Proof of Theorem pthhashvtx
Step | Hyp | Ref
| Expression |
1 | | hashfz0 14075 |
. . . 4
⊢
(((♯‘𝐹)
− 1) ∈ ℕ0 →
(♯‘(0...((♯‘𝐹) − 1))) = (((♯‘𝐹) − 1) +
1)) |
2 | | pthiswlk 27996 |
. . . . . 6
⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) |
3 | | wlkcl 27885 |
. . . . . 6
⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈
ℕ0) |
4 | 2, 3 | syl 17 |
. . . . 5
⊢ (𝐹(Paths‘𝐺)𝑃 → (♯‘𝐹) ∈
ℕ0) |
5 | | nn0cn 12173 |
. . . . 5
⊢
((♯‘𝐹)
∈ ℕ0 → (♯‘𝐹) ∈ ℂ) |
6 | | npcan1 11330 |
. . . . 5
⊢
((♯‘𝐹)
∈ ℂ → (((♯‘𝐹) − 1) + 1) = (♯‘𝐹)) |
7 | 4, 5, 6 | 3syl 18 |
. . . 4
⊢ (𝐹(Paths‘𝐺)𝑃 → (((♯‘𝐹) − 1) + 1) = (♯‘𝐹)) |
8 | 1, 7 | sylan9eqr 2801 |
. . 3
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0)
→ (♯‘(0...((♯‘𝐹) − 1))) = (♯‘𝐹)) |
9 | | pthhashvtx.1 |
. . . . . . . 8
⊢ 𝑉 = (Vtx‘𝐺) |
10 | 9 | wlkp 27886 |
. . . . . . 7
⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶𝑉) |
11 | 2, 10 | syl 17 |
. . . . . 6
⊢ (𝐹(Paths‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶𝑉) |
12 | 11 | ffnd 6585 |
. . . . 5
⊢ (𝐹(Paths‘𝐺)𝑃 → 𝑃 Fn (0...(♯‘𝐹))) |
13 | | fzfi 13620 |
. . . . 5
⊢
(0...((♯‘𝐹) − 1)) ∈ Fin |
14 | | resfnfinfin 9029 |
. . . . 5
⊢ ((𝑃 Fn (0...(♯‘𝐹)) ∧
(0...((♯‘𝐹)
− 1)) ∈ Fin) → (𝑃 ↾ (0...((♯‘𝐹) − 1))) ∈
Fin) |
15 | 12, 13, 14 | sylancl 585 |
. . . 4
⊢ (𝐹(Paths‘𝐺)𝑃 → (𝑃 ↾ (0...((♯‘𝐹) − 1))) ∈
Fin) |
16 | | simpr 484 |
. . . . 5
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0)
→ ((♯‘𝐹)
− 1) ∈ ℕ0) |
17 | | fzssp1 13228 |
. . . . . . . 8
⊢
(0...((♯‘𝐹) − 1)) ⊆
(0...(((♯‘𝐹)
− 1) + 1)) |
18 | 7 | oveq2d 7271 |
. . . . . . . 8
⊢ (𝐹(Paths‘𝐺)𝑃 → (0...(((♯‘𝐹) − 1) + 1)) =
(0...(♯‘𝐹))) |
19 | 17, 18 | sseqtrid 3969 |
. . . . . . 7
⊢ (𝐹(Paths‘𝐺)𝑃 → (0...((♯‘𝐹) − 1)) ⊆
(0...(♯‘𝐹))) |
20 | 11, 19 | fssresd 6625 |
. . . . . 6
⊢ (𝐹(Paths‘𝐺)𝑃 → (𝑃 ↾ (0...((♯‘𝐹) −
1))):(0...((♯‘𝐹) − 1))⟶𝑉) |
21 | 20 | adantr 480 |
. . . . 5
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0)
→ (𝑃 ↾
(0...((♯‘𝐹)
− 1))):(0...((♯‘𝐹) − 1))⟶𝑉) |
22 | | fz1ssfz0 13281 |
. . . . . . . . 9
⊢
(1...((♯‘𝐹) − 1)) ⊆
(0...((♯‘𝐹)
− 1)) |
23 | 22 | a1i 11 |
. . . . . . . 8
⊢ (𝐹(Paths‘𝐺)𝑃 → (1...((♯‘𝐹) − 1)) ⊆
(0...((♯‘𝐹)
− 1))) |
