MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuin Structured version   Visualization version   GIF version

Theorem djuin 9955
Description: The images of any classes under right and left injection produce disjoint sets. (Contributed by Jim Kingdon, 21-Jun-2022.)
Assertion
Ref Expression
djuin ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅

Proof of Theorem djuin
StepHypRef Expression
1 incom 4216 . 2 ((inr “ 𝐵) ∩ (inl “ 𝐴)) = ((inl “ 𝐴) ∩ (inr “ 𝐵))
2 imassrn 6090 . . . 4 (inr “ 𝐵) ⊆ ran inr
3 djurf1o 9950 . . . . 5 inr:V–1-1-onto→({1o} × V)
4 f1of 6848 . . . . 5 (inr:V–1-1-onto→({1o} × V) → inr:V⟶({1o} × V))
5 frn 6743 . . . . 5 (inr:V⟶({1o} × V) → ran inr ⊆ ({1o} × V))
63, 4, 5mp2b 10 . . . 4 ran inr ⊆ ({1o} × V)
72, 6sstri 4004 . . 3 (inr “ 𝐵) ⊆ ({1o} × V)
8 incom 4216 . . . 4 ((inl “ 𝐴) ∩ ({1o} × V)) = (({1o} × V) ∩ (inl “ 𝐴))
9 imassrn 6090 . . . . . 6 (inl “ 𝐴) ⊆ ran inl
10 djulf1o 9949 . . . . . . 7 inl:V–1-1-onto→({∅} × V)
11 f1of 6848 . . . . . . 7 (inl:V–1-1-onto→({∅} × V) → inl:V⟶({∅} × V))
12 frn 6743 . . . . . . 7 (inl:V⟶({∅} × V) → ran inl ⊆ ({∅} × V))
1310, 11, 12mp2b 10 . . . . . 6 ran inl ⊆ ({∅} × V)
149, 13sstri 4004 . . . . 5 (inl “ 𝐴) ⊆ ({∅} × V)
15 1n0 8524 . . . . . . 7 1o ≠ ∅
1615necomi 2992 . . . . . 6 ∅ ≠ 1o
17 disjsn2 4716 . . . . . 6 (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅)
18 xpdisj1 6182 . . . . . 6 (({∅} ∩ {1o}) = ∅ → (({∅} × V) ∩ ({1o} × V)) = ∅)
1916, 17, 18mp2b 10 . . . . 5 (({∅} × V) ∩ ({1o} × V)) = ∅
20 ssdisj 4465 . . . . 5 (((inl “ 𝐴) ⊆ ({∅} × V) ∧ (({∅} × V) ∩ ({1o} × V)) = ∅) → ((inl “ 𝐴) ∩ ({1o} × V)) = ∅)
2114, 19, 20mp2an 692 . . . 4 ((inl “ 𝐴) ∩ ({1o} × V)) = ∅
228, 21eqtr3i 2764 . . 3 (({1o} × V) ∩ (inl “ 𝐴)) = ∅
23 ssdisj 4465 . . 3 (((inr “ 𝐵) ⊆ ({1o} × V) ∧ (({1o} × V) ∩ (inl “ 𝐴)) = ∅) → ((inr “ 𝐵) ∩ (inl “ 𝐴)) = ∅)
247, 22, 23mp2an 692 . 2 ((inr “ 𝐵) ∩ (inl “ 𝐴)) = ∅
251, 24eqtr3i 2764 1 ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1536  wne 2937  Vcvv 3477  cin 3961  wss 3962  c0 4338  {csn 4630   × cxp 5686  ran crn 5689  cima 5691  wf 6558  1-1-ontowf1o 6561  1oc1o 8497  inlcinl 9936  inrcinr 9937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-om 7887  df-1st 8012  df-2nd 8013  df-1o 8504  df-inl 9939  df-inr 9940
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator