MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuin Structured version   Visualization version   GIF version

Theorem djuin 9912
Description: The images of any classes under right and left injection produce disjoint sets. (Contributed by Jim Kingdon, 21-Jun-2022.)
Assertion
Ref Expression
djuin ((inl ā€œ š“) āˆ© (inr ā€œ šµ)) = āˆ…

Proof of Theorem djuin
StepHypRef Expression
1 incom 4201 . 2 ((inr ā€œ šµ) āˆ© (inl ā€œ š“)) = ((inl ā€œ š“) āˆ© (inr ā€œ šµ))
2 imassrn 6070 . . . 4 (inr ā€œ šµ) āŠ† ran inr
3 djurf1o 9907 . . . . 5 inr:Vā€“1-1-ontoā†’({1o} Ɨ V)
4 f1of 6833 . . . . 5 (inr:Vā€“1-1-ontoā†’({1o} Ɨ V) ā†’ inr:VāŸ¶({1o} Ɨ V))
5 frn 6724 . . . . 5 (inr:VāŸ¶({1o} Ɨ V) ā†’ ran inr āŠ† ({1o} Ɨ V))
63, 4, 5mp2b 10 . . . 4 ran inr āŠ† ({1o} Ɨ V)
72, 6sstri 3991 . . 3 (inr ā€œ šµ) āŠ† ({1o} Ɨ V)
8 incom 4201 . . . 4 ((inl ā€œ š“) āˆ© ({1o} Ɨ V)) = (({1o} Ɨ V) āˆ© (inl ā€œ š“))
9 imassrn 6070 . . . . . 6 (inl ā€œ š“) āŠ† ran inl
10 djulf1o 9906 . . . . . . 7 inl:Vā€“1-1-ontoā†’({āˆ…} Ɨ V)
11 f1of 6833 . . . . . . 7 (inl:Vā€“1-1-ontoā†’({āˆ…} Ɨ V) ā†’ inl:VāŸ¶({āˆ…} Ɨ V))
12 frn 6724 . . . . . . 7 (inl:VāŸ¶({āˆ…} Ɨ V) ā†’ ran inl āŠ† ({āˆ…} Ɨ V))
1310, 11, 12mp2b 10 . . . . . 6 ran inl āŠ† ({āˆ…} Ɨ V)
149, 13sstri 3991 . . . . 5 (inl ā€œ š“) āŠ† ({āˆ…} Ɨ V)
15 1n0 8487 . . . . . . 7 1o ā‰  āˆ…
1615necomi 2995 . . . . . 6 āˆ… ā‰  1o
17 disjsn2 4716 . . . . . 6 (āˆ… ā‰  1o ā†’ ({āˆ…} āˆ© {1o}) = āˆ…)
18 xpdisj1 6160 . . . . . 6 (({āˆ…} āˆ© {1o}) = āˆ… ā†’ (({āˆ…} Ɨ V) āˆ© ({1o} Ɨ V)) = āˆ…)
1916, 17, 18mp2b 10 . . . . 5 (({āˆ…} Ɨ V) āˆ© ({1o} Ɨ V)) = āˆ…
20 ssdisj 4459 . . . . 5 (((inl ā€œ š“) āŠ† ({āˆ…} Ɨ V) āˆ§ (({āˆ…} Ɨ V) āˆ© ({1o} Ɨ V)) = āˆ…) ā†’ ((inl ā€œ š“) āˆ© ({1o} Ɨ V)) = āˆ…)
2114, 19, 20mp2an 690 . . . 4 ((inl ā€œ š“) āˆ© ({1o} Ɨ V)) = āˆ…
228, 21eqtr3i 2762 . . 3 (({1o} Ɨ V) āˆ© (inl ā€œ š“)) = āˆ…
23 ssdisj 4459 . . 3 (((inr ā€œ šµ) āŠ† ({1o} Ɨ V) āˆ§ (({1o} Ɨ V) āˆ© (inl ā€œ š“)) = āˆ…) ā†’ ((inr ā€œ šµ) āˆ© (inl ā€œ š“)) = āˆ…)
247, 22, 23mp2an 690 . 2 ((inr ā€œ šµ) āˆ© (inl ā€œ š“)) = āˆ…
251, 24eqtr3i 2762 1 ((inl ā€œ š“) āˆ© (inr ā€œ šµ)) = āˆ…
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541   ā‰  wne 2940  Vcvv 3474   āˆ© cin 3947   āŠ† wss 3948  āˆ…c0 4322  {csn 4628   Ɨ cxp 5674  ran crn 5677   ā€œ cima 5679  āŸ¶wf 6539  ā€“1-1-ontoā†’wf1o 6542  1oc1o 8458  inlcinl 9893  inrcinr 9894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-om 7855  df-1st 7974  df-2nd 7975  df-1o 8465  df-inl 9896  df-inr 9897
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator