MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuin Structured version   Visualization version   GIF version

Theorem djuin 9607
Description: The images of any classes under right and left injection produce disjoint sets. (Contributed by Jim Kingdon, 21-Jun-2022.)
Assertion
Ref Expression
djuin ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅

Proof of Theorem djuin
StepHypRef Expression
1 incom 4131 . 2 ((inr “ 𝐵) ∩ (inl “ 𝐴)) = ((inl “ 𝐴) ∩ (inr “ 𝐵))
2 imassrn 5969 . . . 4 (inr “ 𝐵) ⊆ ran inr
3 djurf1o 9602 . . . . 5 inr:V–1-1-onto→({1o} × V)
4 f1of 6700 . . . . 5 (inr:V–1-1-onto→({1o} × V) → inr:V⟶({1o} × V))
5 frn 6591 . . . . 5 (inr:V⟶({1o} × V) → ran inr ⊆ ({1o} × V))
63, 4, 5mp2b 10 . . . 4 ran inr ⊆ ({1o} × V)
72, 6sstri 3926 . . 3 (inr “ 𝐵) ⊆ ({1o} × V)
8 incom 4131 . . . 4 ((inl “ 𝐴) ∩ ({1o} × V)) = (({1o} × V) ∩ (inl “ 𝐴))
9 imassrn 5969 . . . . . 6 (inl “ 𝐴) ⊆ ran inl
10 djulf1o 9601 . . . . . . 7 inl:V–1-1-onto→({∅} × V)
11 f1of 6700 . . . . . . 7 (inl:V–1-1-onto→({∅} × V) → inl:V⟶({∅} × V))
12 frn 6591 . . . . . . 7 (inl:V⟶({∅} × V) → ran inl ⊆ ({∅} × V))
1310, 11, 12mp2b 10 . . . . . 6 ran inl ⊆ ({∅} × V)
149, 13sstri 3926 . . . . 5 (inl “ 𝐴) ⊆ ({∅} × V)
15 1n0 8286 . . . . . . 7 1o ≠ ∅
1615necomi 2997 . . . . . 6 ∅ ≠ 1o
17 disjsn2 4645 . . . . . 6 (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅)
18 xpdisj1 6053 . . . . . 6 (({∅} ∩ {1o}) = ∅ → (({∅} × V) ∩ ({1o} × V)) = ∅)
1916, 17, 18mp2b 10 . . . . 5 (({∅} × V) ∩ ({1o} × V)) = ∅
20 ssdisj 4390 . . . . 5 (((inl “ 𝐴) ⊆ ({∅} × V) ∧ (({∅} × V) ∩ ({1o} × V)) = ∅) → ((inl “ 𝐴) ∩ ({1o} × V)) = ∅)
2114, 19, 20mp2an 688 . . . 4 ((inl “ 𝐴) ∩ ({1o} × V)) = ∅
228, 21eqtr3i 2768 . . 3 (({1o} × V) ∩ (inl “ 𝐴)) = ∅
23 ssdisj 4390 . . 3 (((inr “ 𝐵) ⊆ ({1o} × V) ∧ (({1o} × V) ∩ (inl “ 𝐴)) = ∅) → ((inr “ 𝐵) ∩ (inl “ 𝐴)) = ∅)
247, 22, 23mp2an 688 . 2 ((inr “ 𝐵) ∩ (inl “ 𝐴)) = ∅
251, 24eqtr3i 2768 1 ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wne 2942  Vcvv 3422  cin 3882  wss 3883  c0 4253  {csn 4558   × cxp 5578  ran crn 5581  cima 5583  wf 6414  1-1-ontowf1o 6417  1oc1o 8260  inlcinl 9588  inrcinr 9589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1st 7804  df-2nd 7805  df-1o 8267  df-inl 9591  df-inr 9592
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator