| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fin23lem20 | Structured version Visualization version GIF version | ||
| Description: Lemma for fin23 10302. 𝑋 is either contained in or disjoint from all input sets. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
| Ref | Expression |
|---|---|
| fin23lem.a | ⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) |
| Ref | Expression |
|---|---|
| fin23lem20 | ⊢ (𝐴 ∈ ω → (∩ ran 𝑈 ⊆ (𝑡‘𝐴) ∨ (∩ ran 𝑈 ∩ (𝑡‘𝐴)) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem.a | . . . . 5 ⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) | |
| 2 | 1 | fnseqom 8384 | . . . 4 ⊢ 𝑈 Fn ω |
| 3 | peano2 7830 | . . . 4 ⊢ (𝐴 ∈ ω → suc 𝐴 ∈ ω) | |
| 4 | fnfvelrn 7018 | . . . 4 ⊢ ((𝑈 Fn ω ∧ suc 𝐴 ∈ ω) → (𝑈‘suc 𝐴) ∈ ran 𝑈) | |
| 5 | 2, 3, 4 | sylancr 587 | . . 3 ⊢ (𝐴 ∈ ω → (𝑈‘suc 𝐴) ∈ ran 𝑈) |
| 6 | intss1 4916 | . . 3 ⊢ ((𝑈‘suc 𝐴) ∈ ran 𝑈 → ∩ ran 𝑈 ⊆ (𝑈‘suc 𝐴)) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (𝐴 ∈ ω → ∩ ran 𝑈 ⊆ (𝑈‘suc 𝐴)) |
| 8 | 1 | fin23lem19 10249 | . 2 ⊢ (𝐴 ∈ ω → ((𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴) ∨ ((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ∅)) |
| 9 | sstr2 3944 | . . 3 ⊢ (∩ ran 𝑈 ⊆ (𝑈‘suc 𝐴) → ((𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴) → ∩ ran 𝑈 ⊆ (𝑡‘𝐴))) | |
| 10 | ssdisj 4413 | . . . 4 ⊢ ((∩ ran 𝑈 ⊆ (𝑈‘suc 𝐴) ∧ ((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ∅) → (∩ ran 𝑈 ∩ (𝑡‘𝐴)) = ∅) | |
| 11 | 10 | ex 412 | . . 3 ⊢ (∩ ran 𝑈 ⊆ (𝑈‘suc 𝐴) → (((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ∅ → (∩ ran 𝑈 ∩ (𝑡‘𝐴)) = ∅)) |
| 12 | 9, 11 | orim12d 966 | . 2 ⊢ (∩ ran 𝑈 ⊆ (𝑈‘suc 𝐴) → (((𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴) ∨ ((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ∅) → (∩ ran 𝑈 ⊆ (𝑡‘𝐴) ∨ (∩ ran 𝑈 ∩ (𝑡‘𝐴)) = ∅))) |
| 13 | 7, 8, 12 | sylc 65 | 1 ⊢ (𝐴 ∈ ω → (∩ ran 𝑈 ⊆ (𝑡‘𝐴) ∨ (∩ ran 𝑈 ∩ (𝑡‘𝐴)) = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∩ cin 3904 ⊆ wss 3905 ∅c0 4286 ifcif 4478 ∪ cuni 4861 ∩ cint 4899 ran crn 5624 suc csuc 6313 Fn wfn 6481 ‘cfv 6486 ∈ cmpo 7355 ωcom 7806 seqωcseqom 8376 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-seqom 8377 |
| This theorem is referenced by: fin23lem30 10255 |
| Copyright terms: Public domain | W3C validator |