MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcls3 Structured version   Visualization version   GIF version

Theorem elcls3 21167
Description: Membership in a closure in terms of the members of a basis. Theorem 6.5(b) of [Munkres] p. 95. (Contributed by NM, 26-Feb-2007.) (Revised by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
elcls3.1 (𝜑𝐽 = (topGen‘𝐵))
elcls3.2 (𝜑𝑋 = 𝐽)
elcls3.3 (𝜑𝐵 ∈ TopBases)
elcls3.4 (𝜑𝑆𝑋)
elcls3.5 (𝜑𝑃𝑋)
Assertion
Ref Expression
elcls3 (𝜑 → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑃   𝑥,𝑆
Allowed substitution hints:   𝜑(𝑥)   𝐽(𝑥)   𝑋(𝑥)

Proof of Theorem elcls3
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elcls3.1 . . . 4 (𝜑𝐽 = (topGen‘𝐵))
2 elcls3.3 . . . . 5 (𝜑𝐵 ∈ TopBases)
3 tgcl 21053 . . . . 5 (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ Top)
42, 3syl 17 . . . 4 (𝜑 → (topGen‘𝐵) ∈ Top)
51, 4eqeltrd 2844 . . 3 (𝜑𝐽 ∈ Top)
6 elcls3.4 . . . 4 (𝜑𝑆𝑋)
7 elcls3.2 . . . 4 (𝜑𝑋 = 𝐽)
86, 7sseqtrd 3801 . . 3 (𝜑𝑆 𝐽)
9 elcls3.5 . . . 4 (𝜑𝑃𝑋)
109, 7eleqtrd 2846 . . 3 (𝜑𝑃 𝐽)
11 eqid 2765 . . . 4 𝐽 = 𝐽
1211elcls 21157 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽𝑃 𝐽) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑦𝐽 (𝑃𝑦 → (𝑦𝑆) ≠ ∅)))
135, 8, 10, 12syl3anc 1490 . 2 (𝜑 → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑦𝐽 (𝑃𝑦 → (𝑦𝑆) ≠ ∅)))
14 bastg 21050 . . . . . . . . 9 (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵))
152, 14syl 17 . . . . . . . 8 (𝜑𝐵 ⊆ (topGen‘𝐵))
1615, 1sseqtr4d 3802 . . . . . . 7 (𝜑𝐵𝐽)
1716sseld 3760 . . . . . 6 (𝜑 → (𝑦𝐵𝑦𝐽))
1817imim1d 82 . . . . 5 (𝜑 → ((𝑦𝐽 → (𝑃𝑦 → (𝑦𝑆) ≠ ∅)) → (𝑦𝐵 → (𝑃𝑦 → (𝑦𝑆) ≠ ∅))))
1918ralimdv2 3108 . . . 4 (𝜑 → (∀𝑦𝐽 (𝑃𝑦 → (𝑦𝑆) ≠ ∅) → ∀𝑦𝐵 (𝑃𝑦 → (𝑦𝑆) ≠ ∅)))
20 eleq2w 2828 . . . . . 6 (𝑦 = 𝑥 → (𝑃𝑦𝑃𝑥))
21 ineq1 3969 . . . . . . 7 (𝑦 = 𝑥 → (𝑦𝑆) = (𝑥𝑆))
2221neeq1d 2996 . . . . . 6 (𝑦 = 𝑥 → ((𝑦𝑆) ≠ ∅ ↔ (𝑥𝑆) ≠ ∅))
2320, 22imbi12d 335 . . . . 5 (𝑦 = 𝑥 → ((𝑃𝑦 → (𝑦𝑆) ≠ ∅) ↔ (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
2423cbvralv 3319 . . . 4 (∀𝑦𝐵 (𝑃𝑦 → (𝑦𝑆) ≠ ∅) ↔ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅))
2519, 24syl6ib 242 . . 3 (𝜑 → (∀𝑦𝐽 (𝑃𝑦 → (𝑦𝑆) ≠ ∅) → ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
26 simprl 787 . . . . . . . 8 (((𝜑 ∧ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) ∧ (𝑦𝐽𝑃𝑦)) → 𝑦𝐽)
271ad2antrr 717 . . . . . . . 8 (((𝜑 ∧ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) ∧ (𝑦𝐽𝑃𝑦)) → 𝐽 = (topGen‘𝐵))
2826, 27eleqtrd 2846 . . . . . . 7 (((𝜑 ∧ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) ∧ (𝑦𝐽𝑃𝑦)) → 𝑦 ∈ (topGen‘𝐵))
29 simprr 789 . . . . . . 7 (((𝜑 ∧ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) ∧ (𝑦𝐽𝑃𝑦)) → 𝑃𝑦)
30 tg2 21049 . . . . . . 7 ((𝑦 ∈ (topGen‘𝐵) ∧ 𝑃𝑦) → ∃𝑧𝐵 (𝑃𝑧𝑧𝑦))
3128, 29, 30syl2anc 579 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) ∧ (𝑦𝐽𝑃𝑦)) → ∃𝑧𝐵 (𝑃𝑧𝑧𝑦))
32 eleq2w 2828 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑃𝑥𝑃𝑧))
33 ineq1 3969 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (𝑥𝑆) = (𝑧𝑆))
3433neeq1d 2996 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((𝑥𝑆) ≠ ∅ ↔ (𝑧𝑆) ≠ ∅))
3532, 34imbi12d 335 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((𝑃𝑥 → (𝑥𝑆) ≠ ∅) ↔ (𝑃𝑧 → (𝑧𝑆) ≠ ∅)))
3635rspccva 3460 . . . . . . . . . . . 12 ((∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) ∧ 𝑧𝐵) → (𝑃𝑧 → (𝑧𝑆) ≠ ∅))
3736imp 395 . . . . . . . . . . 11 (((∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) ∧ 𝑧𝐵) ∧ 𝑃𝑧) → (𝑧𝑆) ≠ ∅)
38 ssdisj 4188 . . . . . . . . . . . . 13 ((𝑧𝑦 ∧ (𝑦𝑆) = ∅) → (𝑧𝑆) = ∅)
3938ex 401 . . . . . . . . . . . 12 (𝑧𝑦 → ((𝑦𝑆) = ∅ → (𝑧𝑆) = ∅))
4039necon3d 2958 . . . . . . . . . . 11 (𝑧𝑦 → ((𝑧𝑆) ≠ ∅ → (𝑦𝑆) ≠ ∅))
4137, 40syl5com 31 . . . . . . . . . 10 (((∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) ∧ 𝑧𝐵) ∧ 𝑃𝑧) → (𝑧𝑦 → (𝑦𝑆) ≠ ∅))
4241exp31 410 . . . . . . . . 9 (∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑧𝐵 → (𝑃𝑧 → (𝑧𝑦 → (𝑦𝑆) ≠ ∅))))
4342imp4a 413 . . . . . . . 8 (∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑧𝐵 → ((𝑃𝑧𝑧𝑦) → (𝑦𝑆) ≠ ∅)))
4443rexlimdv 3177 . . . . . . 7 (∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (∃𝑧𝐵 (𝑃𝑧𝑧𝑦) → (𝑦𝑆) ≠ ∅))
4544ad2antlr 718 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) ∧ (𝑦𝐽𝑃𝑦)) → (∃𝑧𝐵 (𝑃𝑧𝑧𝑦) → (𝑦𝑆) ≠ ∅))
4631, 45mpd 15 . . . . 5 (((𝜑 ∧ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) ∧ (𝑦𝐽𝑃𝑦)) → (𝑦𝑆) ≠ ∅)
4746exp43 427 . . . 4 (𝜑 → (∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑦𝐽 → (𝑃𝑦 → (𝑦𝑆) ≠ ∅))))
4847ralrimdv 3115 . . 3 (𝜑 → (∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → ∀𝑦𝐽 (𝑃𝑦 → (𝑦𝑆) ≠ ∅)))
4925, 48impbid 203 . 2 (𝜑 → (∀𝑦𝐽 (𝑃𝑦 → (𝑦𝑆) ≠ ∅) ↔ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
5013, 49bitrd 270 1 (𝜑 → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wne 2937  wral 3055  wrex 3056  cin 3731  wss 3732  c0 4079   cuni 4594  cfv 6068  topGenctg 16364  Topctop 20977  TopBasesctb 21029  clsccl 21102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-topgen 16370  df-top 20978  df-bases 21030  df-cld 21103  df-ntr 21104  df-cls 21105
This theorem is referenced by:  2ndcsep  21542  ptclsg  21698  qdensere  22852
  Copyright terms: Public domain W3C validator