| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > djuin | Structured version Visualization version GIF version | ||
| Description: The images of any classes under right and left injection produce disjoint sets. (Contributed by Jim Kingdon, 21-Jun-2022.) |
| Ref | Expression |
|---|---|
| djuin | ⊢ ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4184 | . 2 ⊢ ((inr “ 𝐵) ∩ (inl “ 𝐴)) = ((inl “ 𝐴) ∩ (inr “ 𝐵)) | |
| 2 | imassrn 6058 | . . . 4 ⊢ (inr “ 𝐵) ⊆ ran inr | |
| 3 | djurf1o 9925 | . . . . 5 ⊢ inr:V–1-1-onto→({1o} × V) | |
| 4 | f1of 6817 | . . . . 5 ⊢ (inr:V–1-1-onto→({1o} × V) → inr:V⟶({1o} × V)) | |
| 5 | frn 6712 | . . . . 5 ⊢ (inr:V⟶({1o} × V) → ran inr ⊆ ({1o} × V)) | |
| 6 | 3, 4, 5 | mp2b 10 | . . . 4 ⊢ ran inr ⊆ ({1o} × V) |
| 7 | 2, 6 | sstri 3968 | . . 3 ⊢ (inr “ 𝐵) ⊆ ({1o} × V) |
| 8 | incom 4184 | . . . 4 ⊢ ((inl “ 𝐴) ∩ ({1o} × V)) = (({1o} × V) ∩ (inl “ 𝐴)) | |
| 9 | imassrn 6058 | . . . . . 6 ⊢ (inl “ 𝐴) ⊆ ran inl | |
| 10 | djulf1o 9924 | . . . . . . 7 ⊢ inl:V–1-1-onto→({∅} × V) | |
| 11 | f1of 6817 | . . . . . . 7 ⊢ (inl:V–1-1-onto→({∅} × V) → inl:V⟶({∅} × V)) | |
| 12 | frn 6712 | . . . . . . 7 ⊢ (inl:V⟶({∅} × V) → ran inl ⊆ ({∅} × V)) | |
| 13 | 10, 11, 12 | mp2b 10 | . . . . . 6 ⊢ ran inl ⊆ ({∅} × V) |
| 14 | 9, 13 | sstri 3968 | . . . . 5 ⊢ (inl “ 𝐴) ⊆ ({∅} × V) |
| 15 | 1n0 8498 | . . . . . . 7 ⊢ 1o ≠ ∅ | |
| 16 | 15 | necomi 2986 | . . . . . 6 ⊢ ∅ ≠ 1o |
| 17 | disjsn2 4688 | . . . . . 6 ⊢ (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅) | |
| 18 | xpdisj1 6150 | . . . . . 6 ⊢ (({∅} ∩ {1o}) = ∅ → (({∅} × V) ∩ ({1o} × V)) = ∅) | |
| 19 | 16, 17, 18 | mp2b 10 | . . . . 5 ⊢ (({∅} × V) ∩ ({1o} × V)) = ∅ |
| 20 | ssdisj 4435 | . . . . 5 ⊢ (((inl “ 𝐴) ⊆ ({∅} × V) ∧ (({∅} × V) ∩ ({1o} × V)) = ∅) → ((inl “ 𝐴) ∩ ({1o} × V)) = ∅) | |
| 21 | 14, 19, 20 | mp2an 692 | . . . 4 ⊢ ((inl “ 𝐴) ∩ ({1o} × V)) = ∅ |
| 22 | 8, 21 | eqtr3i 2760 | . . 3 ⊢ (({1o} × V) ∩ (inl “ 𝐴)) = ∅ |
| 23 | ssdisj 4435 | . . 3 ⊢ (((inr “ 𝐵) ⊆ ({1o} × V) ∧ (({1o} × V) ∩ (inl “ 𝐴)) = ∅) → ((inr “ 𝐵) ∩ (inl “ 𝐴)) = ∅) | |
| 24 | 7, 22, 23 | mp2an 692 | . 2 ⊢ ((inr “ 𝐵) ∩ (inl “ 𝐴)) = ∅ |
| 25 | 1, 24 | eqtr3i 2760 | 1 ⊢ ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ≠ wne 2932 Vcvv 3459 ∩ cin 3925 ⊆ wss 3926 ∅c0 4308 {csn 4601 × cxp 5652 ran crn 5655 “ cima 5657 ⟶wf 6526 –1-1-onto→wf1o 6529 1oc1o 8471 inlcinl 9911 inrcinr 9912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-om 7860 df-1st 7986 df-2nd 7987 df-1o 8478 df-inl 9914 df-inr 9915 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |