MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcls3 Structured version   Visualization version   GIF version

Theorem elcls3 22999
Description: Membership in a closure in terms of the members of a basis. Theorem 6.5(b) of [Munkres] p. 95. (Contributed by NM, 26-Feb-2007.) (Revised by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
elcls3.1 (𝜑𝐽 = (topGen‘𝐵))
elcls3.2 (𝜑𝑋 = 𝐽)
elcls3.3 (𝜑𝐵 ∈ TopBases)
elcls3.4 (𝜑𝑆𝑋)
elcls3.5 (𝜑𝑃𝑋)
Assertion
Ref Expression
elcls3 (𝜑 → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑃   𝑥,𝑆
Allowed substitution hints:   𝜑(𝑥)   𝐽(𝑥)   𝑋(𝑥)

Proof of Theorem elcls3
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elcls3.1 . . . 4 (𝜑𝐽 = (topGen‘𝐵))
2 elcls3.3 . . . . 5 (𝜑𝐵 ∈ TopBases)
3 tgcl 22885 . . . . 5 (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ Top)
42, 3syl 17 . . . 4 (𝜑 → (topGen‘𝐵) ∈ Top)
51, 4eqeltrd 2833 . . 3 (𝜑𝐽 ∈ Top)
6 elcls3.4 . . . 4 (𝜑𝑆𝑋)
7 elcls3.2 . . . 4 (𝜑𝑋 = 𝐽)
86, 7sseqtrd 3967 . . 3 (𝜑𝑆 𝐽)
9 elcls3.5 . . . 4 (𝜑𝑃𝑋)
109, 7eleqtrd 2835 . . 3 (𝜑𝑃 𝐽)
11 eqid 2733 . . . 4 𝐽 = 𝐽
1211elcls 22989 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽𝑃 𝐽) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑦𝐽 (𝑃𝑦 → (𝑦𝑆) ≠ ∅)))
135, 8, 10, 12syl3anc 1373 . 2 (𝜑 → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑦𝐽 (𝑃𝑦 → (𝑦𝑆) ≠ ∅)))
14 bastg 22882 . . . . . . . . 9 (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵))
152, 14syl 17 . . . . . . . 8 (𝜑𝐵 ⊆ (topGen‘𝐵))
1615, 1sseqtrrd 3968 . . . . . . 7 (𝜑𝐵𝐽)
1716sseld 3929 . . . . . 6 (𝜑 → (𝑦𝐵𝑦𝐽))
1817imim1d 82 . . . . 5 (𝜑 → ((𝑦𝐽 → (𝑃𝑦 → (𝑦𝑆) ≠ ∅)) → (𝑦𝐵 → (𝑃𝑦 → (𝑦𝑆) ≠ ∅))))
1918ralimdv2 3142 . . . 4 (𝜑 → (∀𝑦𝐽 (𝑃𝑦 → (𝑦𝑆) ≠ ∅) → ∀𝑦𝐵 (𝑃𝑦 → (𝑦𝑆) ≠ ∅)))
20 eleq2w 2817 . . . . . 6 (𝑦 = 𝑥 → (𝑃𝑦𝑃𝑥))
21 ineq1 4162 . . . . . . 7 (𝑦 = 𝑥 → (𝑦𝑆) = (𝑥𝑆))
2221neeq1d 2988 . . . . . 6 (𝑦 = 𝑥 → ((𝑦𝑆) ≠ ∅ ↔ (𝑥𝑆) ≠ ∅))
2320, 22imbi12d 344 . . . . 5 (𝑦 = 𝑥 → ((𝑃𝑦 → (𝑦𝑆) ≠ ∅) ↔ (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
2423cbvralvw 3211 . . . 4 (∀𝑦𝐵 (𝑃𝑦 → (𝑦𝑆) ≠ ∅) ↔ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅))
2519, 24imbitrdi 251 . . 3 (𝜑 → (∀𝑦𝐽 (𝑃𝑦 → (𝑦𝑆) ≠ ∅) → ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
26 simprl 770 . . . . . . . 8 (((𝜑 ∧ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) ∧ (𝑦𝐽𝑃𝑦)) → 𝑦𝐽)
271ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) ∧ (𝑦𝐽𝑃𝑦)) → 𝐽 = (topGen‘𝐵))
2826, 27eleqtrd 2835 . . . . . . 7 (((𝜑 ∧ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) ∧ (𝑦𝐽𝑃𝑦)) → 𝑦 ∈ (topGen‘𝐵))
29 simprr 772 . . . . . . 7 (((𝜑 ∧ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) ∧ (𝑦𝐽𝑃𝑦)) → 𝑃𝑦)
30 tg2 22881 . . . . . . 7 ((𝑦 ∈ (topGen‘𝐵) ∧ 𝑃𝑦) → ∃𝑧𝐵 (𝑃𝑧𝑧𝑦))
3128, 29, 30syl2anc 584 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) ∧ (𝑦𝐽𝑃𝑦)) → ∃𝑧𝐵 (𝑃𝑧𝑧𝑦))
32 eleq2w 2817 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑃𝑥𝑃𝑧))
33 ineq1 4162 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (𝑥𝑆) = (𝑧𝑆))
3433neeq1d 2988 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((𝑥𝑆) ≠ ∅ ↔ (𝑧𝑆) ≠ ∅))
3532, 34imbi12d 344 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((𝑃𝑥 → (𝑥𝑆) ≠ ∅) ↔ (𝑃𝑧 → (𝑧𝑆) ≠ ∅)))
3635rspccva 3572 . . . . . . . . . . . 12 ((∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) ∧ 𝑧𝐵) → (𝑃𝑧 → (𝑧𝑆) ≠ ∅))
3736imp 406 . . . . . . . . . . 11 (((∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) ∧ 𝑧𝐵) ∧ 𝑃𝑧) → (𝑧𝑆) ≠ ∅)
38 ssdisj 4409 . . . . . . . . . . . . 13 ((𝑧𝑦 ∧ (𝑦𝑆) = ∅) → (𝑧𝑆) = ∅)
3938ex 412 . . . . . . . . . . . 12 (𝑧𝑦 → ((𝑦𝑆) = ∅ → (𝑧𝑆) = ∅))
4039necon3d 2950 . . . . . . . . . . 11 (𝑧𝑦 → ((𝑧𝑆) ≠ ∅ → (𝑦𝑆) ≠ ∅))
4137, 40syl5com 31 . . . . . . . . . 10 (((∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) ∧ 𝑧𝐵) ∧ 𝑃𝑧) → (𝑧𝑦 → (𝑦𝑆) ≠ ∅))
4241exp31 419 . . . . . . . . 9 (∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑧𝐵 → (𝑃𝑧 → (𝑧𝑦 → (𝑦𝑆) ≠ ∅))))
4342imp4a 422 . . . . . . . 8 (∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑧𝐵 → ((𝑃𝑧𝑧𝑦) → (𝑦𝑆) ≠ ∅)))
4443rexlimdv 3132 . . . . . . 7 (∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (∃𝑧𝐵 (𝑃𝑧𝑧𝑦) → (𝑦𝑆) ≠ ∅))
4544ad2antlr 727 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) ∧ (𝑦𝐽𝑃𝑦)) → (∃𝑧𝐵 (𝑃𝑧𝑧𝑦) → (𝑦𝑆) ≠ ∅))
4631, 45mpd 15 . . . . 5 (((𝜑 ∧ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) ∧ (𝑦𝐽𝑃𝑦)) → (𝑦𝑆) ≠ ∅)
4746exp43 436 . . . 4 (𝜑 → (∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑦𝐽 → (𝑃𝑦 → (𝑦𝑆) ≠ ∅))))
4847ralrimdv 3131 . . 3 (𝜑 → (∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → ∀𝑦𝐽 (𝑃𝑦 → (𝑦𝑆) ≠ ∅)))
4925, 48impbid 212 . 2 (𝜑 → (∀𝑦𝐽 (𝑃𝑦 → (𝑦𝑆) ≠ ∅) ↔ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
5013, 49bitrd 279 1 (𝜑 → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  wral 3048  wrex 3057  cin 3897  wss 3898  c0 4282   cuni 4858  cfv 6486  topGenctg 17343  Topctop 22809  TopBasesctb 22861  clsccl 22934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-topgen 17349  df-top 22810  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937
This theorem is referenced by:  2ndcsep  23375  ptclsg  23531  qdensere  24685
  Copyright terms: Public domain W3C validator