Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pthhashvtx Structured version   Visualization version   GIF version

Theorem pthhashvtx 35193
Description: A graph containing a path has at least as many vertices as there are edges in the path. (Contributed by BTernaryTau, 5-Oct-2023.)
Hypothesis
Ref Expression
pthhashvtx.1 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
pthhashvtx (𝐹(Paths‘𝐺)𝑃 → (♯‘𝐹) ≤ (♯‘𝑉))

Proof of Theorem pthhashvtx
StepHypRef Expression
1 hashfz0 14341 . . . 4 (((♯‘𝐹) − 1) ∈ ℕ0 → (♯‘(0...((♯‘𝐹) − 1))) = (((♯‘𝐹) − 1) + 1))
2 pthiswlk 29705 . . . . . 6 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
3 wlkcl 29596 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
42, 3syl 17 . . . . 5 (𝐹(Paths‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
5 nn0cn 12398 . . . . 5 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℂ)
6 npcan1 11549 . . . . 5 ((♯‘𝐹) ∈ ℂ → (((♯‘𝐹) − 1) + 1) = (♯‘𝐹))
74, 5, 63syl 18 . . . 4 (𝐹(Paths‘𝐺)𝑃 → (((♯‘𝐹) − 1) + 1) = (♯‘𝐹))
81, 7sylan9eqr 2790 . . 3 ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0) → (♯‘(0...((♯‘𝐹) − 1))) = (♯‘𝐹))
9 pthhashvtx.1 . . . . . . . 8 𝑉 = (Vtx‘𝐺)
109wlkp 29597 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶𝑉)
112, 10syl 17 . . . . . 6 (𝐹(Paths‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶𝑉)
1211ffnd 6657 . . . . 5 (𝐹(Paths‘𝐺)𝑃𝑃 Fn (0...(♯‘𝐹)))
13 fzfi 13881 . . . . 5 (0...((♯‘𝐹) − 1)) ∈ Fin
14 resfnfinfin 9228 . . . . 5 ((𝑃 Fn (0...(♯‘𝐹)) ∧ (0...((♯‘𝐹) − 1)) ∈ Fin) → (𝑃 ↾ (0...((♯‘𝐹) − 1))) ∈ Fin)
1512, 13, 14sylancl 586 . . . 4 (𝐹(Paths‘𝐺)𝑃 → (𝑃 ↾ (0...((♯‘𝐹) − 1))) ∈ Fin)
16 simpr 484 . . . . 5 ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0) → ((♯‘𝐹) − 1) ∈ ℕ0)
17 fzssp1 13469 . . . . . . . 8 (0...((♯‘𝐹) − 1)) ⊆ (0...(((♯‘𝐹) − 1) + 1))
187oveq2d 7368 . . . . . . . 8 (𝐹(Paths‘𝐺)𝑃 → (0...(((♯‘𝐹) − 1) + 1)) = (0...(♯‘𝐹)))
1917, 18sseqtrid 3973 . . . . . . 7 (𝐹(Paths‘𝐺)𝑃 → (0...((♯‘𝐹) − 1)) ⊆ (0...(♯‘𝐹)))
2011, 19fssresd 6695 . . . . . 6 (𝐹(Paths‘𝐺)𝑃 → (𝑃 ↾ (0...((♯‘𝐹) − 1))):(0...((♯‘𝐹) − 1))⟶𝑉)
2120adantr 480 . . . . 5 ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0) → (𝑃 ↾ (0...((♯‘𝐹) − 1))):(0...((♯‘𝐹) − 1))⟶𝑉)
22 fz1ssfz0 13525 . . . . . . . . 9 (1...((♯‘𝐹) − 1)) ⊆ (0...((♯‘𝐹) − 1))
2322a1i 11 . . . . . . . 8 (𝐹(Paths‘𝐺)𝑃 → (1...((♯‘𝐹) − 1)) ⊆ (0...((♯‘𝐹) − 1)))
2420, 23fssresd 6695 . . . . . . 7 (𝐹(Paths‘𝐺)𝑃 → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))):(1...((♯‘𝐹) − 1))⟶𝑉)
25 ispth 29701 . . . . . . . . 9 (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅))
2625simp2bi 1146 . . . . . . . 8 (𝐹(Paths‘𝐺)𝑃 → Fun (𝑃 ↾ (1..^(♯‘𝐹))))
27 nn0z 12499 . . . . . . . . . . . . . 14 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℤ)
28 fzoval 13562 . . . . . . . . . . . . . 14 ((♯‘𝐹) ∈ ℤ → (1..^(♯‘𝐹)) = (1...((♯‘𝐹) − 1)))
2927, 28syl 17 . . . . . . . . . . . . 13 ((♯‘𝐹) ∈ ℕ0 → (1..^(♯‘𝐹)) = (1...((♯‘𝐹) − 1)))
304, 29syl 17 . . . . . . . . . . . 12 (𝐹(Paths‘𝐺)𝑃 → (1..^(♯‘𝐹)) = (1...((♯‘𝐹) − 1)))
3130reseq2d 5932 . . . . . . . . . . 11 (𝐹(Paths‘𝐺)𝑃 → (𝑃 ↾ (1..^(♯‘𝐹))) = (𝑃 ↾ (1...((♯‘𝐹) − 1))))
32 resabs1 5959 . . . . . . . . . . . 12 ((1...((♯‘𝐹) − 1)) ⊆ (0...((♯‘𝐹) − 1)) → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))) = (𝑃 ↾ (1...((♯‘𝐹) − 1))))
3322, 32ax-mp 5 . . . . . . . . . . 11 ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))) = (𝑃 ↾ (1...((♯‘𝐹) − 1)))
3431, 33eqtr4di 2786 . . . . . . . . . 10 (𝐹(Paths‘𝐺)𝑃 → (𝑃 ↾ (1..^(♯‘𝐹))) = ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))))
3534cnveqd 5819 . . . . . . . . 9 (𝐹(Paths‘𝐺)𝑃(𝑃 ↾ (1..^(♯‘𝐹))) = ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))))
3635funeqd 6508 . . . . . . . 8 (𝐹(Paths‘𝐺)𝑃 → (Fun (𝑃 ↾ (1..^(♯‘𝐹))) ↔ Fun ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1)))))
3726, 36mpbid 232 . . . . . . 7 (𝐹(Paths‘𝐺)𝑃 → Fun ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))))
38 df-f1 6491 . . . . . . 7 (((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))):(1...((♯‘𝐹) − 1))–1-1𝑉 ↔ (((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))):(1...((♯‘𝐹) − 1))⟶𝑉 ∧ Fun ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1)))))
3924, 37, 38sylanbrc 583 . . . . . 6 (𝐹(Paths‘𝐺)𝑃 → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))):(1...((♯‘𝐹) − 1))–1-1𝑉)
4039adantr 480 . . . . 5 ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0) → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) ↾ (1...((♯‘𝐹) − 1))):(1...((♯‘𝐹) − 1))–1-1𝑉)
41 snsspr1 4765 . . . . . . . 8 {0} ⊆ {0, (♯‘𝐹)}
42 imass2 6055 . . . . . . . 8 ({0} ⊆ {0, (♯‘𝐹)} → (𝑃 “ {0}) ⊆ (𝑃 “ {0, (♯‘𝐹)}))
4341, 42ax-mp 5 . . . . . . 7 (𝑃 “ {0}) ⊆ (𝑃 “ {0, (♯‘𝐹)})
44 0elfz 13526 . . . . . . . . 9 (((♯‘𝐹) − 1) ∈ ℕ0 → 0 ∈ (0...((♯‘𝐹) − 1)))
4544snssd 4760 . . . . . . . 8 (((♯‘𝐹) − 1) ∈ ℕ0 → {0} ⊆ (0...((♯‘𝐹) − 1)))
46 resima2 5969 . . . . . . . 8 ({0} ⊆ (0...((♯‘𝐹) − 1)) → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0}) = (𝑃 “ {0}))
47 sseq1 3956 . . . . . . . 8 (((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0}) = (𝑃 “ {0}) → (((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0}) ⊆ (𝑃 “ {0, (♯‘𝐹)}) ↔ (𝑃 “ {0}) ⊆ (𝑃 “ {0, (♯‘𝐹)})))
4845, 46, 473syl 18 . . . . . . 7 (((♯‘𝐹) − 1) ∈ ℕ0 → (((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0}) ⊆ (𝑃 “ {0, (♯‘𝐹)}) ↔ (𝑃 “ {0}) ⊆ (𝑃 “ {0, (♯‘𝐹)})))
4943, 48mpbiri 258 . . . . . 6 (((♯‘𝐹) − 1) ∈ ℕ0 → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0}) ⊆ (𝑃 “ {0, (♯‘𝐹)}))
50 resima2 5969 . . . . . . . . . 10 ((1...((♯‘𝐹) − 1)) ⊆ (0...((♯‘𝐹) − 1)) → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ (1...((♯‘𝐹) − 1))) = (𝑃 “ (1...((♯‘𝐹) − 1))))
5122, 50ax-mp 5 . . . . . . . . 9 ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ (1...((♯‘𝐹) − 1))) = (𝑃 “ (1...((♯‘𝐹) − 1)))
5230imaeq2d 6013 . . . . . . . . 9 (𝐹(Paths‘𝐺)𝑃 → (𝑃 “ (1..^(♯‘𝐹))) = (𝑃 “ (1...((♯‘𝐹) − 1))))
5351, 52eqtr4id 2787 . . . . . . . 8 (𝐹(Paths‘𝐺)𝑃 → ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ (1...((♯‘𝐹) − 1))) = (𝑃 “ (1..^(♯‘𝐹))))
5453ineq2d 4169 . . . . . . 7 (𝐹(Paths‘𝐺)𝑃 → ((𝑃 “ {0, (♯‘𝐹)}) ∩ ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ (1...((♯‘𝐹) − 1)))) = ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))))
5525simp3bi 1147 . . . . . . 7 (𝐹(Paths‘𝐺)𝑃 → ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)
5654, 55eqtrd 2768 . . . . . 6 (𝐹(Paths‘𝐺)𝑃 → ((𝑃 “ {0, (♯‘𝐹)}) ∩ ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ (1...((♯‘𝐹) − 1)))) = ∅)
57 ssdisj 4409 . . . . . 6 ((((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0}) ⊆ (𝑃 “ {0, (♯‘𝐹)}) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ (1...((♯‘𝐹) − 1)))) = ∅) → (((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0}) ∩ ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ (1...((♯‘𝐹) − 1)))) = ∅)
5849, 56, 57syl2anr 597 . . . . 5 ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0) → (((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ {0}) ∩ ((𝑃 ↾ (0...((♯‘𝐹) − 1))) “ (1...((♯‘𝐹) − 1)))) = ∅)
5916, 21, 40, 58f1resfz0f1d 35179 . . . 4 ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0) → (𝑃 ↾ (0...((♯‘𝐹) − 1))):(0...((♯‘𝐹) − 1))–1-1𝑉)
609fvexi 6842 . . . . 5 𝑉 ∈ V
61 hashf1dmcdm 14353 . . . . 5 (((𝑃 ↾ (0...((♯‘𝐹) − 1))) ∈ Fin ∧ 𝑉 ∈ V ∧ (𝑃 ↾ (0...((♯‘𝐹) − 1))):(0...((♯‘𝐹) − 1))–1-1𝑉) → (♯‘(0...((♯‘𝐹) − 1))) ≤ (♯‘𝑉))
6260, 61mp3an2 1451 . . . 4 (((𝑃 ↾ (0...((♯‘𝐹) − 1))) ∈ Fin ∧ (𝑃 ↾ (0...((♯‘𝐹) − 1))):(0...((♯‘𝐹) − 1))–1-1𝑉) → (♯‘(0...((♯‘𝐹) − 1))) ≤ (♯‘𝑉))
6315, 59, 62syl2an2r 685 . . 3 ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0) → (♯‘(0...((♯‘𝐹) − 1))) ≤ (♯‘𝑉))
648, 63eqbrtrrd 5117 . 2 ((𝐹(Paths‘𝐺)𝑃 ∧ ((♯‘𝐹) − 1) ∈ ℕ0) → (♯‘𝐹) ≤ (♯‘𝑉))
65 0nn0m1nnn0 35178 . . . . 5 ((♯‘𝐹) = 0 ↔ ((♯‘𝐹) ∈ ℕ0 ∧ ¬ ((♯‘𝐹) − 1) ∈ ℕ0))
6665biimpri 228 . . . 4 (((♯‘𝐹) ∈ ℕ0 ∧ ¬ ((♯‘𝐹) − 1) ∈ ℕ0) → (♯‘𝐹) = 0)
674, 66sylan 580 . . 3 ((𝐹(Paths‘𝐺)𝑃 ∧ ¬ ((♯‘𝐹) − 1) ∈ ℕ0) → (♯‘𝐹) = 0)
68 hashge0 14296 . . . 4 (𝑉 ∈ V → 0 ≤ (♯‘𝑉))
6960, 68ax-mp 5 . . 3 0 ≤ (♯‘𝑉)
7067, 69eqbrtrdi 5132 . 2 ((𝐹(Paths‘𝐺)𝑃 ∧ ¬ ((♯‘𝐹) − 1) ∈ ℕ0) → (♯‘𝐹) ≤ (♯‘𝑉))
7164, 70pm2.61dan 812 1 (𝐹(Paths‘𝐺)𝑃 → (♯‘𝐹) ≤ (♯‘𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  cin 3897  wss 3898  c0 4282  {csn 4575  {cpr 4577   class class class wbr 5093  ccnv 5618  cres 5621  cima 5622  Fun wfun 6480   Fn wfn 6481  wf 6482  1-1wf1 6483  cfv 6486  (class class class)co 7352  Fincfn 8875  cc 11011  0cc0 11013  1c1 11014   + caddc 11016  cle 11154  cmin 11351  0cn0 12388  cz 12475  ...cfz 13409  ..^cfzo 13556  chash 14239  Vtxcvtx 28976  Walkscwlks 29577  Trailsctrls 29669  Pathscpths 29690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-dju 9801  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-n0 12389  df-xnn0 12462  df-z 12476  df-uz 12739  df-fz 13410  df-fzo 13557  df-hash 14240  df-word 14423  df-wlks 29580  df-trls 29671  df-pths 29694
This theorem is referenced by:  usgrcyclgt2v  35196  acycgr1v  35214
  Copyright terms: Public domain W3C validator