Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diophren Structured version   Visualization version   GIF version

Theorem diophren 41122
Description: Change variables in a Diophantine set, using class notation. This allows already proved Diophantine sets to be reused in contexts with more variables. (Contributed by Stefan O'Rear, 16-Oct-2014.) (Revised by Stefan O'Rear, 5-Jun-2015.)
Assertion
Ref Expression
diophren ((𝑆 ∈ (Dioph‘𝑁) ∧ 𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) → {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀))
Distinct variable groups:   𝑆,𝑎   𝑀,𝑎   𝑁,𝑎   𝐹,𝑎

Proof of Theorem diophren
Dummy variables 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zex 12508 . . . . . 6 ℤ ∈ V
2 difexg 5284 . . . . . 6 (ℤ ∈ V → (ℤ ∖ ℕ) ∈ V)
31, 2ax-mp 5 . . . . 5 (ℤ ∖ ℕ) ∈ V
4 ominf 9202 . . . . . 6 ¬ ω ∈ Fin
5 nnuz 12806 . . . . . . . . . 10 ℕ = (ℤ‘1)
6 0p1e1 12275 . . . . . . . . . . 11 (0 + 1) = 1
76fveq2i 6845 . . . . . . . . . 10 (ℤ‘(0 + 1)) = (ℤ‘1)
85, 7eqtr4i 2767 . . . . . . . . 9 ℕ = (ℤ‘(0 + 1))
98difeq2i 4079 . . . . . . . 8 (ℤ ∖ ℕ) = (ℤ ∖ (ℤ‘(0 + 1)))
10 0z 12510 . . . . . . . . 9 0 ∈ ℤ
11 lzenom 41079 . . . . . . . . 9 (0 ∈ ℤ → (ℤ ∖ (ℤ‘(0 + 1))) ≈ ω)
1210, 11ax-mp 5 . . . . . . . 8 (ℤ ∖ (ℤ‘(0 + 1))) ≈ ω
139, 12eqbrtri 5126 . . . . . . 7 (ℤ ∖ ℕ) ≈ ω
14 enfi 9134 . . . . . . 7 ((ℤ ∖ ℕ) ≈ ω → ((ℤ ∖ ℕ) ∈ Fin ↔ ω ∈ Fin))
1513, 14ax-mp 5 . . . . . 6 ((ℤ ∖ ℕ) ∈ Fin ↔ ω ∈ Fin)
164, 15mtbir 322 . . . . 5 ¬ (ℤ ∖ ℕ) ∈ Fin
17 disjdifr 4432 . . . . 5 ((ℤ ∖ ℕ) ∩ ℕ) = ∅
183, 16, 17eldioph4b 41120 . . . 4 (𝑆 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))𝑆 = {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0}))
19 simpr 485 . . . . . . . . . . . 12 (((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) → 𝑎 ∈ (ℕ0m (1...𝑀)))
20 simp-4r 782 . . . . . . . . . . . 12 (((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) → 𝐹:(1...𝑁)⟶(1...𝑀))
21 ovex 7390 . . . . . . . . . . . . 13 (1...𝑁) ∈ V
2221mapco2 41024 . . . . . . . . . . . 12 ((𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝐹:(1...𝑁)⟶(1...𝑀)) → (𝑎𝐹) ∈ (ℕ0m (1...𝑁)))
2319, 20, 22syl2anc 584 . . . . . . . . . . 11 (((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) → (𝑎𝐹) ∈ (ℕ0m (1...𝑁)))
24 uneq1 4116 . . . . . . . . . . . . . 14 (𝑐 = (𝑎𝐹) → (𝑐𝑑) = ((𝑎𝐹) ∪ 𝑑))
2524fveqeq2d 6850 . . . . . . . . . . . . 13 (𝑐 = (𝑎𝐹) → ((𝑏‘(𝑐𝑑)) = 0 ↔ (𝑏‘((𝑎𝐹) ∪ 𝑑)) = 0))
2625rexbidv 3175 . . . . . . . . . . . 12 (𝑐 = (𝑎𝐹) → (∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0 ↔ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘((𝑎𝐹) ∪ 𝑑)) = 0))
2726elrab3 3646 . . . . . . . . . . 11 ((𝑎𝐹) ∈ (ℕ0m (1...𝑁)) → ((𝑎𝐹) ∈ {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0} ↔ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘((𝑎𝐹) ∪ 𝑑)) = 0))
2823, 27syl 17 . . . . . . . . . 10 (((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) → ((𝑎𝐹) ∈ {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0} ↔ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘((𝑎𝐹) ∪ 𝑑)) = 0))
29 simp-5r 784 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → 𝐹:(1...𝑁)⟶(1...𝑀))
30 simplr 767 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → 𝑎 ∈ (ℕ0m (1...𝑀)))
31 simpr 485 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ)))
32 coundi 6199 . . . . . . . . . . . . . . . 16 ((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))) = (((𝑎𝑑) ∘ 𝐹) ∪ ((𝑎𝑑) ∘ ( I ↾ (ℤ ∖ ℕ))))
33 coundir 6200 . . . . . . . . . . . . . . . . . . 19 ((𝑎𝑑) ∘ 𝐹) = ((𝑎𝐹) ∪ (𝑑𝐹))
34 elmapi 8787 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 ∈ (ℕ0m (ℤ ∖ ℕ)) → 𝑑:(ℤ ∖ ℕ)⟶ℕ0)
35343ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → 𝑑:(ℤ ∖ ℕ)⟶ℕ0)
36 simp1 1136 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → 𝐹:(1...𝑁)⟶(1...𝑀))
37 incom 4161 . . . . . . . . . . . . . . . . . . . . . . 23 ((ℤ ∖ ℕ) ∩ (1...𝑀)) = ((1...𝑀) ∩ (ℤ ∖ ℕ))
38 fz1ssnn 13472 . . . . . . . . . . . . . . . . . . . . . . . 24 (1...𝑀) ⊆ ℕ
39 disjdif 4431 . . . . . . . . . . . . . . . . . . . . . . . 24 (ℕ ∩ (ℤ ∖ ℕ)) = ∅
40 ssdisj 4419 . . . . . . . . . . . . . . . . . . . . . . . 24 (((1...𝑀) ⊆ ℕ ∧ (ℕ ∩ (ℤ ∖ ℕ)) = ∅) → ((1...𝑀) ∩ (ℤ ∖ ℕ)) = ∅)
4138, 39, 40mp2an 690 . . . . . . . . . . . . . . . . . . . . . . 23 ((1...𝑀) ∩ (ℤ ∖ ℕ)) = ∅
4237, 41eqtri 2764 . . . . . . . . . . . . . . . . . . . . . 22 ((ℤ ∖ ℕ) ∩ (1...𝑀)) = ∅
4342a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → ((ℤ ∖ ℕ) ∩ (1...𝑀)) = ∅)
44 coeq0i 41062 . . . . . . . . . . . . . . . . . . . . 21 ((𝑑:(ℤ ∖ ℕ)⟶ℕ0𝐹:(1...𝑁)⟶(1...𝑀) ∧ ((ℤ ∖ ℕ) ∩ (1...𝑀)) = ∅) → (𝑑𝐹) = ∅)
4535, 36, 43, 44syl3anc 1371 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → (𝑑𝐹) = ∅)
4645uneq2d 4123 . . . . . . . . . . . . . . . . . . 19 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → ((𝑎𝐹) ∪ (𝑑𝐹)) = ((𝑎𝐹) ∪ ∅))
4733, 46eqtrid 2788 . . . . . . . . . . . . . . . . . 18 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → ((𝑎𝑑) ∘ 𝐹) = ((𝑎𝐹) ∪ ∅))
48 un0 4350 . . . . . . . . . . . . . . . . . 18 ((𝑎𝐹) ∪ ∅) = (𝑎𝐹)
4947, 48eqtrdi 2792 . . . . . . . . . . . . . . . . 17 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → ((𝑎𝑑) ∘ 𝐹) = (𝑎𝐹))
50 coundir 6200 . . . . . . . . . . . . . . . . . . 19 ((𝑎𝑑) ∘ ( I ↾ (ℤ ∖ ℕ))) = ((𝑎 ∘ ( I ↾ (ℤ ∖ ℕ))) ∪ (𝑑 ∘ ( I ↾ (ℤ ∖ ℕ))))
51 elmapi 8787 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 ∈ (ℕ0m (1...𝑀)) → 𝑎:(1...𝑀)⟶ℕ0)
52513ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → 𝑎:(1...𝑀)⟶ℕ0)
53 f1oi 6822 . . . . . . . . . . . . . . . . . . . . . . 23 ( I ↾ (ℤ ∖ ℕ)):(ℤ ∖ ℕ)–1-1-onto→(ℤ ∖ ℕ)
54 f1of 6784 . . . . . . . . . . . . . . . . . . . . . . 23 (( I ↾ (ℤ ∖ ℕ)):(ℤ ∖ ℕ)–1-1-onto→(ℤ ∖ ℕ) → ( I ↾ (ℤ ∖ ℕ)):(ℤ ∖ ℕ)⟶(ℤ ∖ ℕ))
5553, 54ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 ( I ↾ (ℤ ∖ ℕ)):(ℤ ∖ ℕ)⟶(ℤ ∖ ℕ)
56 coeq0i 41062 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎:(1...𝑀)⟶ℕ0 ∧ ( I ↾ (ℤ ∖ ℕ)):(ℤ ∖ ℕ)⟶(ℤ ∖ ℕ) ∧ ((1...𝑀) ∩ (ℤ ∖ ℕ)) = ∅) → (𝑎 ∘ ( I ↾ (ℤ ∖ ℕ))) = ∅)
5755, 41, 56mp3an23 1453 . . . . . . . . . . . . . . . . . . . . 21 (𝑎:(1...𝑀)⟶ℕ0 → (𝑎 ∘ ( I ↾ (ℤ ∖ ℕ))) = ∅)
5852, 57syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → (𝑎 ∘ ( I ↾ (ℤ ∖ ℕ))) = ∅)
59 coires1 6216 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 ∘ ( I ↾ (ℤ ∖ ℕ))) = (𝑑 ↾ (ℤ ∖ ℕ))
60 ffn 6668 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑:(ℤ ∖ ℕ)⟶ℕ0𝑑 Fn (ℤ ∖ ℕ))
61 fnresdm 6620 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 Fn (ℤ ∖ ℕ) → (𝑑 ↾ (ℤ ∖ ℕ)) = 𝑑)
6234, 60, 613syl 18 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 ∈ (ℕ0m (ℤ ∖ ℕ)) → (𝑑 ↾ (ℤ ∖ ℕ)) = 𝑑)
6359, 62eqtrid 2788 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ (ℕ0m (ℤ ∖ ℕ)) → (𝑑 ∘ ( I ↾ (ℤ ∖ ℕ))) = 𝑑)
64633ad2ant3 1135 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → (𝑑 ∘ ( I ↾ (ℤ ∖ ℕ))) = 𝑑)
6558, 64uneq12d 4124 . . . . . . . . . . . . . . . . . . 19 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → ((𝑎 ∘ ( I ↾ (ℤ ∖ ℕ))) ∪ (𝑑 ∘ ( I ↾ (ℤ ∖ ℕ)))) = (∅ ∪ 𝑑))
6650, 65eqtrid 2788 . . . . . . . . . . . . . . . . . 18 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → ((𝑎𝑑) ∘ ( I ↾ (ℤ ∖ ℕ))) = (∅ ∪ 𝑑))
67 uncom 4113 . . . . . . . . . . . . . . . . . . 19 (∅ ∪ 𝑑) = (𝑑 ∪ ∅)
68 un0 4350 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∪ ∅) = 𝑑
6967, 68eqtri 2764 . . . . . . . . . . . . . . . . . 18 (∅ ∪ 𝑑) = 𝑑
7066, 69eqtrdi 2792 . . . . . . . . . . . . . . . . 17 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → ((𝑎𝑑) ∘ ( I ↾ (ℤ ∖ ℕ))) = 𝑑)
7149, 70uneq12d 4124 . . . . . . . . . . . . . . . 16 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → (((𝑎𝑑) ∘ 𝐹) ∪ ((𝑎𝑑) ∘ ( I ↾ (ℤ ∖ ℕ)))) = ((𝑎𝐹) ∪ 𝑑))
7232, 71eqtr2id 2789 . . . . . . . . . . . . . . 15 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → ((𝑎𝐹) ∪ 𝑑) = ((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))))
7329, 30, 31, 72syl3anc 1371 . . . . . . . . . . . . . 14 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → ((𝑎𝐹) ∪ 𝑑) = ((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))))
7473fveq2d 6846 . . . . . . . . . . . . 13 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → (𝑏‘((𝑎𝐹) ∪ 𝑑)) = (𝑏‘((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))
75 nn0ssz 12522 . . . . . . . . . . . . . . . . 17 0 ⊆ ℤ
76 mapss 8827 . . . . . . . . . . . . . . . . 17 ((ℤ ∈ V ∧ ℕ0 ⊆ ℤ) → (ℕ0m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ⊆ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))))
771, 75, 76mp2an 690 . . . . . . . . . . . . . . . 16 (ℕ0m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ⊆ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀)))
7841reseq2i 5934 . . . . . . . . . . . . . . . . . . 19 (𝑎 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ))) = (𝑎 ↾ ∅)
79 res0 5941 . . . . . . . . . . . . . . . . . . 19 (𝑎 ↾ ∅) = ∅
8078, 79eqtri 2764 . . . . . . . . . . . . . . . . . 18 (𝑎 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ))) = ∅
8141reseq2i 5934 . . . . . . . . . . . . . . . . . . 19 (𝑑 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ))) = (𝑑 ↾ ∅)
82 res0 5941 . . . . . . . . . . . . . . . . . . 19 (𝑑 ↾ ∅) = ∅
8381, 82eqtri 2764 . . . . . . . . . . . . . . . . . 18 (𝑑 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ))) = ∅
8480, 83eqtr4i 2767 . . . . . . . . . . . . . . . . 17 (𝑎 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ))) = (𝑑 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ)))
85 elmapresaun 8818 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ)) ∧ (𝑎 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ))) = (𝑑 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ)))) → (𝑎𝑑) ∈ (ℕ0m ((1...𝑀) ∪ (ℤ ∖ ℕ))))
86 uncom 4113 . . . . . . . . . . . . . . . . . . 19 ((1...𝑀) ∪ (ℤ ∖ ℕ)) = ((ℤ ∖ ℕ) ∪ (1...𝑀))
8786oveq2i 7368 . . . . . . . . . . . . . . . . . 18 (ℕ0m ((1...𝑀) ∪ (ℤ ∖ ℕ))) = (ℕ0m ((ℤ ∖ ℕ) ∪ (1...𝑀)))
8885, 87eleqtrdi 2848 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ)) ∧ (𝑎 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ))) = (𝑑 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ)))) → (𝑎𝑑) ∈ (ℕ0m ((ℤ ∖ ℕ) ∪ (1...𝑀))))
8984, 88mp3an3 1450 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → (𝑎𝑑) ∈ (ℕ0m ((ℤ ∖ ℕ) ∪ (1...𝑀))))
9077, 89sselid 3942 . . . . . . . . . . . . . . 15 ((𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → (𝑎𝑑) ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))))
9190adantll 712 . . . . . . . . . . . . . 14 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → (𝑎𝑑) ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))))
92 coeq1 5813 . . . . . . . . . . . . . . . 16 (𝑒 = (𝑎𝑑) → (𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))) = ((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))))
9392fveq2d 6846 . . . . . . . . . . . . . . 15 (𝑒 = (𝑎𝑑) → (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))) = (𝑏‘((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))
94 eqid 2736 . . . . . . . . . . . . . . 15 (𝑒 ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))))) = (𝑒 ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))
95 fvex 6855 . . . . . . . . . . . . . . 15 (𝑏‘((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))) ∈ V
9693, 94, 95fvmpt 6948 . . . . . . . . . . . . . 14 ((𝑎𝑑) ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) → ((𝑒 ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)) = (𝑏‘((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))
9791, 96syl 17 . . . . . . . . . . . . 13 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → ((𝑒 ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)) = (𝑏‘((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))
9874, 97eqtr4d 2779 . . . . . . . . . . . 12 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → (𝑏‘((𝑎𝐹) ∪ 𝑑)) = ((𝑒 ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)))
9998eqeq1d 2738 . . . . . . . . . . 11 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → ((𝑏‘((𝑎𝐹) ∪ 𝑑)) = 0 ↔ ((𝑒 ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)) = 0))
10099rexbidva 3173 . . . . . . . . . 10 (((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) → (∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘((𝑎𝐹) ∪ 𝑑)) = 0 ↔ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))((𝑒 ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)) = 0))
10128, 100bitrd 278 . . . . . . . . 9 (((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) → ((𝑎𝐹) ∈ {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0} ↔ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))((𝑒 ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)) = 0))
102101rabbidva 3414 . . . . . . . 8 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ (𝑎𝐹) ∈ {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0}} = {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))((𝑒 ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)) = 0})
103 simplll 773 . . . . . . . . 9 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → 𝑀 ∈ ℕ0)
104 ovex 7390 . . . . . . . . . . . 12 (1...𝑀) ∈ V
1053, 104unex 7680 . . . . . . . . . . 11 ((ℤ ∖ ℕ) ∪ (1...𝑀)) ∈ V
106105a1i 11 . . . . . . . . . 10 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → ((ℤ ∖ ℕ) ∪ (1...𝑀)) ∈ V)
107 simpr 485 . . . . . . . . . 10 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁))))
10855a1i 11 . . . . . . . . . . . . 13 (𝐹:(1...𝑁)⟶(1...𝑀) → ( I ↾ (ℤ ∖ ℕ)):(ℤ ∖ ℕ)⟶(ℤ ∖ ℕ))
109 id 22 . . . . . . . . . . . . 13 (𝐹:(1...𝑁)⟶(1...𝑀) → 𝐹:(1...𝑁)⟶(1...𝑀))
110 incom 4161 . . . . . . . . . . . . . . 15 ((ℤ ∖ ℕ) ∩ (1...𝑁)) = ((1...𝑁) ∩ (ℤ ∖ ℕ))
111 fz1ssnn 13472 . . . . . . . . . . . . . . . 16 (1...𝑁) ⊆ ℕ
112 ssdisj 4419 . . . . . . . . . . . . . . . 16 (((1...𝑁) ⊆ ℕ ∧ (ℕ ∩ (ℤ ∖ ℕ)) = ∅) → ((1...𝑁) ∩ (ℤ ∖ ℕ)) = ∅)
113111, 39, 112mp2an 690 . . . . . . . . . . . . . . 15 ((1...𝑁) ∩ (ℤ ∖ ℕ)) = ∅
114110, 113eqtri 2764 . . . . . . . . . . . . . 14 ((ℤ ∖ ℕ) ∩ (1...𝑁)) = ∅
115114a1i 11 . . . . . . . . . . . . 13 (𝐹:(1...𝑁)⟶(1...𝑀) → ((ℤ ∖ ℕ) ∩ (1...𝑁)) = ∅)
116 fun 6704 . . . . . . . . . . . . 13 (((( I ↾ (ℤ ∖ ℕ)):(ℤ ∖ ℕ)⟶(ℤ ∖ ℕ) ∧ 𝐹:(1...𝑁)⟶(1...𝑀)) ∧ ((ℤ ∖ ℕ) ∩ (1...𝑁)) = ∅) → (( I ↾ (ℤ ∖ ℕ)) ∪ 𝐹):((ℤ ∖ ℕ) ∪ (1...𝑁))⟶((ℤ ∖ ℕ) ∪ (1...𝑀)))
117108, 109, 115, 116syl21anc 836 . . . . . . . . . . . 12 (𝐹:(1...𝑁)⟶(1...𝑀) → (( I ↾ (ℤ ∖ ℕ)) ∪ 𝐹):((ℤ ∖ ℕ) ∪ (1...𝑁))⟶((ℤ ∖ ℕ) ∪ (1...𝑀)))
118 uncom 4113 . . . . . . . . . . . . 13 (( I ↾ (ℤ ∖ ℕ)) ∪ 𝐹) = (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))
119118feq1i 6659 . . . . . . . . . . . 12 ((( I ↾ (ℤ ∖ ℕ)) ∪ 𝐹):((ℤ ∖ ℕ) ∪ (1...𝑁))⟶((ℤ ∖ ℕ) ∪ (1...𝑀)) ↔ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))):((ℤ ∖ ℕ) ∪ (1...𝑁))⟶((ℤ ∖ ℕ) ∪ (1...𝑀)))