24 | 20, 23 | fssresd 6625 |
. . . . . . 7
⊢ (𝐹(Paths‘𝐺)𝑃 → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾
(1...((♯‘𝐹)
− 1))):(1...((♯‘𝐹) − 1))⟶𝑉) |
25 | | ispth 27992 |
. . . . . . . . 9
⊢ (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) =
∅)) |
26 | 25 | simp2bi 1144 |
. . . . . . . 8
⊢ (𝐹(Paths‘𝐺)𝑃 → Fun ◡(𝑃 ↾ (1..^(♯‘𝐹)))) |
27 | | nn0z 12273 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝐹)
∈ ℕ0 → (♯‘𝐹) ∈ ℤ) |
28 | | fzoval 13317 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝐹)
∈ ℤ → (1..^(♯‘𝐹)) = (1...((♯‘𝐹) − 1))) |
29 | 27, 28 | syl 17 |
. . . . . . . . . . . . 13
⊢
((♯‘𝐹)
∈ ℕ0 → (1..^(♯‘𝐹)) = (1...((♯‘𝐹) − 1))) |
30 | 4, 29 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝐹(Paths‘𝐺)𝑃 → (1..^(♯‘𝐹)) = (1...((♯‘𝐹) − 1))) |
31 | 30 | reseq2d 5880 |
. . . . . . . . . . 11
⊢ (𝐹(Paths‘𝐺)𝑃 → (𝑃 ↾ (1..^(♯‘𝐹))) = (𝑃 ↾ (1...((♯‘𝐹) − 1)))) |
32 | | resabs1 5910 |
. . . . . . . . . . . 12
⊢
((1...((♯‘𝐹) − 1)) ⊆
(0...((♯‘𝐹)
− 1)) → ((𝑃
↾ (0...((♯‘𝐹) − 1))) ↾
(1...((♯‘𝐹)
− 1))) = (𝑃 ↾
(1...((♯‘𝐹)
− 1)))) |
33 | 22, 32 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ((𝑃 ↾
(0...((♯‘𝐹)
− 1))) ↾ (1...((♯‘𝐹) − 1))) = (𝑃 ↾ (1...((♯‘𝐹) − 1))) |
34 | 31, 33 | eqtr4di 2797 |
. . . . . . . . . 10
⊢ (𝐹(Paths‘𝐺)𝑃 → (𝑃 ↾ (1..^(♯‘𝐹))) = ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾
(1...((♯‘𝐹)
− 1)))) |
35 | 34 | cnveqd 5773 |
. . . . . . . . 9
⊢ (𝐹(Paths‘𝐺)𝑃 → ◡(𝑃 ↾ (1..^(♯‘𝐹))) = ◡((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾
(1...((♯‘𝐹)
− 1)))) |
36 | 35 | funeqd 6440 |
. . . . . . . 8
⊢ (𝐹(Paths‘𝐺)𝑃 → (Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ↔ Fun ◡((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾
(1...((♯‘𝐹)
− 1))))) |
37 | 26, 36 | mpbid 231 |
. . . . . . 7
⊢ (𝐹(Paths‘𝐺)𝑃 → Fun ◡((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾
(1...((♯‘𝐹)
− 1)))) |
38 | | df-f1 6423 |
. . . . . . 7
⊢ (((𝑃 ↾
(0...((♯‘𝐹)
− 1))) ↾ (1...((♯‘𝐹) − 1))):(1...((♯‘𝐹) − 1))–1-1→𝑉 ↔ (((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾
(1...((♯‘𝐹)
− 1))):(1...((♯‘𝐹) − 1))⟶𝑉 ∧ Fun ◡((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾
(1...((♯‘𝐹)
