MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcls3 Structured version   Visualization version   GIF version

Theorem elcls3 21693
Description: Membership in a closure in terms of the members of a basis. Theorem 6.5(b) of [Munkres] p. 95. (Contributed by NM, 26-Feb-2007.) (Revised by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
elcls3.1 (𝜑𝐽 = (topGen‘𝐵))
elcls3.2 (𝜑𝑋 = 𝐽)
elcls3.3 (𝜑𝐵 ∈ TopBases)
elcls3.4 (𝜑𝑆𝑋)
elcls3.5 (𝜑𝑃𝑋)
Assertion
Ref Expression
elcls3 (𝜑 → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑃   𝑥,𝑆
Allowed substitution hints:   𝜑(𝑥)   𝐽(𝑥)   𝑋(𝑥)

Proof of Theorem elcls3
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elcls3.1 . . . 4 (𝜑𝐽 = (topGen‘𝐵))
2 elcls3.3 . . . . 5 (𝜑𝐵 ∈ TopBases)
3 tgcl 21579 . . . . 5 (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ Top)
42, 3syl 17 . . . 4 (𝜑 → (topGen‘𝐵) ∈ Top)
51, 4eqeltrd 2915 . . 3 (𝜑𝐽 ∈ Top)
6 elcls3.4 . . . 4 (𝜑𝑆𝑋)
7 elcls3.2 . . . 4 (𝜑𝑋 = 𝐽)
86, 7sseqtrd 4009 . . 3 (𝜑𝑆 𝐽)
9 elcls3.5 . . . 4 (𝜑𝑃𝑋)
109, 7eleqtrd 2917 . . 3 (𝜑𝑃 𝐽)
11 eqid 2823 . . . 4 𝐽 = 𝐽
1211elcls 21683 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽𝑃 𝐽) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑦𝐽 (𝑃𝑦 → (𝑦𝑆) ≠ ∅)))
135, 8, 10, 12syl3anc 1367 . 2 (𝜑 → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑦𝐽 (𝑃𝑦 → (𝑦𝑆) ≠ ∅)))
14 bastg 21576 . . . . . . . . 9 (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵))
152, 14syl 17 . . . . . . . 8 (𝜑𝐵 ⊆ (topGen‘𝐵))
1615, 1sseqtrrd 4010 . . . . . . 7 (𝜑𝐵𝐽)
1716sseld 3968 . . . . . 6 (𝜑 → (𝑦𝐵𝑦𝐽))
1817imim1d 82 . . . . 5 (𝜑 → ((𝑦𝐽 → (𝑃𝑦 → (𝑦𝑆) ≠ ∅)) → (𝑦𝐵 → (𝑃𝑦 → (𝑦𝑆) ≠ ∅))))
1918ralimdv2 3178 . . . 4 (𝜑 → (∀𝑦𝐽 (𝑃𝑦 → (𝑦𝑆) ≠ ∅) → ∀𝑦𝐵 (𝑃𝑦 → (𝑦𝑆) ≠ ∅)))
20 eleq2w 2898 . . . . . 6 (𝑦 = 𝑥 → (𝑃𝑦𝑃𝑥))
21 ineq1 4183 . . . . . . 7 (𝑦 = 𝑥 → (𝑦𝑆) = (𝑥𝑆))
2221neeq1d 3077 . . . . . 6 (𝑦 = 𝑥 → ((𝑦𝑆) ≠ ∅ ↔ (𝑥𝑆) ≠ ∅))
2320, 22imbi12d 347 . . . . 5 (𝑦 = 𝑥 → ((𝑃𝑦 → (𝑦𝑆) ≠ ∅) ↔ (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
2423cbvralvw 3451 . . . 4 (∀𝑦𝐵 (𝑃𝑦 → (𝑦𝑆) ≠ ∅) ↔ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅))
2519, 24syl6ib 253 . . 3 (𝜑 → (∀𝑦𝐽 (𝑃𝑦 → (𝑦𝑆) ≠ ∅) → ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
26 simprl 769 . . . . . . . 8 (((𝜑 ∧ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) ∧ (𝑦𝐽𝑃𝑦)) → 𝑦𝐽)
271ad2antrr 724 . . . . . . . 8 (((𝜑 ∧ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) ∧ (𝑦𝐽𝑃𝑦)) → 𝐽 = (topGen‘𝐵))
2826, 27eleqtrd 2917 . . . . . . 7 (((𝜑 ∧ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) ∧ (𝑦𝐽𝑃𝑦)) → 𝑦 ∈ (topGen‘𝐵))
29 simprr 771 . . . . . . 7 (((𝜑 ∧ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) ∧ (𝑦𝐽𝑃𝑦)) → 𝑃𝑦)
30 tg2 21575 . . . . . . 7 ((𝑦 ∈ (topGen‘𝐵) ∧ 𝑃𝑦) → ∃𝑧𝐵 (𝑃𝑧𝑧𝑦))
3128, 29, 30syl2anc 586 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) ∧ (𝑦𝐽𝑃𝑦)) → ∃𝑧𝐵 (𝑃𝑧𝑧𝑦))
32 eleq2w 2898 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑃𝑥𝑃𝑧))
33 ineq1 4183 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (𝑥𝑆) = (𝑧𝑆))
3433neeq1d 3077 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((𝑥𝑆) ≠ ∅ ↔ (𝑧𝑆) ≠ ∅))
3532, 34imbi12d 347 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((𝑃𝑥 → (𝑥𝑆) ≠ ∅) ↔ (𝑃𝑧 → (𝑧𝑆) ≠ ∅)))
3635rspccva 3624 . . . . . . . . . . . 12 ((∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) ∧ 𝑧𝐵) → (𝑃𝑧 → (𝑧𝑆) ≠ ∅))
3736imp 409 . . . . . . . . . . 11 (((∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) ∧ 𝑧𝐵) ∧ 𝑃𝑧) → (𝑧𝑆) ≠ ∅)
38 ssdisj 4411 . . . . . . . . . . . . 13 ((𝑧𝑦 ∧ (𝑦𝑆) = ∅) → (𝑧𝑆) = ∅)
3938ex 415 . . . . . . . . . . . 12 (𝑧𝑦 → ((𝑦𝑆) = ∅ → (𝑧𝑆) = ∅))
4039necon3d 3039 . . . . . . . . . . 11 (𝑧𝑦 → ((𝑧𝑆) ≠ ∅ → (𝑦𝑆) ≠ ∅))
4137, 40syl5com 31 . . . . . . . . . 10 (((∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) ∧ 𝑧𝐵) ∧ 𝑃𝑧) → (𝑧𝑦 → (𝑦𝑆) ≠ ∅))
4241exp31 422 . . . . . . . . 9 (∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑧𝐵 → (𝑃𝑧 → (𝑧𝑦 → (𝑦𝑆) ≠ ∅))))
4342imp4a 425 . . . . . . . 8 (∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑧𝐵 → ((𝑃𝑧𝑧𝑦) → (𝑦𝑆) ≠ ∅)))
4443rexlimdv 3285 . . . . . . 7 (∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (∃𝑧𝐵 (𝑃𝑧𝑧𝑦) → (𝑦𝑆) ≠ ∅))
4544ad2antlr 725 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) ∧ (𝑦𝐽𝑃𝑦)) → (∃𝑧𝐵 (𝑃𝑧𝑧𝑦) → (𝑦𝑆) ≠ ∅))
4631, 45mpd 15 . . . . 5 (((𝜑 ∧ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) ∧ (𝑦𝐽𝑃𝑦)) → (𝑦𝑆) ≠ ∅)
4746exp43 439 . . . 4 (𝜑 → (∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑦𝐽 → (𝑃𝑦 → (𝑦𝑆) ≠ ∅))))
4847ralrimdv 3190 . . 3 (𝜑 → (∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → ∀𝑦𝐽 (𝑃𝑦 → (𝑦𝑆) ≠ ∅)))
4925, 48impbid 214 . 2 (𝜑 → (∀𝑦𝐽 (𝑃𝑦 → (𝑦𝑆) ≠ ∅) ↔ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
5013, 49bitrd 281 1 (𝜑 → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018  wral 3140  wrex 3141  cin 3937  wss 3938  c0 4293   cuni 4840  cfv 6357  topGenctg 16713  Topctop 21503  TopBasesctb 21555  clsccl 21628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-topgen 16719  df-top 21504  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631
This theorem is referenced by:  2ndcsep  22069  ptclsg  22225  qdensere  23380
  Copyright terms: Public domain W3C validator