Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > djuin | Structured version Visualization version GIF version |
Description: The images of any classes under right and left injection produce disjoint sets. (Contributed by Jim Kingdon, 21-Jun-2022.) |
Ref | Expression |
---|---|
djuin | ⊢ ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4135 | . 2 ⊢ ((inr “ 𝐵) ∩ (inl “ 𝐴)) = ((inl “ 𝐴) ∩ (inr “ 𝐵)) | |
2 | imassrn 5980 | . . . 4 ⊢ (inr “ 𝐵) ⊆ ran inr | |
3 | djurf1o 9671 | . . . . 5 ⊢ inr:V–1-1-onto→({1o} × V) | |
4 | f1of 6716 | . . . . 5 ⊢ (inr:V–1-1-onto→({1o} × V) → inr:V⟶({1o} × V)) | |
5 | frn 6607 | . . . . 5 ⊢ (inr:V⟶({1o} × V) → ran inr ⊆ ({1o} × V)) | |
6 | 3, 4, 5 | mp2b 10 | . . . 4 ⊢ ran inr ⊆ ({1o} × V) |
7 | 2, 6 | sstri 3930 | . . 3 ⊢ (inr “ 𝐵) ⊆ ({1o} × V) |
8 | incom 4135 | . . . 4 ⊢ ((inl “ 𝐴) ∩ ({1o} × V)) = (({1o} × V) ∩ (inl “ 𝐴)) | |
9 | imassrn 5980 | . . . . . 6 ⊢ (inl “ 𝐴) ⊆ ran inl | |
10 | djulf1o 9670 | . . . . . . 7 ⊢ inl:V–1-1-onto→({∅} × V) | |
11 | f1of 6716 | . . . . . . 7 ⊢ (inl:V–1-1-onto→({∅} × V) → inl:V⟶({∅} × V)) | |
12 | frn 6607 | . . . . . . 7 ⊢ (inl:V⟶({∅} × V) → ran inl ⊆ ({∅} × V)) | |
13 | 10, 11, 12 | mp2b 10 | . . . . . 6 ⊢ ran inl ⊆ ({∅} × V) |
14 | 9, 13 | sstri 3930 | . . . . 5 ⊢ (inl “ 𝐴) ⊆ ({∅} × V) |
15 | 1n0 8318 | . . . . . . 7 ⊢ 1o ≠ ∅ | |
16 | 15 | necomi 2998 | . . . . . 6 ⊢ ∅ ≠ 1o |
17 | disjsn2 4648 | . . . . . 6 ⊢ (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅) | |
18 | xpdisj1 6064 | . . . . . 6 ⊢ (({∅} ∩ {1o}) = ∅ → (({∅} × V) ∩ ({1o} × V)) = ∅) | |
19 | 16, 17, 18 | mp2b 10 | . . . . 5 ⊢ (({∅} × V) ∩ ({1o} × V)) = ∅ |
20 | ssdisj 4393 | . . . . 5 ⊢ (((inl “ 𝐴) ⊆ ({∅} × V) ∧ (({∅} × V) ∩ ({1o} × V)) = ∅) → ((inl “ 𝐴) ∩ ({1o} × V)) = ∅) | |
21 | 14, 19, 20 | mp2an 689 | . . . 4 ⊢ ((inl “ 𝐴) ∩ ({1o} × V)) = ∅ |
22 | 8, 21 | eqtr3i 2768 | . . 3 ⊢ (({1o} × V) ∩ (inl “ 𝐴)) = ∅ |
23 | ssdisj 4393 | . . 3 ⊢ (((inr “ 𝐵) ⊆ ({1o} × V) ∧ (({1o} × V) ∩ (inl “ 𝐴)) = ∅) → ((inr “ 𝐵) ∩ (inl “ 𝐴)) = ∅) | |
24 | 7, 22, 23 | mp2an 689 | . 2 ⊢ ((inr “ 𝐵) ∩ (inl “ 𝐴)) = ∅ |
25 | 1, 24 | eqtr3i 2768 | 1 ⊢ ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ≠ wne 2943 Vcvv 3432 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 {csn 4561 × cxp 5587 ran crn 5590 “ cima 5592 ⟶wf 6429 –1-1-onto→wf1o 6432 1oc1o 8290 inlcinl 9657 inrcinr 9658 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-om 7713 df-1st 7831 df-2nd 7832 df-1o 8297 df-inl 9660 df-inr 9661 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |