| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > djuin | Structured version Visualization version GIF version | ||
| Description: The images of any classes under right and left injection produce disjoint sets. (Contributed by Jim Kingdon, 21-Jun-2022.) |
| Ref | Expression |
|---|---|
| djuin | ⊢ ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4156 | . 2 ⊢ ((inr “ 𝐵) ∩ (inl “ 𝐴)) = ((inl “ 𝐴) ∩ (inr “ 𝐵)) | |
| 2 | imassrn 6019 | . . . 4 ⊢ (inr “ 𝐵) ⊆ ran inr | |
| 3 | djurf1o 9806 | . . . . 5 ⊢ inr:V–1-1-onto→({1o} × V) | |
| 4 | f1of 6763 | . . . . 5 ⊢ (inr:V–1-1-onto→({1o} × V) → inr:V⟶({1o} × V)) | |
| 5 | frn 6658 | . . . . 5 ⊢ (inr:V⟶({1o} × V) → ran inr ⊆ ({1o} × V)) | |
| 6 | 3, 4, 5 | mp2b 10 | . . . 4 ⊢ ran inr ⊆ ({1o} × V) |
| 7 | 2, 6 | sstri 3939 | . . 3 ⊢ (inr “ 𝐵) ⊆ ({1o} × V) |
| 8 | incom 4156 | . . . 4 ⊢ ((inl “ 𝐴) ∩ ({1o} × V)) = (({1o} × V) ∩ (inl “ 𝐴)) | |
| 9 | imassrn 6019 | . . . . . 6 ⊢ (inl “ 𝐴) ⊆ ran inl | |
| 10 | djulf1o 9805 | . . . . . . 7 ⊢ inl:V–1-1-onto→({∅} × V) | |
| 11 | f1of 6763 | . . . . . . 7 ⊢ (inl:V–1-1-onto→({∅} × V) → inl:V⟶({∅} × V)) | |
| 12 | frn 6658 | . . . . . . 7 ⊢ (inl:V⟶({∅} × V) → ran inl ⊆ ({∅} × V)) | |
| 13 | 10, 11, 12 | mp2b 10 | . . . . . 6 ⊢ ran inl ⊆ ({∅} × V) |
| 14 | 9, 13 | sstri 3939 | . . . . 5 ⊢ (inl “ 𝐴) ⊆ ({∅} × V) |
| 15 | 1n0 8403 | . . . . . . 7 ⊢ 1o ≠ ∅ | |
| 16 | 15 | necomi 2982 | . . . . . 6 ⊢ ∅ ≠ 1o |
| 17 | disjsn2 4662 | . . . . . 6 ⊢ (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅) | |
| 18 | xpdisj1 6108 | . . . . . 6 ⊢ (({∅} ∩ {1o}) = ∅ → (({∅} × V) ∩ ({1o} × V)) = ∅) | |
| 19 | 16, 17, 18 | mp2b 10 | . . . . 5 ⊢ (({∅} × V) ∩ ({1o} × V)) = ∅ |
| 20 | ssdisj 4407 | . . . . 5 ⊢ (((inl “ 𝐴) ⊆ ({∅} × V) ∧ (({∅} × V) ∩ ({1o} × V)) = ∅) → ((inl “ 𝐴) ∩ ({1o} × V)) = ∅) | |
| 21 | 14, 19, 20 | mp2an 692 | . . . 4 ⊢ ((inl “ 𝐴) ∩ ({1o} × V)) = ∅ |
| 22 | 8, 21 | eqtr3i 2756 | . . 3 ⊢ (({1o} × V) ∩ (inl “ 𝐴)) = ∅ |
| 23 | ssdisj 4407 | . . 3 ⊢ (((inr “ 𝐵) ⊆ ({1o} × V) ∧ (({1o} × V) ∩ (inl “ 𝐴)) = ∅) → ((inr “ 𝐵) ∩ (inl “ 𝐴)) = ∅) | |
| 24 | 7, 22, 23 | mp2an 692 | . 2 ⊢ ((inr “ 𝐵) ∩ (inl “ 𝐴)) = ∅ |
| 25 | 1, 24 | eqtr3i 2756 | 1 ⊢ ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ≠ wne 2928 Vcvv 3436 ∩ cin 3896 ⊆ wss 3897 ∅c0 4280 {csn 4573 × cxp 5612 ran crn 5615 “ cima 5617 ⟶wf 6477 –1-1-onto→wf1o 6480 1oc1o 8378 inlcinl 9792 inrcinr 9793 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-om 7797 df-1st 7921 df-2nd 7922 df-1o 8385 df-inl 9795 df-inr 9796 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |