Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > djuin | Structured version Visualization version GIF version |
Description: The images of any classes under right and left injection produce disjoint sets. (Contributed by Jim Kingdon, 21-Jun-2022.) |
Ref | Expression |
---|---|
djuin | ⊢ ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4131 | . 2 ⊢ ((inr “ 𝐵) ∩ (inl “ 𝐴)) = ((inl “ 𝐴) ∩ (inr “ 𝐵)) | |
2 | imassrn 5969 | . . . 4 ⊢ (inr “ 𝐵) ⊆ ran inr | |
3 | djurf1o 9602 | . . . . 5 ⊢ inr:V–1-1-onto→({1o} × V) | |
4 | f1of 6700 | . . . . 5 ⊢ (inr:V–1-1-onto→({1o} × V) → inr:V⟶({1o} × V)) | |
5 | frn 6591 | . . . . 5 ⊢ (inr:V⟶({1o} × V) → ran inr ⊆ ({1o} × V)) | |
6 | 3, 4, 5 | mp2b 10 | . . . 4 ⊢ ran inr ⊆ ({1o} × V) |
7 | 2, 6 | sstri 3926 | . . 3 ⊢ (inr “ 𝐵) ⊆ ({1o} × V) |
8 | incom 4131 | . . . 4 ⊢ ((inl “ 𝐴) ∩ ({1o} × V)) = (({1o} × V) ∩ (inl “ 𝐴)) | |
9 | imassrn 5969 | . . . . . 6 ⊢ (inl “ 𝐴) ⊆ ran inl | |
10 | djulf1o 9601 | . . . . . . 7 ⊢ inl:V–1-1-onto→({∅} × V) | |
11 | f1of 6700 | . . . . . . 7 ⊢ (inl:V–1-1-onto→({∅} × V) → inl:V⟶({∅} × V)) | |
12 | frn 6591 | . . . . . . 7 ⊢ (inl:V⟶({∅} × V) → ran inl ⊆ ({∅} × V)) | |
13 | 10, 11, 12 | mp2b 10 | . . . . . 6 ⊢ ran inl ⊆ ({∅} × V) |
14 | 9, 13 | sstri 3926 | . . . . 5 ⊢ (inl “ 𝐴) ⊆ ({∅} × V) |
15 | 1n0 8286 | . . . . . . 7 ⊢ 1o ≠ ∅ | |
16 | 15 | necomi 2997 | . . . . . 6 ⊢ ∅ ≠ 1o |
17 | disjsn2 4645 | . . . . . 6 ⊢ (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅) | |
18 | xpdisj1 6053 | . . . . . 6 ⊢ (({∅} ∩ {1o}) = ∅ → (({∅} × V) ∩ ({1o} × V)) = ∅) | |
19 | 16, 17, 18 | mp2b 10 | . . . . 5 ⊢ (({∅} × V) ∩ ({1o} × V)) = ∅ |
20 | ssdisj 4390 | . . . . 5 ⊢ (((inl “ 𝐴) ⊆ ({∅} × V) ∧ (({∅} × V) ∩ ({1o} × V)) = ∅) → ((inl “ 𝐴) ∩ ({1o} × V)) = ∅) | |
21 | 14, 19, 20 | mp2an 688 | . . . 4 ⊢ ((inl “ 𝐴) ∩ ({1o} × V)) = ∅ |
22 | 8, 21 | eqtr3i 2768 | . . 3 ⊢ (({1o} × V) ∩ (inl “ 𝐴)) = ∅ |
23 | ssdisj 4390 | . . 3 ⊢ (((inr “ 𝐵) ⊆ ({1o} × V) ∧ (({1o} × V) ∩ (inl “ 𝐴)) = ∅) → ((inr “ 𝐵) ∩ (inl “ 𝐴)) = ∅) | |
24 | 7, 22, 23 | mp2an 688 | . 2 ⊢ ((inr “ 𝐵) ∩ (inl “ 𝐴)) = ∅ |
25 | 1, 24 | eqtr3i 2768 | 1 ⊢ ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ≠ wne 2942 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 {csn 4558 × cxp 5578 ran crn 5581 “ cima 5583 ⟶wf 6414 –1-1-onto→wf1o 6417 1oc1o 8260 inlcinl 9588 inrcinr 9589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-om 7688 df-1st 7804 df-2nd 7805 df-1o 8267 df-inl 9591 df-inr 9592 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |