (((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))):(1...((♯‘𝐹) − 1))–1-1𝑉 ↔ (((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))):(1...((♯‘𝐹) − 1))⟶𝑉 ∧ Fun ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1)))))
3924, 37, 38sylanbrc 586 . . . . . 6 (𝐹(Paths‘𝐺)𝑃 → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))):(1...((♯‘𝐹) − 1))–1-1𝑉)
4039adantr 484 . . . . 5 ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0) → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))):(1...((♯‘𝐹) − 1))–1-1𝑉)
41 snsspr1 4707 . . . . . . . 8 {0} ⊆ {0, (♯‘𝐹)}
42 imass2 5932 . . . . . . . 8 ({0} ⊆ {0, (♯‘𝐹)} → (𝑃 “ {0}) ⊆ (𝑃 “ {0, (♯‘𝐹)}))
4341, 42ax-mp 5 . . . . . . 7 (𝑃 “ {0}) ⊆ (𝑃 “ {0, (♯‘𝐹)})
44 0elfz 12999 . . . . . . . . 9 (((♯‘𝐹) − 1) ∈ ℕ0 → 0 ∈ (0...((♯‘𝐹) − 1)))
4544snssd 4702 . . . . . . . 8 (((♯‘𝐹) − 1) ∈ ℕ0 → {0} ⊆ (0...((♯‘𝐹) − 1)))
46 resima2 5853 . . . . . . . 8 ({0} ⊆ (0...((♯‘𝐹) − 1)) → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0}) = (𝑃 “ {0}))
47 sseq1 3940 . . . . . . . 8 (((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0}) = (𝑃 “ {0}) → (((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0}) ⊆ (𝑃 “ {0, (♯‘𝐹)}) ↔ (𝑃 “ {0}) ⊆ (𝑃 “ {0, (♯‘𝐹)})))
4845, 46, 473syl 18 . . . . . . 7 (((♯‘𝐹) − 1) ∈ ℕ0 → (((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0}) ⊆ (𝑃 “ {0, (♯‘𝐹)}) ↔ (𝑃 “ {0}) ⊆ (𝑃 “ {0, (♯‘𝐹)})))
4943, 48mpbiri 261 . . . . . 6 (((♯‘𝐹) − 1) ∈ ℕ0 → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0}) ⊆ (𝑃 “ {0, (♯‘𝐹)}))
50 resima2 5853 . . . . . . . . . 10 ((1...((♯‘𝐹) − 1)) ⊆ (0...((♯‘𝐹) − 1)) → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ (1...((♯‘𝐹) − 1))) = (𝑃 “ (1...((♯‘𝐹) − 1))))
5122, 50ax-mp 5 . . . . . . . . 9 ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ (1...((♯‘𝐹) − 1))) = (𝑃 “ (1...((♯‘𝐹) − 1)))
5230imaeq2d 5896 . . . . . . . . 9 (𝐹(Paths‘𝐺)𝑃 → (𝑃 “ (1..^(♯‘𝐹))) = (𝑃 “ (1...((♯‘𝐹) − 1))))
5351, 52eqtr4id 2852 . . . . . . . 8 (𝐹(Paths‘𝐺)𝑃 → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ (1...((♯‘𝐹) − 1))) = (𝑃 “ (1..^(♯‘𝐹))))
5453ineq2d 4139 . . . . . . 7 (𝐹(Paths‘𝐺)𝑃 → ((𝑃 “ {0, (♯‘𝐹)}) ∩ ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ (1...((♯‘𝐹) − 1)))) = ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))))
5525simp3bi 1144 . . . . . . 7 (𝐹(Paths‘𝐺)𝑃 → ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)
5654, 55eqtrd 2833 . . . . . 6 (𝐹(Paths‘𝐺)𝑃 → ((𝑃 “ {0, (♯‘𝐹)}) ∩ ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ (1...((♯‘𝐹) − 1)))) = ∅)
57 ssdisj 4367 . . . . . 6 ((((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0}) ⊆ (𝑃 “ {0, (♯‘𝐹)}) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ (1...((♯‘𝐹) − 1)))) = ∅) → (((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0}) ∩ ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ (1...((♯‘𝐹) − 1)))) = ∅)
5849, 56, 57syl2anr 599 . . . . 5 ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0) → (((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0}) ∩ ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ (1...((♯‘𝐹) − 1)))) = ∅)
5916, 21, 40, 58f1resfz0f1d 32471 . . . 4 ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0) → (𝑃 ↾ (0...((♯‘𝐹) − 1))):(0...((♯‘𝐹) − 1))–1-1𝑉)
609fvexi 6659 . . . . 5 𝑉 ∈ V
61 hashf1dmcdm 32466 . . . . 5 (((𝑃 ↾ (0...((♯‘𝐹) − 1))) ∈ Fin ∧ 𝑉 ∈ V ∧ (𝑃 ↾ (0...((♯‘𝐹) − 1))):(0...((♯‘𝐹) − 1))–1-1𝑉) → (♯‘(0...((♯‘𝐹) − 1))) ≤ (♯‘𝑉))
6260, 61mp3an2 1446 . . . 4 (((𝑃 ↾ (0...((♯‘𝐹) − 1))) ∈ Fin ∧ (𝑃 ↾ (0...((♯‘𝐹) − 1))):(0...((♯‘𝐹) − 1))–1-1𝑉) → (♯‘(0...((♯‘𝐹) − 1))) ≤ (♯‘𝑉))
6315, 59, 62syl2an2r 684 . . 3 ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0) → (♯‘(0...((♯‘𝐹) − 1))) ≤ (♯‘𝑉))
648, 63eqbrtrrd 5054 . 2 ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0) → (♯‘𝐹) ≤ (♯‘𝑉))
65 0nn0m1nnn0 32461 . . . . 5 ((♯‘𝐹) = 0 ↔ ((♯‘𝐹) ∈ ℕ0 ∧ ¬ ((♯‘𝐹) − 1) ∈ ℕ0))
6665biimpri 231 . . . 4 (((♯‘𝐹) ∈ ℕ0 ∧ ¬ ((♯‘𝐹) − 1) ∈ ℕ0) → (♯‘𝐹) = 0)
674, 66sylan 583 . . 3 ((𝐹(Paths‘𝐺)𝑃 ∧ ¬ ((♯‘𝐹) − 1) ∈ ℕ0) → (♯‘𝐹) = 0)
68 hashge0 13744 . . . 4 (𝑉 ∈ V → 0 ≤ (♯‘𝑉))
6960, 68ax-mp 5 . . 3 0 ≤ (♯‘𝑉)
7067, 69eqbrtrdi 5069 . 2 ((𝐹(Paths‘𝐺)𝑃 ∧ ¬ ((♯‘𝐹) − 1) ∈ ℕ0) → (♯‘𝐹) ≤ (♯‘𝑉))
7164, 70pm2.61dan 812 1 (𝐹(Paths‘𝐺)𝑃 → (♯‘𝐹) ≤ (♯‘𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  Vcvv 3441  cin 3880  wss 3881  c0 4243  {csn 4525  {cpr 4527   class class class wbr 5030  ccnv 5518  cres 5521  cima 5522  Fun wfun 6318   Fn wfn 6319  wf 6320  1-1wf1 6321  cfv 6324  (class class class)co 7135  Fincfn 8492  cc 10524  0cc0 10526  1c1 10527   + caddc 10529  cle 10665  cmin 10859  0cn0 11885  cz 11969  ...cfz 12885  ..^cfzo 13028  chash 13686  Vtxcvtx 26789  Walkscwlks 27386  Trailsctrls 27480  Pathscpths 27501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-wlks 27389  df-trls 27482  df-pths 27505
This theorem is referenced by:  usgrcyclgt2v  32491  acycgr1v  32509
  Copyright terms: Public domain W3C validator