| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > djuin | Structured version Visualization version GIF version | ||
| Description: The images of any classes under right and left injection produce disjoint sets. (Contributed by Jim Kingdon, 21-Jun-2022.) |
| Ref | Expression |
|---|---|
| djuin | ⊢ ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4175 | . 2 ⊢ ((inr “ 𝐵) ∩ (inl “ 𝐴)) = ((inl “ 𝐴) ∩ (inr “ 𝐵)) | |
| 2 | imassrn 6045 | . . . 4 ⊢ (inr “ 𝐵) ⊆ ran inr | |
| 3 | djurf1o 9873 | . . . . 5 ⊢ inr:V–1-1-onto→({1o} × V) | |
| 4 | f1of 6803 | . . . . 5 ⊢ (inr:V–1-1-onto→({1o} × V) → inr:V⟶({1o} × V)) | |
| 5 | frn 6698 | . . . . 5 ⊢ (inr:V⟶({1o} × V) → ran inr ⊆ ({1o} × V)) | |
| 6 | 3, 4, 5 | mp2b 10 | . . . 4 ⊢ ran inr ⊆ ({1o} × V) |
| 7 | 2, 6 | sstri 3959 | . . 3 ⊢ (inr “ 𝐵) ⊆ ({1o} × V) |
| 8 | incom 4175 | . . . 4 ⊢ ((inl “ 𝐴) ∩ ({1o} × V)) = (({1o} × V) ∩ (inl “ 𝐴)) | |
| 9 | imassrn 6045 | . . . . . 6 ⊢ (inl “ 𝐴) ⊆ ran inl | |
| 10 | djulf1o 9872 | . . . . . . 7 ⊢ inl:V–1-1-onto→({∅} × V) | |
| 11 | f1of 6803 | . . . . . . 7 ⊢ (inl:V–1-1-onto→({∅} × V) → inl:V⟶({∅} × V)) | |
| 12 | frn 6698 | . . . . . . 7 ⊢ (inl:V⟶({∅} × V) → ran inl ⊆ ({∅} × V)) | |
| 13 | 10, 11, 12 | mp2b 10 | . . . . . 6 ⊢ ran inl ⊆ ({∅} × V) |
| 14 | 9, 13 | sstri 3959 | . . . . 5 ⊢ (inl “ 𝐴) ⊆ ({∅} × V) |
| 15 | 1n0 8455 | . . . . . . 7 ⊢ 1o ≠ ∅ | |
| 16 | 15 | necomi 2980 | . . . . . 6 ⊢ ∅ ≠ 1o |
| 17 | disjsn2 4679 | . . . . . 6 ⊢ (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅) | |
| 18 | xpdisj1 6137 | . . . . . 6 ⊢ (({∅} ∩ {1o}) = ∅ → (({∅} × V) ∩ ({1o} × V)) = ∅) | |
| 19 | 16, 17, 18 | mp2b 10 | . . . . 5 ⊢ (({∅} × V) ∩ ({1o} × V)) = ∅ |
| 20 | ssdisj 4426 | . . . . 5 ⊢ (((inl “ 𝐴) ⊆ ({∅} × V) ∧ (({∅} × V) ∩ ({1o} × V)) = ∅) → ((inl “ 𝐴) ∩ ({1o} × V)) = ∅) | |
| 21 | 14, 19, 20 | mp2an 692 | . . . 4 ⊢ ((inl “ 𝐴) ∩ ({1o} × V)) = ∅ |
| 22 | 8, 21 | eqtr3i 2755 | . . 3 ⊢ (({1o} × V) ∩ (inl “ 𝐴)) = ∅ |
| 23 | ssdisj 4426 | . . 3 ⊢ (((inr “ 𝐵) ⊆ ({1o} × V) ∧ (({1o} × V) ∩ (inl “ 𝐴)) = ∅) → ((inr “ 𝐵) ∩ (inl “ 𝐴)) = ∅) | |
| 24 | 7, 22, 23 | mp2an 692 | . 2 ⊢ ((inr “ 𝐵) ∩ (inl “ 𝐴)) = ∅ |
| 25 | 1, 24 | eqtr3i 2755 | 1 ⊢ ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ≠ wne 2926 Vcvv 3450 ∩ cin 3916 ⊆ wss 3917 ∅c0 4299 {csn 4592 × cxp 5639 ran crn 5642 “ cima 5644 ⟶wf 6510 –1-1-onto→wf1o 6513 1oc1o 8430 inlcinl 9859 inrcinr 9860 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-om 7846 df-1st 7971 df-2nd 7972 df-1o 8437 df-inl 9862 df-inr 9863 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |