MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuin Structured version   Visualization version   GIF version

Theorem djuin 9987
Description: The images of any classes under right and left injection produce disjoint sets. (Contributed by Jim Kingdon, 21-Jun-2022.)
Assertion
Ref Expression
djuin ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅

Proof of Theorem djuin
StepHypRef Expression
1 incom 4230 . 2 ((inr “ 𝐵) ∩ (inl “ 𝐴)) = ((inl “ 𝐴) ∩ (inr “ 𝐵))
2 imassrn 6100 . . . 4 (inr “ 𝐵) ⊆ ran inr
3 djurf1o 9982 . . . . 5 inr:V–1-1-onto→({1o} × V)
4 f1of 6862 . . . . 5 (inr:V–1-1-onto→({1o} × V) → inr:V⟶({1o} × V))
5 frn 6754 . . . . 5 (inr:V⟶({1o} × V) → ran inr ⊆ ({1o} × V))
63, 4, 5mp2b 10 . . . 4 ran inr ⊆ ({1o} × V)
72, 6sstri 4018 . . 3 (inr “ 𝐵) ⊆ ({1o} × V)
8 incom 4230 . . . 4 ((inl “ 𝐴) ∩ ({1o} × V)) = (({1o} × V) ∩ (inl “ 𝐴))
9 imassrn 6100 . . . . . 6 (inl “ 𝐴) ⊆ ran inl
10 djulf1o 9981 . . . . . . 7 inl:V–1-1-onto→({∅} × V)
11 f1of 6862 . . . . . . 7 (inl:V–1-1-onto→({∅} × V) → inl:V⟶({∅} × V))
12 frn 6754 . . . . . . 7 (inl:V⟶({∅} × V) → ran inl ⊆ ({∅} × V))
1310, 11, 12mp2b 10 . . . . . 6 ran inl ⊆ ({∅} × V)
149, 13sstri 4018 . . . . 5 (inl “ 𝐴) ⊆ ({∅} × V)
15 1n0 8544 . . . . . . 7 1o ≠ ∅
1615necomi 3001 . . . . . 6 ∅ ≠ 1o
17 disjsn2 4737 . . . . . 6 (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅)
18 xpdisj1 6192 . . . . . 6 (({∅} ∩ {1o}) = ∅ → (({∅} × V) ∩ ({1o} × V)) = ∅)
1916, 17, 18mp2b 10 . . . . 5 (({∅} × V) ∩ ({1o} × V)) = ∅
20 ssdisj 4483 . . . . 5 (((inl “ 𝐴) ⊆ ({∅} × V) ∧ (({∅} × V) ∩ ({1o} × V)) = ∅) → ((inl “ 𝐴) ∩ ({1o} × V)) = ∅)
2114, 19, 20mp2an 691 . . . 4 ((inl “ 𝐴) ∩ ({1o} × V)) = ∅
228, 21eqtr3i 2770 . . 3 (({1o} × V) ∩ (inl “ 𝐴)) = ∅
23 ssdisj 4483 . . 3 (((inr “ 𝐵) ⊆ ({1o} × V) ∧ (({1o} × V) ∩ (inl “ 𝐴)) = ∅) → ((inr “ 𝐵) ∩ (inl “ 𝐴)) = ∅)
247, 22, 23mp2an 691 . 2 ((inr “ 𝐵) ∩ (inl “ 𝐴)) = ∅
251, 24eqtr3i 2770 1 ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wne 2946  Vcvv 3488  cin 3975  wss 3976  c0 4352  {csn 4648   × cxp 5698  ran crn 5701  cima 5703  wf 6569  1-1-ontowf1o 6572  1oc1o 8515  inlcinl 9968  inrcinr 9969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1st 8030  df-2nd 8031  df-1o 8522  df-inl 9971  df-inr 9972
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator