MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem20 Structured version   Visualization version   GIF version

Theorem fin23lem20 10314
Description: Lemma for fin23 10366. 𝑋 is either contained in or disjoint from all input sets. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Hypothesis
Ref Expression
fin23lem.a 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
Assertion
Ref Expression
fin23lem20 (𝐴 ∈ ω → ( ran 𝑈 ⊆ (𝑡𝐴) ∨ ( ran 𝑈 ∩ (𝑡𝐴)) = ∅))
Distinct variable groups:   𝑡,𝑖,𝑢   𝐴,𝑖,𝑢   𝑈,𝑖,𝑢
Allowed substitution hints:   𝐴(𝑡)   𝑈(𝑡)

Proof of Theorem fin23lem20
StepHypRef Expression
1 fin23lem.a . . . . 5 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
21fnseqom 8437 . . . 4 𝑈 Fn ω
3 peano2 7863 . . . 4 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
4 fnfvelrn 7067 . . . 4 ((𝑈 Fn ω ∧ suc 𝐴 ∈ ω) → (𝑈‘suc 𝐴) ∈ ran 𝑈)
52, 3, 4sylancr 587 . . 3 (𝐴 ∈ ω → (𝑈‘suc 𝐴) ∈ ran 𝑈)
6 intss1 4960 . . 3 ((𝑈‘suc 𝐴) ∈ ran 𝑈 ran 𝑈 ⊆ (𝑈‘suc 𝐴))
75, 6syl 17 . 2 (𝐴 ∈ ω → ran 𝑈 ⊆ (𝑈‘suc 𝐴))
81fin23lem19 10313 . 2 (𝐴 ∈ ω → ((𝑈‘suc 𝐴) ⊆ (𝑡𝐴) ∨ ((𝑈‘suc 𝐴) ∩ (𝑡𝐴)) = ∅))
9 sstr2 3985 . . 3 ( ran 𝑈 ⊆ (𝑈‘suc 𝐴) → ((𝑈‘suc 𝐴) ⊆ (𝑡𝐴) → ran 𝑈 ⊆ (𝑡𝐴)))
10 ssdisj 4455 . . . 4 (( ran 𝑈 ⊆ (𝑈‘suc 𝐴) ∧ ((𝑈‘suc 𝐴) ∩ (𝑡𝐴)) = ∅) → ( ran 𝑈 ∩ (𝑡𝐴)) = ∅)
1110ex 413 . . 3 ( ran 𝑈 ⊆ (𝑈‘suc 𝐴) → (((𝑈‘suc 𝐴) ∩ (𝑡𝐴)) = ∅ → ( ran 𝑈 ∩ (𝑡𝐴)) = ∅))
129, 11orim12d 963 . 2 ( ran 𝑈 ⊆ (𝑈‘suc 𝐴) → (((𝑈‘suc 𝐴) ⊆ (𝑡𝐴) ∨ ((𝑈‘suc 𝐴) ∩ (𝑡𝐴)) = ∅) → ( ran 𝑈 ⊆ (𝑡𝐴) ∨ ( ran 𝑈 ∩ (𝑡𝐴)) = ∅)))
137, 8, 12sylc 65 1 (𝐴 ∈ ω → ( ran 𝑈 ⊆ (𝑡𝐴) ∨ ( ran 𝑈 ∩ (𝑡𝐴)) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 845   = wceq 1541  wcel 2106  Vcvv 3473  cin 3943  wss 3944  c0 4318  ifcif 4522   cuni 4901   cint 4943  ran crn 5670  suc csuc 6355   Fn wfn 6527  cfv 6532  cmpo 7395  ωcom 7838  seqωcseqom 8429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-seqom 8430
This theorem is referenced by:  fin23lem30  10319
  Copyright terms: Public domain W3C validator