![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin23lem20 | Structured version Visualization version GIF version |
Description: Lemma for fin23 10427. 𝑋 is either contained in or disjoint from all input sets. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
Ref | Expression |
---|---|
fin23lem.a | ⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) |
Ref | Expression |
---|---|
fin23lem20 | ⊢ (𝐴 ∈ ω → (∩ ran 𝑈 ⊆ (𝑡‘𝐴) ∨ (∩ ran 𝑈 ∩ (𝑡‘𝐴)) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fin23lem.a | . . . . 5 ⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) | |
2 | 1 | fnseqom 8494 | . . . 4 ⊢ 𝑈 Fn ω |
3 | peano2 7913 | . . . 4 ⊢ (𝐴 ∈ ω → suc 𝐴 ∈ ω) | |
4 | fnfvelrn 7100 | . . . 4 ⊢ ((𝑈 Fn ω ∧ suc 𝐴 ∈ ω) → (𝑈‘suc 𝐴) ∈ ran 𝑈) | |
5 | 2, 3, 4 | sylancr 587 | . . 3 ⊢ (𝐴 ∈ ω → (𝑈‘suc 𝐴) ∈ ran 𝑈) |
6 | intss1 4968 | . . 3 ⊢ ((𝑈‘suc 𝐴) ∈ ran 𝑈 → ∩ ran 𝑈 ⊆ (𝑈‘suc 𝐴)) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝐴 ∈ ω → ∩ ran 𝑈 ⊆ (𝑈‘suc 𝐴)) |
8 | 1 | fin23lem19 10374 | . 2 ⊢ (𝐴 ∈ ω → ((𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴) ∨ ((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ∅)) |
9 | sstr2 4002 | . . 3 ⊢ (∩ ran 𝑈 ⊆ (𝑈‘suc 𝐴) → ((𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴) → ∩ ran 𝑈 ⊆ (𝑡‘𝐴))) | |
10 | ssdisj 4466 | . . . 4 ⊢ ((∩ ran 𝑈 ⊆ (𝑈‘suc 𝐴) ∧ ((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ∅) → (∩ ran 𝑈 ∩ (𝑡‘𝐴)) = ∅) | |
11 | 10 | ex 412 | . . 3 ⊢ (∩ ran 𝑈 ⊆ (𝑈‘suc 𝐴) → (((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ∅ → (∩ ran 𝑈 ∩ (𝑡‘𝐴)) = ∅)) |
12 | 9, 11 | orim12d 966 | . 2 ⊢ (∩ ran 𝑈 ⊆ (𝑈‘suc 𝐴) → (((𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴) ∨ ((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ∅) → (∩ ran 𝑈 ⊆ (𝑡‘𝐴) ∨ (∩ ran 𝑈 ∩ (𝑡‘𝐴)) = ∅))) |
13 | 7, 8, 12 | sylc 65 | 1 ⊢ (𝐴 ∈ ω → (∩ ran 𝑈 ⊆ (𝑡‘𝐴) ∨ (∩ ran 𝑈 ∩ (𝑡‘𝐴)) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 847 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∩ cin 3962 ⊆ wss 3963 ∅c0 4339 ifcif 4531 ∪ cuni 4912 ∩ cint 4951 ran crn 5690 suc csuc 6388 Fn wfn 6558 ‘cfv 6563 ∈ cmpo 7433 ωcom 7887 seqωcseqom 8486 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-seqom 8487 |
This theorem is referenced by: fin23lem30 10380 |
Copyright terms: Public domain | W3C validator |