MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuin Structured version   Visualization version   GIF version

Theorem djuin 9676
Description: The images of any classes under right and left injection produce disjoint sets. (Contributed by Jim Kingdon, 21-Jun-2022.)
Assertion
Ref Expression
djuin ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅

Proof of Theorem djuin
StepHypRef Expression
1 incom 4135 . 2 ((inr “ 𝐵) ∩ (inl “ 𝐴)) = ((inl “ 𝐴) ∩ (inr “ 𝐵))
2 imassrn 5980 . . . 4 (inr “ 𝐵) ⊆ ran inr
3 djurf1o 9671 . . . . 5 inr:V–1-1-onto→({1o} × V)
4 f1of 6716 . . . . 5 (inr:V–1-1-onto→({1o} × V) → inr:V⟶({1o} × V))
5 frn 6607 . . . . 5 (inr:V⟶({1o} × V) → ran inr ⊆ ({1o} × V))
63, 4, 5mp2b 10 . . . 4 ran inr ⊆ ({1o} × V)
72, 6sstri 3930 . . 3 (inr “ 𝐵) ⊆ ({1o} × V)
8 incom 4135 . . . 4 ((inl “ 𝐴) ∩ ({1o} × V)) = (({1o} × V) ∩ (inl “ 𝐴))
9 imassrn 5980 . . . . . 6 (inl “ 𝐴) ⊆ ran inl
10 djulf1o 9670 . . . . . . 7 inl:V–1-1-onto→({∅} × V)
11 f1of 6716 . . . . . . 7 (inl:V–1-1-onto→({∅} × V) → inl:V⟶({∅} × V))
12 frn 6607 . . . . . . 7 (inl:V⟶({∅} × V) → ran inl ⊆ ({∅} × V))
1310, 11, 12mp2b 10 . . . . . 6 ran inl ⊆ ({∅} × V)
149, 13sstri 3930 . . . . 5 (inl “ 𝐴) ⊆ ({∅} × V)
15 1n0 8318 . . . . . . 7 1o ≠ ∅
1615necomi 2998 . . . . . 6 ∅ ≠ 1o
17 disjsn2 4648 . . . . . 6 (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅)
18 xpdisj1 6064 . . . . . 6 (({∅} ∩ {1o}) = ∅ → (({∅} × V) ∩ ({1o} × V)) = ∅)
1916, 17, 18mp2b 10 . . . . 5 (({∅} × V) ∩ ({1o} × V)) = ∅
20 ssdisj 4393 . . . . 5 (((inl “ 𝐴) ⊆ ({∅} × V) ∧ (({∅} × V) ∩ ({1o} × V)) = ∅) → ((inl “ 𝐴) ∩ ({1o} × V)) = ∅)
2114, 19, 20mp2an 689 . . . 4 ((inl “ 𝐴) ∩ ({1o} × V)) = ∅
228, 21eqtr3i 2768 . . 3 (({1o} × V) ∩ (inl “ 𝐴)) = ∅
23 ssdisj 4393 . . 3 (((inr “ 𝐵) ⊆ ({1o} × V) ∧ (({1o} × V) ∩ (inl “ 𝐴)) = ∅) → ((inr “ 𝐵) ∩ (inl “ 𝐴)) = ∅)
247, 22, 23mp2an 689 . 2 ((inr “ 𝐵) ∩ (inl “ 𝐴)) = ∅
251, 24eqtr3i 2768 1 ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wne 2943  Vcvv 3432  cin 3886  wss 3887  c0 4256  {csn 4561   × cxp 5587  ran crn 5590  cima 5592  wf 6429  1-1-ontowf1o 6432  1oc1o 8290  inlcinl 9657  inrcinr 9658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1st 7831  df-2nd 7832  df-1o 8297  df-inl 9660  df-inr 9661
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator