MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem20 Structured version   Visualization version   GIF version

Theorem fin23lem20 10024
Description: Lemma for fin23 10076. 𝑋 is either contained in or disjoint from all input sets. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Hypothesis
Ref Expression
fin23lem.a 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
Assertion
Ref Expression
fin23lem20 (𝐴 ∈ ω → ( ran 𝑈 ⊆ (𝑡𝐴) ∨ ( ran 𝑈 ∩ (𝑡𝐴)) = ∅))
Distinct variable groups:   𝑡,𝑖,𝑢   𝐴,𝑖,𝑢   𝑈,𝑖,𝑢
Allowed substitution hints:   𝐴(𝑡)   𝑈(𝑡)

Proof of Theorem fin23lem20
StepHypRef Expression
1 fin23lem.a . . . . 5 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
21fnseqom 8256 . . . 4 𝑈 Fn ω
3 peano2 7711 . . . 4 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
4 fnfvelrn 6940 . . . 4 ((𝑈 Fn ω ∧ suc 𝐴 ∈ ω) → (𝑈‘suc 𝐴) ∈ ran 𝑈)
52, 3, 4sylancr 586 . . 3 (𝐴 ∈ ω → (𝑈‘suc 𝐴) ∈ ran 𝑈)
6 intss1 4891 . . 3 ((𝑈‘suc 𝐴) ∈ ran 𝑈 ran 𝑈 ⊆ (𝑈‘suc 𝐴))
75, 6syl 17 . 2 (𝐴 ∈ ω → ran 𝑈 ⊆ (𝑈‘suc 𝐴))
81fin23lem19 10023 . 2 (𝐴 ∈ ω → ((𝑈‘suc 𝐴) ⊆ (𝑡𝐴) ∨ ((𝑈‘suc 𝐴) ∩ (𝑡𝐴)) = ∅))
9 sstr2 3924 . . 3 ( ran 𝑈 ⊆ (𝑈‘suc 𝐴) → ((𝑈‘suc 𝐴) ⊆ (𝑡𝐴) → ran 𝑈 ⊆ (𝑡𝐴)))
10 ssdisj 4390 . . . 4 (( ran 𝑈 ⊆ (𝑈‘suc 𝐴) ∧ ((𝑈‘suc 𝐴) ∩ (𝑡𝐴)) = ∅) → ( ran 𝑈 ∩ (𝑡𝐴)) = ∅)
1110ex 412 . . 3 ( ran 𝑈 ⊆ (𝑈‘suc 𝐴) → (((𝑈‘suc 𝐴) ∩ (𝑡𝐴)) = ∅ → ( ran 𝑈 ∩ (𝑡𝐴)) = ∅))
129, 11orim12d 961 . 2 ( ran 𝑈 ⊆ (𝑈‘suc 𝐴) → (((𝑈‘suc 𝐴) ⊆ (𝑡𝐴) ∨ ((𝑈‘suc 𝐴) ∩ (𝑡𝐴)) = ∅) → ( ran 𝑈 ⊆ (𝑡𝐴) ∨ ( ran 𝑈 ∩ (𝑡𝐴)) = ∅)))
137, 8, 12sylc 65 1 (𝐴 ∈ ω → ( ran 𝑈 ⊆ (𝑡𝐴) ∨ ( ran 𝑈 ∩ (𝑡𝐴)) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 843   = wceq 1539  wcel 2108  Vcvv 3422  cin 3882  wss 3883  c0 4253  ifcif 4456   cuni 4836   cint 4876  ran crn 5581  suc csuc 6253   Fn wfn 6413  cfv 6418  cmpo 7257  ωcom 7687  seqωcseqom 8248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-seqom 8249
This theorem is referenced by:  fin23lem30  10029
  Copyright terms: Public domain W3C validator