Step | Hyp | Ref
| Expression |
1 | | elcls3.1 |
. . . 4
β’ (π β π½ = (topGenβπ΅)) |
2 | | elcls3.3 |
. . . . 5
β’ (π β π΅ β TopBases) |
3 | | tgcl 22692 |
. . . . 5
β’ (π΅ β TopBases β
(topGenβπ΅) β
Top) |
4 | 2, 3 | syl 17 |
. . . 4
β’ (π β (topGenβπ΅) β Top) |
5 | 1, 4 | eqeltrd 2831 |
. . 3
β’ (π β π½ β Top) |
6 | | elcls3.4 |
. . . 4
β’ (π β π β π) |
7 | | elcls3.2 |
. . . 4
β’ (π β π = βͺ π½) |
8 | 6, 7 | sseqtrd 4021 |
. . 3
β’ (π β π β βͺ π½) |
9 | | elcls3.5 |
. . . 4
β’ (π β π β π) |
10 | 9, 7 | eleqtrd 2833 |
. . 3
β’ (π β π β βͺ π½) |
11 | | eqid 2730 |
. . . 4
β’ βͺ π½ =
βͺ π½ |
12 | 11 | elcls 22797 |
. . 3
β’ ((π½ β Top β§ π β βͺ π½
β§ π β βͺ π½)
β (π β
((clsβπ½)βπ) β βπ¦ β π½ (π β π¦ β (π¦ β© π) β β
))) |
13 | 5, 8, 10, 12 | syl3anc 1369 |
. 2
β’ (π β (π β ((clsβπ½)βπ) β βπ¦ β π½ (π β π¦ β (π¦ β© π) β β
))) |
14 | | bastg 22689 |
. . . . . . . . 9
β’ (π΅ β TopBases β π΅ β (topGenβπ΅)) |
15 | 2, 14 | syl 17 |
. . . . . . . 8
β’ (π β π΅ β (topGenβπ΅)) |
16 | 15, 1 | sseqtrrd 4022 |
. . . . . . 7
β’ (π β π΅ β π½) |
17 | 16 | sseld 3980 |
. . . . . 6
β’ (π β (π¦ β π΅ β π¦ β π½)) |
18 | 17 | imim1d 82 |
. . . . 5
β’ (π β ((π¦ β π½ β (π β π¦ β (π¦ β© π) β β
)) β (π¦ β π΅ β (π β π¦ β (π¦ β© π) β β
)))) |
19 | 18 | ralimdv2 3161 |
. . . 4
β’ (π β (βπ¦ β π½ (π β π¦ β (π¦ β© π) β β
) β βπ¦ β π΅ (π β π¦ β (π¦ β© π) β β
))) |
20 | | eleq2w 2815 |
. . . . . 6
β’ (π¦ = π₯ β (π β π¦ β π β π₯)) |
21 | | ineq1 4204 |
. . . . . . 7
β’ (π¦ = π₯ β (π¦ β© π) = (π₯ β© π)) |
22 | 21 | neeq1d 2998 |
. . . . . 6
β’ (π¦ = π₯ β ((π¦ β© π) β β
β (π₯ β© π) β β
)) |
23 | 20, 22 | imbi12d 343 |
. . . . 5
β’ (π¦ = π₯ β ((π β π¦ β (π¦ β© π) β β
) β (π β π₯ β (π₯ β© π) β β
))) |
24 | 23 | cbvralvw 3232 |
. . . 4
β’
(βπ¦ β
π΅ (π β π¦ β (π¦ β© π) β β
) β βπ₯ β π΅ (π β π₯ β (π₯ β© π) β β
)) |
25 | 19, 24 | imbitrdi 250 |
. . 3
β’ (π β (βπ¦ β π½ (π β π¦ β (π¦ β© π) β β
) β βπ₯ β π΅ (π β π₯ β (π₯ β© π) β β
))) |
26 | | simprl 767 |
. . . . . . . 8
β’ (((π β§ βπ₯ β π΅ (π β π₯ β (π₯ β© π) β β
)) β§ (π¦ β π½ β§ π β π¦)) β π¦ β π½) |
27 | 1 | ad2antrr 722 |
. . . . . . . 8
β’ (((π β§ βπ₯ β π΅ (π β π₯ β (π₯ β© π) β β
)) β§ (π¦ β π½ β§ π β π¦)) β π½ = (topGenβπ΅)) |
28 | 26, 27 | eleqtrd 2833 |
. . . . . . 7
β’ (((π β§ βπ₯ β π΅ (π β π₯ β (π₯ β© π) β β
)) β§ (π¦ β π½ β§ π β π¦)) β π¦ β (topGenβπ΅)) |
29 | | simprr 769 |
. . . . . . 7
β’ (((π β§ βπ₯ β π΅ (π β π₯ β (π₯ β© π) β β
)) β§ (π¦ β π½ β§ π β π¦)) β π β π¦) |
30 | | tg2 22688 |
. . . . . . 7
β’ ((π¦ β (topGenβπ΅) β§ π β π¦) β βπ§ β π΅ (π β π§ β§ π§ β π¦)) |
31 | 28, 29, 30 | syl2anc 582 |
. . . . . 6
β’ (((π β§ βπ₯ β π΅ (π β π₯ β (π₯ β© π) β β
)) β§ (π¦ β π½ β§ π β π¦)) β βπ§ β π΅ (π β π§ β§ π§ β π¦)) |
32 | | eleq2w 2815 |
. . . . . . . . . . . . . 14
β’ (π₯ = π§ β (π β π₯ β π β π§)) |
33 | | ineq1 4204 |
. . . . . . . . . . . . . . 15
β’ (π₯ = π§ β (π₯ β© π) = (π§ β© π)) |
34 | 33 | neeq1d 2998 |
. . . . . . . . . . . . . 14
β’ (π₯ = π§ β ((π₯ β© π) β β
β (π§ β© π) β β
)) |
35 | 32, 34 | imbi12d 343 |
. . . . . . . . . . . . 13
β’ (π₯ = π§ β ((π β π₯ β (π₯ β© π) β β
) β (π β π§ β (π§ β© π) β β
))) |
36 | 35 | rspccva 3610 |
. . . . . . . . . . . 12
β’
((βπ₯ β
π΅ (π β π₯ β (π₯ β© π) β β
) β§ π§ β π΅) β (π β π§ β (π§ β© π) β β
)) |
37 | 36 | imp 405 |
. . . . . . . . . . 11
β’
(((βπ₯ β
π΅ (π β π₯ β (π₯ β© π) β β
) β§ π§ β π΅) β§ π β π§) β (π§ β© π) β β
) |
38 | | ssdisj 4458 |
. . . . . . . . . . . . 13
β’ ((π§ β π¦ β§ (π¦ β© π) = β
) β (π§ β© π) = β
) |
39 | 38 | ex 411 |
. . . . . . . . . . . 12
β’ (π§ β π¦ β ((π¦ β© π) = β
β (π§ β© π) = β
)) |
40 | 39 | necon3d 2959 |
. . . . . . . . . . 11
β’ (π§ β π¦ β ((π§ β© π) β β
β (π¦ β© π) β β
)) |
41 | 37, 40 | syl5com 31 |
. . . . . . . . . 10
β’
(((βπ₯ β
π΅ (π β π₯ β (π₯ β© π) β β
) β§ π§ β π΅) β§ π β π§) β (π§ β π¦ β (π¦ β© π) β β
)) |
42 | 41 | exp31 418 |
. . . . . . . . 9
β’
(βπ₯ β
π΅ (π β π₯ β (π₯ β© π) β β
) β (π§ β π΅ β (π β π§ β (π§ β π¦ β (π¦ β© π) β β
)))) |
43 | 42 | imp4a 421 |
. . . . . . . 8
β’
(βπ₯ β
π΅ (π β π₯ β (π₯ β© π) β β
) β (π§ β π΅ β ((π β π§ β§ π§ β π¦) β (π¦ β© π) β β
))) |
44 | 43 | rexlimdv 3151 |
. . . . . . 7
β’
(βπ₯ β
π΅ (π β π₯ β (π₯ β© π) β β
) β (βπ§ β π΅ (π β π§ β§ π§ β π¦) β (π¦ β© π) β β
)) |
45 | 44 | ad2antlr 723 |
. . . . . 6
β’ (((π β§ βπ₯ β π΅ (π β π₯ β (π₯ β© π) β β
)) β§ (π¦ β π½ β§ π β π¦)) β (βπ§ β π΅ (π β π§ β§ π§ β π¦) β (π¦ β© π) β β
)) |
46 | 31, 45 | mpd 15 |
. . . . 5
β’ (((π β§ βπ₯ β π΅ (π β π₯ β (π₯ β© π) β β
)) β§ (π¦ β π½ β§ π β π¦)) β (π¦ β© π) β β
) |
47 | 46 | exp43 435 |
. . . 4
β’ (π β (βπ₯ β π΅ (π β π₯ β (π₯ β© π) β β
) β (π¦ β π½ β (π β π¦ β (π¦ β© π) β β
)))) |
48 | 47 | ralrimdv 3150 |
. . 3
β’ (π β (βπ₯ β π΅ (π β π₯ β (π₯ β© π) β β
) β βπ¦ β π½ (π β π¦ β (π¦ β© π) β β
))) |
49 | 25, 48 | impbid 211 |
. 2
β’ (π β (βπ¦ β π½ (π β π¦ β (π¦ β© π) β β
) β βπ₯ β π΅ (π β π₯ β (π₯ β© π) β β
))) |
50 | 13, 49 | bitrd 278 |
1
β’ (π β (π β ((clsβπ½)βπ) β βπ₯ β π΅ (π β π₯ β (π₯ β© π) β β
))) |