− 1))))) |
39 | 24, 37, 38 | sylanbrc 582 |
. . . . . 6
⊢ (𝐹(Paths‘𝐺)𝑃 → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾
(1...((♯‘𝐹)
− 1))):(1...((♯‘𝐹) − 1))–1-1→𝑉) |
40 | 39 | adantr 480 |
. . . . 5
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0)
→ ((𝑃 ↾
(0...((♯‘𝐹)
− 1))) ↾ (1...((♯‘𝐹) − 1))):(1...((♯‘𝐹) − 1))–1-1→𝑉) |
41 | | snsspr1 4744 |
. . . . . . . 8
⊢ {0}
⊆ {0, (♯‘𝐹)} |
42 | | imass2 5999 |
. . . . . . . 8
⊢ ({0}
⊆ {0, (♯‘𝐹)} → (𝑃 “ {0}) ⊆ (𝑃 “ {0, (♯‘𝐹)})) |
43 | 41, 42 | ax-mp 5 |
. . . . . . 7
⊢ (𝑃 “ {0}) ⊆ (𝑃 “ {0,
(♯‘𝐹)}) |
44 | | 0elfz 13282 |
. . . . . . . . 9
⊢
(((♯‘𝐹)
− 1) ∈ ℕ0 → 0 ∈
(0...((♯‘𝐹)
− 1))) |
45 | 44 | snssd 4739 |
. . . . . . . 8
⊢
(((♯‘𝐹)
− 1) ∈ ℕ0 → {0} ⊆
(0...((♯‘𝐹)
− 1))) |
46 | | resima2 5915 |
. . . . . . . 8
⊢ ({0}
⊆ (0...((♯‘𝐹) − 1)) → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0}) =
(𝑃 “
{0})) |
47 | | sseq1 3942 |
. . . . . . . 8
⊢ (((𝑃 ↾
(0...((♯‘𝐹)
− 1))) “ {0}) = (𝑃 “ {0}) → (((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0})
⊆ (𝑃 “ {0,
(♯‘𝐹)}) ↔
(𝑃 “ {0}) ⊆
(𝑃 “ {0,
(♯‘𝐹)}))) |
48 | 45, 46, 47 | 3syl 18 |
. . . . . . 7
⊢
(((♯‘𝐹)
− 1) ∈ ℕ0 → (((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0})
⊆ (𝑃 “ {0,
(♯‘𝐹)}) ↔
(𝑃 “ {0}) ⊆
(𝑃 “ {0,
(♯‘𝐹)}))) |
49 | 43, 48 | mpbiri 257 |
. . . . . 6
⊢
(((♯‘𝐹)
− 1) ∈ ℕ0 → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0})
⊆ (𝑃 “ {0,
(♯‘𝐹)})) |
50 | | resima2 5915 |
. . . . . . . . . 10
⊢
((1...((♯‘𝐹) − 1)) ⊆
(0...((♯‘𝐹)
− 1)) → ((𝑃
↾ (0...((♯‘𝐹) − 1))) “
(1...((♯‘𝐹)
− 1))) = (𝑃 “
(1...((♯‘𝐹)
− 1)))) |
51 | 22, 50 | ax-mp 5 |
. . . . . . . . 9
⊢ ((𝑃 ↾
(0...((♯‘𝐹)
− 1))) “ (1...((♯‘𝐹) − 1))) = (𝑃 “ (1...((♯‘𝐹) − 1))) |
52 | 30 | imaeq2d 5958 |
. . . . . . . . 9
⊢ (𝐹(Paths‘𝐺)𝑃 → (𝑃 “ (1..^(♯‘𝐹))) = (𝑃 “ (1...((♯‘𝐹) − 1)))) |
53 | 51, 52 | eqtr4id 2798 |
. . . . . . . 8
⊢ (𝐹(Paths‘𝐺)𝑃 → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “
(1...((♯‘𝐹)
− 1))) = (𝑃 “
(1..^(♯‘𝐹)))) |
54 | 53 | ineq2d 4143 |
. . . . . . 7
⊢ (𝐹(Paths‘𝐺)𝑃 → ((𝑃 “ {0, (♯‘𝐹)}) ∩ ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “
(1...((♯‘𝐹)
− 1)))) = ((𝑃 “
{0, (♯‘𝐹)})
∩ (𝑃 “
(1..^(♯‘𝐹))))) |
55 | 25 | simp3bi 1145 |
. . . . . . 7
⊢ (𝐹(Paths‘𝐺)𝑃 → ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) |
56 | 54, 55 | eqtrd 2778 |
. . . . . 6
⊢ (𝐹(Paths‘𝐺)𝑃 → ((𝑃 “ {0, (♯‘𝐹)}) ∩ ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “
(1...((♯‘𝐹)
− 1)))) = ∅) |
57 | | ssdisj 4390 |
. . . . . 6
⊢ ((((𝑃 ↾
(0...((♯‘𝐹)
− 1))) “ {0}) ⊆ (𝑃 “ {0, (♯‘𝐹)}) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “
(1...((♯‘𝐹)
− 1)))) = ∅) → (((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0})
∩ ((𝑃 ↾
(0...((♯‘𝐹)
− 1))) “ (1...((♯‘𝐹) − 1)))) = ∅) |
58 | 49, 56, 57 | syl2anr 596 |
. . . . 5
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0)
→ (((𝑃 ↾
(0...((♯‘𝐹)
− 1))) “ {0}) ∩ ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “
(1...((♯‘𝐹)
− 1)))) = ∅) |
59 | 16, 21, 40, 58 | f1resfz0f1d 32972 |
. . . 4
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0)
→ (𝑃 ↾
(0...((♯‘𝐹)
− 1))):(0...((♯‘𝐹) − 1))–1-1→𝑉) |
60 | 9 | fvexi 6770 |
. . . . 5
⊢ 𝑉 ∈ V |
61 | | hashf1dmcdm 32976 |
. . . . 5
⊢ (((𝑃 ↾
(0...((♯‘𝐹)
− 1))) ∈ Fin ∧ 𝑉 ∈ V ∧ (𝑃 ↾ (0...((♯‘𝐹) −
1))):(0...((♯‘𝐹) − 1))–1-1→𝑉) →
(♯‘(0...((♯‘𝐹) − 1))) ≤ (♯‘𝑉)) |
62 | 60, 61 | mp3an2 1447 |
. . . 4
⊢ (((𝑃 ↾
(0...((♯‘𝐹)
− 1))) ∈ Fin ∧ (𝑃 ↾ (0...((♯‘𝐹) −
1))):(0...((♯‘𝐹) − 1))–1-1→𝑉) →
(♯‘(0...((♯‘𝐹) − 1))) ≤ (♯‘𝑉)) |
63 | 15, 59, 62 | syl2an2r 681 |
. . 3
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0)
→ (♯‘(0...((♯‘𝐹) − 1))) ≤ (♯‘𝑉)) |
64 | 8, 63 | eqbrtrrd 5094 |
. 2
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0)
→ (♯‘𝐹)
≤ (♯‘𝑉)) |
65 | | 0nn0m1nnn0 32971 |
. . . . 5
⊢
((♯‘𝐹) =
0 ↔ ((♯‘𝐹)
∈ ℕ0 ∧ ¬ ((♯‘𝐹) − 1) ∈
ℕ0)) |
66 | 65 | biimpri 227 |
. . . 4
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ ¬ ((♯‘𝐹) − 1) ∈ ℕ0)
→ (♯‘𝐹) =
0) |
67 | 4, 66 | sylan 579 |
. . 3
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ ¬ ((♯‘𝐹) − 1) ∈
ℕ0) → (♯‘𝐹) = 0) |
68 | | hashge0 14030 |
. . . 4
⊢ (𝑉 ∈ V → 0 ≤
(♯‘𝑉)) |
69 | 60, 68 | ax-mp 5 |
. . 3
⊢ 0 ≤
(♯‘𝑉) |
70 | 67, 69 | eqbrtrdi 5109 |
. 2
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ ¬ ((♯‘𝐹) − 1) ∈
ℕ0) → (♯‘𝐹) ≤ (♯‘𝑉)) |
71 | 64, 70 | pm2.61dan 809 |
1
⊢ (𝐹(Paths‘𝐺)𝑃 → (♯‘𝐹) ≤ (♯‘𝑉)) |