![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > djuin | Structured version Visualization version GIF version |
Description: The images of any classes under right and left injection produce disjoint sets. (Contributed by Jim Kingdon, 21-Jun-2022.) |
Ref | Expression |
---|---|
djuin | ⊢ ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4230 | . 2 ⊢ ((inr “ 𝐵) ∩ (inl “ 𝐴)) = ((inl “ 𝐴) ∩ (inr “ 𝐵)) | |
2 | imassrn 6100 | . . . 4 ⊢ (inr “ 𝐵) ⊆ ran inr | |
3 | djurf1o 9982 | . . . . 5 ⊢ inr:V–1-1-onto→({1o} × V) | |
4 | f1of 6862 | . . . . 5 ⊢ (inr:V–1-1-onto→({1o} × V) → inr:V⟶({1o} × V)) | |
5 | frn 6754 | . . . . 5 ⊢ (inr:V⟶({1o} × V) → ran inr ⊆ ({1o} × V)) | |
6 | 3, 4, 5 | mp2b 10 | . . . 4 ⊢ ran inr ⊆ ({1o} × V) |
7 | 2, 6 | sstri 4018 | . . 3 ⊢ (inr “ 𝐵) ⊆ ({1o} × V) |
8 | incom 4230 | . . . 4 ⊢ ((inl “ 𝐴) ∩ ({1o} × V)) = (({1o} × V) ∩ (inl “ 𝐴)) | |
9 | imassrn 6100 | . . . . . 6 ⊢ (inl “ 𝐴) ⊆ ran inl | |
10 | djulf1o 9981 | . . . . . . 7 ⊢ inl:V–1-1-onto→({∅} × V) | |
11 | f1of 6862 | . . . . . . 7 ⊢ (inl:V–1-1-onto→({∅} × V) → inl:V⟶({∅} × V)) | |
12 | frn 6754 | . . . . . . 7 ⊢ (inl:V⟶({∅} × V) → ran inl ⊆ ({∅} × V)) | |
13 | 10, 11, 12 | mp2b 10 | . . . . . 6 ⊢ ran inl ⊆ ({∅} × V) |
14 | 9, 13 | sstri 4018 | . . . . 5 ⊢ (inl “ 𝐴) ⊆ ({∅} × V) |
15 | 1n0 8544 | . . . . . . 7 ⊢ 1o ≠ ∅ | |
16 | 15 | necomi 3001 | . . . . . 6 ⊢ ∅ ≠ 1o |
17 | disjsn2 4737 | . . . . . 6 ⊢ (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅) | |
18 | xpdisj1 6192 | . . . . . 6 ⊢ (({∅} ∩ {1o}) = ∅ → (({∅} × V) ∩ ({1o} × V)) = ∅) | |
19 | 16, 17, 18 | mp2b 10 | . . . . 5 ⊢ (({∅} × V) ∩ ({1o} × V)) = ∅ |
20 | ssdisj 4483 | . . . . 5 ⊢ (((inl “ 𝐴) ⊆ ({∅} × V) ∧ (({∅} × V) ∩ ({1o} × V)) = ∅) → ((inl “ 𝐴) ∩ ({1o} × V)) = ∅) | |
21 | 14, 19, 20 | mp2an 691 | . . . 4 ⊢ ((inl “ 𝐴) ∩ ({1o} × V)) = ∅ |
22 | 8, 21 | eqtr3i 2770 | . . 3 ⊢ (({1o} × V) ∩ (inl “ 𝐴)) = ∅ |
23 | ssdisj 4483 | . . 3 ⊢ (((inr “ 𝐵) ⊆ ({1o} × V) ∧ (({1o} × V) ∩ (inl “ 𝐴)) = ∅) → ((inr “ 𝐵) ∩ (inl “ 𝐴)) = ∅) | |
24 | 7, 22, 23 | mp2an 691 | . 2 ⊢ ((inr “ 𝐵) ∩ (inl “ 𝐴)) = ∅ |
25 | 1, 24 | eqtr3i 2770 | 1 ⊢ ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ≠ wne 2946 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 {csn 4648 × cxp 5698 ran crn 5701 “ cima 5703 ⟶wf 6569 –1-1-onto→wf1o 6572 1oc1o 8515 inlcinl 9968 inrcinr 9969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-om 7904 df-1st 8030 df-2nd 8031 df-1o 8522 df-inl 9971 df-inr 9972 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |