![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > djuin | Structured version Visualization version GIF version |
Description: The images of any classes under right and left injection produce disjoint sets. (Contributed by Jim Kingdon, 21-Jun-2022.) |
Ref | Expression |
---|---|
djuin | ⊢ ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4216 | . 2 ⊢ ((inr “ 𝐵) ∩ (inl “ 𝐴)) = ((inl “ 𝐴) ∩ (inr “ 𝐵)) | |
2 | imassrn 6090 | . . . 4 ⊢ (inr “ 𝐵) ⊆ ran inr | |
3 | djurf1o 9950 | . . . . 5 ⊢ inr:V–1-1-onto→({1o} × V) | |
4 | f1of 6848 | . . . . 5 ⊢ (inr:V–1-1-onto→({1o} × V) → inr:V⟶({1o} × V)) | |
5 | frn 6743 | . . . . 5 ⊢ (inr:V⟶({1o} × V) → ran inr ⊆ ({1o} × V)) | |
6 | 3, 4, 5 | mp2b 10 | . . . 4 ⊢ ran inr ⊆ ({1o} × V) |
7 | 2, 6 | sstri 4004 | . . 3 ⊢ (inr “ 𝐵) ⊆ ({1o} × V) |
8 | incom 4216 | . . . 4 ⊢ ((inl “ 𝐴) ∩ ({1o} × V)) = (({1o} × V) ∩ (inl “ 𝐴)) | |
9 | imassrn 6090 | . . . . . 6 ⊢ (inl “ 𝐴) ⊆ ran inl | |
10 | djulf1o 9949 | . . . . . . 7 ⊢ inl:V–1-1-onto→({∅} × V) | |
11 | f1of 6848 | . . . . . . 7 ⊢ (inl:V–1-1-onto→({∅} × V) → inl:V⟶({∅} × V)) | |
12 | frn 6743 | . . . . . . 7 ⊢ (inl:V⟶({∅} × V) → ran inl ⊆ ({∅} × V)) | |
13 | 10, 11, 12 | mp2b 10 | . . . . . 6 ⊢ ran inl ⊆ ({∅} × V) |
14 | 9, 13 | sstri 4004 | . . . . 5 ⊢ (inl “ 𝐴) ⊆ ({∅} × V) |
15 | 1n0 8524 | . . . . . . 7 ⊢ 1o ≠ ∅ | |
16 | 15 | necomi 2992 | . . . . . 6 ⊢ ∅ ≠ 1o |
17 | disjsn2 4716 | . . . . . 6 ⊢ (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅) | |
18 | xpdisj1 6182 | . . . . . 6 ⊢ (({∅} ∩ {1o}) = ∅ → (({∅} × V) ∩ ({1o} × V)) = ∅) | |
19 | 16, 17, 18 | mp2b 10 | . . . . 5 ⊢ (({∅} × V) ∩ ({1o} × V)) = ∅ |
20 | ssdisj 4465 | . . . . 5 ⊢ (((inl “ 𝐴) ⊆ ({∅} × V) ∧ (({∅} × V) ∩ ({1o} × V)) = ∅) → ((inl “ 𝐴) ∩ ({1o} × V)) = ∅) | |
21 | 14, 19, 20 | mp2an 692 | . . . 4 ⊢ ((inl “ 𝐴) ∩ ({1o} × V)) = ∅ |
22 | 8, 21 | eqtr3i 2764 | . . 3 ⊢ (({1o} × V) ∩ (inl “ 𝐴)) = ∅ |
23 | ssdisj 4465 | . . 3 ⊢ (((inr “ 𝐵) ⊆ ({1o} × V) ∧ (({1o} × V) ∩ (inl “ 𝐴)) = ∅) → ((inr “ 𝐵) ∩ (inl “ 𝐴)) = ∅) | |
24 | 7, 22, 23 | mp2an 692 | . 2 ⊢ ((inr “ 𝐵) ∩ (inl “ 𝐴)) = ∅ |
25 | 1, 24 | eqtr3i 2764 | 1 ⊢ ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 ≠ wne 2937 Vcvv 3477 ∩ cin 3961 ⊆ wss 3962 ∅c0 4338 {csn 4630 × cxp 5686 ran crn 5689 “ cima 5691 ⟶wf 6558 –1-1-onto→wf1o 6561 1oc1o 8497 inlcinl 9936 inrcinr 9937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-om 7887 df-1st 8012 df-2nd 8013 df-1o 8504 df-inl 9939 df-inr 9940 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |