| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > djuin | Structured version Visualization version GIF version | ||
| Description: The images of any classes under right and left injection produce disjoint sets. (Contributed by Jim Kingdon, 21-Jun-2022.) |
| Ref | Expression |
|---|---|
| djuin | ⊢ ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4209 | . 2 ⊢ ((inr “ 𝐵) ∩ (inl “ 𝐴)) = ((inl “ 𝐴) ∩ (inr “ 𝐵)) | |
| 2 | imassrn 6089 | . . . 4 ⊢ (inr “ 𝐵) ⊆ ran inr | |
| 3 | djurf1o 9953 | . . . . 5 ⊢ inr:V–1-1-onto→({1o} × V) | |
| 4 | f1of 6848 | . . . . 5 ⊢ (inr:V–1-1-onto→({1o} × V) → inr:V⟶({1o} × V)) | |
| 5 | frn 6743 | . . . . 5 ⊢ (inr:V⟶({1o} × V) → ran inr ⊆ ({1o} × V)) | |
| 6 | 3, 4, 5 | mp2b 10 | . . . 4 ⊢ ran inr ⊆ ({1o} × V) |
| 7 | 2, 6 | sstri 3993 | . . 3 ⊢ (inr “ 𝐵) ⊆ ({1o} × V) |
| 8 | incom 4209 | . . . 4 ⊢ ((inl “ 𝐴) ∩ ({1o} × V)) = (({1o} × V) ∩ (inl “ 𝐴)) | |
| 9 | imassrn 6089 | . . . . . 6 ⊢ (inl “ 𝐴) ⊆ ran inl | |
| 10 | djulf1o 9952 | . . . . . . 7 ⊢ inl:V–1-1-onto→({∅} × V) | |
| 11 | f1of 6848 | . . . . . . 7 ⊢ (inl:V–1-1-onto→({∅} × V) → inl:V⟶({∅} × V)) | |
| 12 | frn 6743 | . . . . . . 7 ⊢ (inl:V⟶({∅} × V) → ran inl ⊆ ({∅} × V)) | |
| 13 | 10, 11, 12 | mp2b 10 | . . . . . 6 ⊢ ran inl ⊆ ({∅} × V) |
| 14 | 9, 13 | sstri 3993 | . . . . 5 ⊢ (inl “ 𝐴) ⊆ ({∅} × V) |
| 15 | 1n0 8526 | . . . . . . 7 ⊢ 1o ≠ ∅ | |
| 16 | 15 | necomi 2995 | . . . . . 6 ⊢ ∅ ≠ 1o |
| 17 | disjsn2 4712 | . . . . . 6 ⊢ (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅) | |
| 18 | xpdisj1 6181 | . . . . . 6 ⊢ (({∅} ∩ {1o}) = ∅ → (({∅} × V) ∩ ({1o} × V)) = ∅) | |
| 19 | 16, 17, 18 | mp2b 10 | . . . . 5 ⊢ (({∅} × V) ∩ ({1o} × V)) = ∅ |
| 20 | ssdisj 4460 | . . . . 5 ⊢ (((inl “ 𝐴) ⊆ ({∅} × V) ∧ (({∅} × V) ∩ ({1o} × V)) = ∅) → ((inl “ 𝐴) ∩ ({1o} × V)) = ∅) | |
| 21 | 14, 19, 20 | mp2an 692 | . . . 4 ⊢ ((inl “ 𝐴) ∩ ({1o} × V)) = ∅ |
| 22 | 8, 21 | eqtr3i 2767 | . . 3 ⊢ (({1o} × V) ∩ (inl “ 𝐴)) = ∅ |
| 23 | ssdisj 4460 | . . 3 ⊢ (((inr “ 𝐵) ⊆ ({1o} × V) ∧ (({1o} × V) ∩ (inl “ 𝐴)) = ∅) → ((inr “ 𝐵) ∩ (inl “ 𝐴)) = ∅) | |
| 24 | 7, 22, 23 | mp2an 692 | . 2 ⊢ ((inr “ 𝐵) ∩ (inl “ 𝐴)) = ∅ |
| 25 | 1, 24 | eqtr3i 2767 | 1 ⊢ ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ≠ wne 2940 Vcvv 3480 ∩ cin 3950 ⊆ wss 3951 ∅c0 4333 {csn 4626 × cxp 5683 ran crn 5686 “ cima 5688 ⟶wf 6557 –1-1-onto→wf1o 6560 1oc1o 8499 inlcinl 9939 inrcinr 9940 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-om 7888 df-1st 8014 df-2nd 8015 df-1o 8506 df-inl 9942 df-inr 9943 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |