MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcls3 Structured version   Visualization version   GIF version

Theorem elcls3 23019
Description: Membership in a closure in terms of the members of a basis. Theorem 6.5(b) of [Munkres] p. 95. (Contributed by NM, 26-Feb-2007.) (Revised by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
elcls3.1 (𝜑𝐽 = (topGen‘𝐵))
elcls3.2 (𝜑𝑋 = 𝐽)
elcls3.3 (𝜑𝐵 ∈ TopBases)
elcls3.4 (𝜑𝑆𝑋)
elcls3.5 (𝜑𝑃𝑋)
Assertion
Ref Expression
elcls3 (𝜑 → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑃   𝑥,𝑆
Allowed substitution hints:   𝜑(𝑥)   𝐽(𝑥)   𝑋(𝑥)

Proof of Theorem elcls3
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elcls3.1 . . . 4 (𝜑𝐽 = (topGen‘𝐵))
2 elcls3.3 . . . . 5 (𝜑𝐵 ∈ TopBases)
3 tgcl 22905 . . . . 5 (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ Top)
42, 3syl 17 . . . 4 (𝜑 → (topGen‘𝐵) ∈ Top)
51, 4eqeltrd 2834 . . 3 (𝜑𝐽 ∈ Top)
6 elcls3.4 . . . 4 (𝜑𝑆𝑋)
7 elcls3.2 . . . 4 (𝜑𝑋 = 𝐽)
86, 7sseqtrd 3995 . . 3 (𝜑𝑆 𝐽)
9 elcls3.5 . . . 4 (𝜑𝑃𝑋)
109, 7eleqtrd 2836 . . 3 (𝜑𝑃 𝐽)
11 eqid 2735 . . . 4 𝐽 = 𝐽
1211elcls 23009 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽𝑃 𝐽) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑦𝐽 (𝑃𝑦 → (𝑦𝑆) ≠ ∅)))
135, 8, 10, 12syl3anc 1373 . 2 (𝜑 → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑦𝐽 (𝑃𝑦 → (𝑦𝑆) ≠ ∅)))
14 bastg 22902 . . . . . . . . 9 (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵))
152, 14syl 17 . . . . . . . 8 (𝜑𝐵 ⊆ (topGen‘𝐵))
1615, 1sseqtrrd 3996 . . . . . . 7 (𝜑𝐵𝐽)
1716sseld 3957 . . . . . 6 (𝜑 → (𝑦𝐵𝑦𝐽))
1817imim1d 82 . . . . 5 (𝜑 → ((𝑦𝐽 → (𝑃𝑦 → (𝑦𝑆) ≠ ∅)) → (𝑦𝐵 → (𝑃𝑦 → (𝑦𝑆) ≠ ∅))))
1918ralimdv2 3149 . . . 4 (𝜑 → (∀𝑦𝐽 (𝑃𝑦 → (𝑦𝑆) ≠ ∅) → ∀𝑦𝐵 (𝑃𝑦 → (𝑦𝑆) ≠ ∅)))
20 eleq2w 2818 . . . . . 6 (𝑦 = 𝑥 → (𝑃𝑦𝑃𝑥))
21 ineq1 4188 . . . . . . 7 (𝑦 = 𝑥 → (𝑦𝑆) = (𝑥𝑆))
2221neeq1d 2991 . . . . . 6 (𝑦 = 𝑥 → ((𝑦𝑆) ≠ ∅ ↔ (𝑥𝑆) ≠ ∅))
2320, 22imbi12d 344 . . . . 5 (𝑦 = 𝑥 → ((𝑃𝑦 → (𝑦𝑆) ≠ ∅) ↔ (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
2423cbvralvw 3220 . . . 4 (∀𝑦𝐵 (𝑃𝑦 → (𝑦𝑆) ≠ ∅) ↔ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅))
2519, 24imbitrdi 251 . . 3 (𝜑 → (∀𝑦𝐽 (𝑃𝑦 → (𝑦𝑆) ≠ ∅) → ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
26 simprl 770 . . . . . . . 8 (((𝜑 ∧ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) ∧ (𝑦𝐽𝑃𝑦)) → 𝑦𝐽)
271ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) ∧ (𝑦𝐽𝑃𝑦)) → 𝐽 = (topGen‘𝐵))
2826, 27eleqtrd 2836 . . . . . . 7 (((𝜑 ∧ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) ∧ (𝑦𝐽𝑃𝑦)) → 𝑦 ∈ (topGen‘𝐵))
29 simprr 772 . . . . . . 7 (((𝜑 ∧ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) ∧ (𝑦𝐽𝑃𝑦)) → 𝑃𝑦)
30 tg2 22901 . . . . . . 7 ((𝑦 ∈ (topGen‘𝐵) ∧ 𝑃𝑦) → ∃𝑧𝐵 (𝑃𝑧𝑧𝑦))
3128, 29, 30syl2anc 584 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) ∧ (𝑦𝐽𝑃𝑦)) → ∃𝑧𝐵 (𝑃𝑧𝑧𝑦))
32 eleq2w 2818 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑃𝑥𝑃𝑧))
33 ineq1 4188 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (𝑥𝑆) = (𝑧𝑆))
3433neeq1d 2991 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((𝑥𝑆) ≠ ∅ ↔ (𝑧𝑆) ≠ ∅))
3532, 34imbi12d 344 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((𝑃𝑥 → (𝑥𝑆) ≠ ∅) ↔ (𝑃𝑧 → (𝑧𝑆) ≠ ∅)))
3635rspccva 3600 . . . . . . . . . . . 12 ((∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) ∧ 𝑧𝐵) → (𝑃𝑧 → (𝑧𝑆) ≠ ∅))
3736imp 406 . . . . . . . . . . 11 (((∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) ∧ 𝑧𝐵) ∧ 𝑃𝑧) → (𝑧𝑆) ≠ ∅)
38 ssdisj 4435 . . . . . . . . . . . . 13 ((𝑧𝑦 ∧ (𝑦𝑆) = ∅) → (𝑧𝑆) = ∅)
3938ex 412 . . . . . . . . . . . 12 (𝑧𝑦 → ((𝑦𝑆) = ∅ → (𝑧𝑆) = ∅))
4039necon3d 2953 . . . . . . . . . . 11 (𝑧𝑦 → ((𝑧𝑆) ≠ ∅ → (𝑦𝑆) ≠ ∅))
4137, 40syl5com 31 . . . . . . . . . 10 (((∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) ∧ 𝑧𝐵) ∧ 𝑃𝑧) → (𝑧𝑦 → (𝑦𝑆) ≠ ∅))
4241exp31 419 . . . . . . . . 9 (∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑧𝐵 → (𝑃𝑧 → (𝑧𝑦 → (𝑦𝑆) ≠ ∅))))
4342imp4a 422 . . . . . . . 8 (∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑧𝐵 → ((𝑃𝑧𝑧𝑦) → (𝑦𝑆) ≠ ∅)))
4443rexlimdv 3139 . . . . . . 7 (∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (∃𝑧𝐵 (𝑃𝑧𝑧𝑦) → (𝑦𝑆) ≠ ∅))
4544ad2antlr 727 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) ∧ (𝑦𝐽𝑃𝑦)) → (∃𝑧𝐵 (𝑃𝑧𝑧𝑦) → (𝑦𝑆) ≠ ∅))
4631, 45mpd 15 . . . . 5 (((𝜑 ∧ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) ∧ (𝑦𝐽𝑃𝑦)) → (𝑦𝑆) ≠ ∅)
4746exp43 436 . . . 4 (𝜑 → (∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑦𝐽 → (𝑃𝑦 → (𝑦𝑆) ≠ ∅))))
4847ralrimdv 3138 . . 3 (𝜑 → (∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → ∀𝑦𝐽 (𝑃𝑦 → (𝑦𝑆) ≠ ∅)))
4925, 48impbid 212 . 2 (𝜑 → (∀𝑦𝐽 (𝑃𝑦 → (𝑦𝑆) ≠ ∅) ↔ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
5013, 49bitrd 279 1 (𝜑 → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  cin 3925  wss 3926  c0 4308   cuni 4883  cfv 6530  topGenctg 17449  Topctop 22829  TopBasesctb 22881  clsccl 22954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-topgen 17455  df-top 22830  df-bases 22882  df-cld 22955  df-ntr 22956  df-cls 22957
This theorem is referenced by:  2ndcsep  23395  ptclsg  23551  qdensere  24706
  Copyright terms: Public domain W3C validator