Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pthhashvtx Structured version   Visualization version   GIF version

Theorem pthhashvtx 35133
Description: A graph containing a path has at least as many vertices as there are edges in the path. (Contributed by BTernaryTau, 5-Oct-2023.)
Hypothesis
Ref Expression
pthhashvtx.1 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
pthhashvtx (𝐹(Paths‘𝐺)𝑃 → (♯‘𝐹) ≤ (♯‘𝑉))

Proof of Theorem pthhashvtx
StepHypRef Expression
1 hashfz0 14471 . . . 4 (((♯‘𝐹) − 1) ∈ ℕ0 → (♯‘(0...((♯‘𝐹) − 1))) = (((♯‘𝐹) − 1) + 1))
2 pthiswlk 29745 . . . . . 6 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
3 wlkcl 29633 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
42, 3syl 17 . . . . 5 (𝐹(Paths‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
5 nn0cn 12536 . . . . 5 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℂ)
6 npcan1 11688 . . . . 5 ((♯‘𝐹) ∈ ℂ → (((♯‘𝐹) − 1) + 1) = (♯‘𝐹))
74, 5, 63syl 18 . . . 4 (𝐹(Paths‘𝐺)𝑃 → (((♯‘𝐹) − 1) + 1) = (♯‘𝐹))
81, 7sylan9eqr 2799 . . 3 ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0) → (♯‘(0...((♯‘𝐹) − 1))) = (♯‘𝐹))
9 pthhashvtx.1 . . . . . . . 8 𝑉 = (Vtx‘𝐺)
109wlkp 29634 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶𝑉)
112, 10syl 17 . . . . . 6 (𝐹(Paths‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶𝑉)
1211ffnd 6737 . . . . 5 (𝐹(Paths‘𝐺)𝑃𝑃 Fn (0...(♯‘𝐹)))
13 fzfi 14013 . . . . 5 (0...((♯‘𝐹) − 1)) ∈ Fin
14 resfnfinfin 9377 . . . . 5 ((𝑃 Fn (0...(♯‘𝐹)) ∧ (0...((♯‘𝐹) − 1)) ∈ Fin) → (𝑃 ↾ (0...((♯‘𝐹) − 1))) ∈ Fin)
1512, 13, 14sylancl 586 . . . 4 (𝐹(Paths‘𝐺)𝑃 → (𝑃 ↾ (0...((♯‘𝐹) − 1))) ∈ Fin)
16 simpr 484 . . . . 5 ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0) → ((♯‘𝐹) − 1) ∈ ℕ0)
17 fzssp1 13607 . . . . . . . 8 (0...((♯‘𝐹) − 1)) ⊆ (0...(((♯‘𝐹) − 1) + 1))
187oveq2d 7447 . . . . . . . 8 (𝐹(Paths‘𝐺)𝑃 → (0...(((♯‘𝐹) − 1) + 1)) = (0...(♯‘𝐹)))
1917, 18sseqtrid 4026 . . . . . . 7 (𝐹(Paths‘𝐺)𝑃 → (0...((♯‘𝐹) − 1)) ⊆ (0...(♯‘𝐹)))
2011, 19fssresd 6775 . . . . . 6 (𝐹(Paths‘𝐺)𝑃 → (𝑃 ↾ (0...((♯‘𝐹) − 1))):(0...((♯‘𝐹) − 1))⟶𝑉)
2120adantr 480 . . . . 5 ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0) → (𝑃 ↾ (0...((♯‘𝐹) − 1))):(0...((♯‘𝐹) − 1))⟶𝑉)
22 fz1ssfz0 13663 . . . . . . . . 9 (1...((♯‘𝐹) − 1)) ⊆ (0...((♯‘𝐹) − 1))
2322a1i 11 . . . . . . . 8 (𝐹(Paths‘𝐺)𝑃 → (1...((♯‘𝐹) − 1)) ⊆ (0...((♯‘𝐹) − 1)))
2420, 23fssresd 6775 . . . . . . 7 (𝐹(Paths‘𝐺)𝑃 → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))):(1...((♯‘𝐹) − 1))⟶𝑉)
25 ispth 29741 . . . . . . . . 9 (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅))
2625simp2bi 1147 . . . . . . . 8 (𝐹(Paths‘𝐺)𝑃 → Fun (𝑃 ↾ (1..^(♯‘𝐹))))
27 nn0z 12638 . . . . . . . . . . . . . 14 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℤ)
28 fzoval 13700 . . . . . . . . . . . . . 14 ((♯‘𝐹) ∈ ℤ → (1..^(♯‘𝐹)) = (1...((♯‘𝐹) − 1)))
2927, 28syl 17 . . . . . . . . . . . . 13 ((♯‘𝐹) ∈ ℕ0 → (1..^(♯‘𝐹)) = (1...((♯‘𝐹) − 1)))
304, 29syl 17 . . . . . . . . . . . 12 (𝐹(Paths‘𝐺)𝑃 → (1..^(♯‘𝐹)) = (1...((♯‘𝐹) − 1)))
3130reseq2d 5997 . . . . . . . . . . 11 (𝐹(Paths‘𝐺)𝑃 → (𝑃 ↾ (1..^(♯‘𝐹))) = (𝑃 ↾ (1...((♯‘𝐹) − 1))))
32 resabs1 6024 . . . . . . . . . . . 12 ((1...((♯‘𝐹) − 1)) ⊆ (0...((♯‘𝐹) − 1)) → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))) = (𝑃 ↾ (1...((♯‘𝐹) − 1))))
3322, 32ax-mp 5 . . . . . . . . . . 11 ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))) = (𝑃 ↾ (1...((♯‘𝐹) − 1)))
3431, 33eqtr4di 2795 . . . . . . . . . 10 (𝐹(Paths‘𝐺)𝑃 → (𝑃 ↾ (1..^(♯‘𝐹))) = ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))))
3534cnveqd 5886 . . . . . . . . 9 (𝐹(Paths‘𝐺)𝑃(𝑃 ↾ (1..^(♯‘𝐹))) = ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))))
3635funeqd 6588 . . . . . . . 8 (𝐹(Paths‘𝐺)𝑃 → (Fun (𝑃 ↾ (1..^(♯‘𝐹))) ↔ Fun ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1)))))
3726, 36mpbid 232 . . . . . . 7 (𝐹(Paths‘𝐺)𝑃 → Fun ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))))
38 df-f1 6566 . . . . . . 7 (((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))):(1...((♯‘𝐹) − 1))–1-1𝑉 ↔ (((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))):(1...((♯‘𝐹) − 1))⟶𝑉 ∧ Fun ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1)))))
3924, 37, 38sylanbrc 583 . . . . . 6 (𝐹(Paths‘𝐺)𝑃 → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))):(1...((♯‘𝐹) − 1))–1-1𝑉)
4039adantr 480 . . . . 5 ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0) → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))):(1...((♯‘𝐹) − 1))–1-1𝑉)
41 snsspr1 4814 . . . . . . . 8 {0} ⊆ {0, (♯‘𝐹)}
42 imass2 6120 . . . . . . . 8 ({0} ⊆ {0, (♯‘𝐹)} → (𝑃 “ {0}) ⊆ (𝑃 “ {0, (♯‘𝐹)}))
4341, 42ax-mp 5 . . . . . . 7 (𝑃 “ {0}) ⊆ (𝑃 “ {0, (♯‘𝐹)})
44 0elfz 13664 . . . . . . . . 9 (((♯‘𝐹) − 1) ∈ ℕ0 → 0 ∈ (0...((♯‘𝐹) − 1)))
4544snssd 4809 . . . . . . . 8 (((♯‘𝐹) − 1) ∈ ℕ0 → {0} ⊆ (0...((♯‘𝐹) − 1)))
46 resima2 6034 . . . . . . . 8 ({0} ⊆ (0...((♯‘𝐹) − 1)) → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0}) = (𝑃 “ {0}))
47 sseq1 4009 . . . . . . . 8 (((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0}) = (𝑃 “ {0}) → (((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0}) ⊆ (𝑃 “ {0, (♯‘𝐹)}) ↔ (𝑃 “ {0}) ⊆ (𝑃 “ {0, (♯‘𝐹)})))
4845, 46, 473syl 18 . . . . . . 7 (((♯‘𝐹) − 1) ∈ ℕ0 → (((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0}) ⊆ (𝑃 “ {0, (♯‘𝐹)}) ↔ (𝑃 “ {0}) ⊆ (𝑃 “ {0, (♯‘𝐹)})))
4943, 48mpbiri 258 . . . . . 6 (((♯‘𝐹) − 1) ∈ ℕ0 → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0}) ⊆ (𝑃 “ {0, (♯‘𝐹)}))
50 resima2 6034 . . . . . . . . . 10 ((1...((♯‘𝐹) − 1)) ⊆ (0...((♯‘𝐹) − 1)) → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ (1...((♯‘𝐹) − 1))) = (𝑃 “ (1...((♯‘𝐹) − 1))))
5122, 50ax-mp 5 . . . . . . . . 9 ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ (1...((♯‘𝐹) − 1))) = (𝑃 “ (1...((♯‘𝐹) − 1)))
5230imaeq2d 6078 . . . . . . . . 9 (𝐹(Paths‘𝐺)𝑃 → (𝑃 “ (1..^(♯‘𝐹))) = (𝑃 “ (1...((♯‘𝐹) − 1))))
5351, 52eqtr4id 2796 . . . . . . . 8 (𝐹(Paths‘𝐺)𝑃 → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ (1...((♯‘𝐹) − 1))) = (𝑃 “ (1..^(♯‘𝐹))))
5453ineq2d 4220 . . . . . . 7 (𝐹(Paths‘𝐺)𝑃 → ((𝑃 “ {0, (♯‘𝐹)}) ∩ ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ (1...((♯‘𝐹) − 1)))) = ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))))
5525simp3bi 1148 . . . . . . 7 (𝐹(Paths‘𝐺)𝑃 → ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)
5654, 55eqtrd 2777 . . . . . 6 (𝐹(Paths‘𝐺)𝑃 → ((𝑃 “ {0, (♯‘𝐹)}) ∩ ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ (1...((♯‘𝐹) − 1)))) = ∅)
57 ssdisj 4460 . . . . . 6 ((((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0}) ⊆ (𝑃 “ {0, (♯‘𝐹)}) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ (1...((♯‘𝐹) − 1)))) = ∅) → (((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0}) ∩ ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ (1...((♯‘𝐹) − 1)))) = ∅)
5849, 56, 57syl2anr 597 . . . . 5 ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0) → (((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0}) ∩ ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ (1...((♯‘𝐹) − 1)))) = ∅)
5916, 21, 40, 58f1resfz0f1d 35119 . . . 4 ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0) → (𝑃 ↾ (0...((♯‘𝐹) − 1))):(0...((♯‘𝐹) − 1))–1-1𝑉)
609fvexi 6920 . . . . 5 𝑉 ∈ V
61 hashf1dmcdm 14483 . . . . 5 (((𝑃 ↾ (0...((♯‘𝐹) − 1))) ∈ Fin ∧ 𝑉 ∈ V ∧ (𝑃 ↾ (0...((♯‘𝐹) − 1))):(0...((♯‘𝐹) − 1))–1-1𝑉) → (♯‘(0...((♯‘𝐹) − 1))) ≤ (♯‘𝑉))
6260, 61mp3an2 1451 . . . 4 (((𝑃 ↾ (0...((♯‘𝐹) − 1))) ∈ Fin ∧ (𝑃 ↾ (0...((♯‘𝐹) − 1))):(0...((♯‘𝐹) − 1))–1-1𝑉) → (♯‘(0...((♯‘𝐹) − 1))) ≤ (♯‘𝑉))
6315, 59, 62syl2an2r 685 . . 3 ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0) → (♯‘(0...((♯‘𝐹) − 1))) ≤ (♯‘𝑉))
648, 63eqbrtrrd 5167 . 2 ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0) → (♯‘𝐹) ≤ (♯‘𝑉))
65 0nn0m1nnn0 35118 . . . . 5 ((♯‘𝐹) = 0 ↔ ((♯‘𝐹) ∈ ℕ0 ∧ ¬ ((♯‘𝐹) − 1) ∈ ℕ0))
6665biimpri 228 . . . 4 (((♯‘𝐹) ∈ ℕ0 ∧ ¬ ((♯‘𝐹) − 1) ∈ ℕ0) → (♯‘𝐹) = 0)
674, 66sylan 580 . . 3 ((𝐹(Paths‘𝐺)𝑃 ∧ ¬ ((♯‘𝐹) − 1) ∈ ℕ0) → (♯‘𝐹) = 0)
68 hashge0 14426 . . . 4 (𝑉 ∈ V → 0 ≤ (♯‘𝑉))
6960, 68ax-mp 5 . . 3 0 ≤ (♯‘𝑉)
7067, 69eqbrtrdi 5182 . 2 ((𝐹(Paths‘𝐺)𝑃 ∧ ¬ ((♯‘𝐹) − 1) ∈ ℕ0) → (♯‘𝐹) ≤ (♯‘𝑉))
7164, 70pm2.61dan 813 1 (𝐹(Paths‘𝐺)𝑃 → (♯‘𝐹) ≤ (♯‘𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  cin 3950  wss 3951  c0 4333  {csn 4626  {cpr 4628   class class class wbr 5143  ccnv 5684  cres 5687  cima 5688  Fun wfun 6555   Fn wfn 6556  wf 6557  1-1wf1 6558  cfv 6561  (class class class)co 7431  Fincfn 8985  cc 11153  0cc0 11155  1c1 11156   + caddc 11158  cle 11296  cmin 11492  0cn0 12526  cz 12613  ...cfz 13547  ..^cfzo 13694  chash 14369  Vtxcvtx 29013  Walkscwlks 29614  Trailsctrls 29708  Pathscpths 29730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-wlks 29617  df-trls 29710  df-pths 29734
This theorem is referenced by:  usgrcyclgt2v  35136  acycgr1v  35154
  Copyright terms: Public domain W3C validator