![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin23lem20 | Structured version Visualization version GIF version |
Description: Lemma for fin23 10366. 𝑋 is either contained in or disjoint from all input sets. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
Ref | Expression |
---|---|
fin23lem.a | ⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) |
Ref | Expression |
---|---|
fin23lem20 | ⊢ (𝐴 ∈ ω → (∩ ran 𝑈 ⊆ (𝑡‘𝐴) ∨ (∩ ran 𝑈 ∩ (𝑡‘𝐴)) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fin23lem.a | . . . . 5 ⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) | |
2 | 1 | fnseqom 8437 | . . . 4 ⊢ 𝑈 Fn ω |
3 | peano2 7863 | . . . 4 ⊢ (𝐴 ∈ ω → suc 𝐴 ∈ ω) | |
4 | fnfvelrn 7067 | . . . 4 ⊢ ((𝑈 Fn ω ∧ suc 𝐴 ∈ ω) → (𝑈‘suc 𝐴) ∈ ran 𝑈) | |
5 | 2, 3, 4 | sylancr 587 | . . 3 ⊢ (𝐴 ∈ ω → (𝑈‘suc 𝐴) ∈ ran 𝑈) |
6 | intss1 4960 | . . 3 ⊢ ((𝑈‘suc 𝐴) ∈ ran 𝑈 → ∩ ran 𝑈 ⊆ (𝑈‘suc 𝐴)) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝐴 ∈ ω → ∩ ran 𝑈 ⊆ (𝑈‘suc 𝐴)) |
8 | 1 | fin23lem19 10313 | . 2 ⊢ (𝐴 ∈ ω → ((𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴) ∨ ((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ∅)) |
9 | sstr2 3985 | . . 3 ⊢ (∩ ran 𝑈 ⊆ (𝑈‘suc 𝐴) → ((𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴) → ∩ ran 𝑈 ⊆ (𝑡‘𝐴))) | |
10 | ssdisj 4455 | . . . 4 ⊢ ((∩ ran 𝑈 ⊆ (𝑈‘suc 𝐴) ∧ ((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ∅) → (∩ ran 𝑈 ∩ (𝑡‘𝐴)) = ∅) | |
11 | 10 | ex 413 | . . 3 ⊢ (∩ ran 𝑈 ⊆ (𝑈‘suc 𝐴) → (((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ∅ → (∩ ran 𝑈 ∩ (𝑡‘𝐴)) = ∅)) |
12 | 9, 11 | orim12d 963 | . 2 ⊢ (∩ ran 𝑈 ⊆ (𝑈‘suc 𝐴) → (((𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴) ∨ ((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ∅) → (∩ ran 𝑈 ⊆ (𝑡‘𝐴) ∨ (∩ ran 𝑈 ∩ (𝑡‘𝐴)) = ∅))) |
13 | 7, 8, 12 | sylc 65 | 1 ⊢ (𝐴 ∈ ω → (∩ ran 𝑈 ⊆ (𝑡‘𝐴) ∨ (∩ ran 𝑈 ∩ (𝑡‘𝐴)) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 845 = wceq 1541 ∈ wcel 2106 Vcvv 3473 ∩ cin 3943 ⊆ wss 3944 ∅c0 4318 ifcif 4522 ∪ cuni 4901 ∩ cint 4943 ran crn 5670 suc csuc 6355 Fn wfn 6527 ‘cfv 6532 ∈ cmpo 7395 ωcom 7838 seqωcseqom 8429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-ov 7396 df-oprab 7397 df-mpo 7398 df-om 7839 df-2nd 7958 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-seqom 8430 |
This theorem is referenced by: fin23lem30 10319 |
Copyright terms: Public domain | W3C validator |