120117, 119sylib 217 . . . . . . . . . . 11 (𝐹:(1...𝑁)⟶(1...𝑀) → (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))):((ℤ ∖ ℕ) ∪ (1...𝑁))⟶((ℤ ∖ ℕ) ∪ (1...𝑀)))
121120ad3antlr 729 . . . . . . . . . 10 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))):((ℤ ∖ ℕ) ∪ (1...𝑁))⟶((ℤ ∖ ℕ) ∪ (1...𝑀)))
122 mzprename 41058 . . . . . . . . . 10 ((((ℤ ∖ ℕ) ∪ (1...𝑀)) ∈ V ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁))) ∧ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))):((ℤ ∖ ℕ) ∪ (1...𝑁))⟶((ℤ ∖ ℕ) ∪ (1...𝑀))) → (𝑒 ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))))) ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑀))))
123106, 107, 121, 122syl3anc 1371 . . . . . . . . 9 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → (𝑒 ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))))) ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑀))))
1243, 16, 17eldioph4i 41121 . . . . . . . . 9 ((𝑀 ∈ ℕ0 ∧ (𝑒 ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))))) ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑀)))) → {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))((𝑒 ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)) = 0} ∈ (Dioph‘𝑀))
125103, 123, 124syl2anc 584 . . . . . . . 8 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))((𝑒 ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)) = 0} ∈ (Dioph‘𝑀))
126102, 125eqeltrd 2838 . . . . . . 7 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ (𝑎𝐹) ∈ {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0}} ∈ (Dioph‘𝑀))
127 eleq2 2826 . . . . . . . . 9 (𝑆 = {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0} → ((𝑎𝐹) ∈ 𝑆 ↔ (𝑎𝐹) ∈ {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0}))
128127rabbidv 3415 . . . . . . . 8 (𝑆 = {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0} → {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} = {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ (𝑎𝐹) ∈ {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0}})
129128eleq1d 2822 . . . . . . 7 (𝑆 = {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0} → ({𝑎 ∈ (ℕ0m (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀) ↔ {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ (𝑎𝐹) ∈ {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0}} ∈ (Dioph‘𝑀)))
130126, 129syl5ibrcom 246 . . . . . 6 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → (𝑆 = {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0} → {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀)))
131130rexlimdva 3152 . . . . 5 (((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) → (∃𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))𝑆 = {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0} → {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀)))
132131expimpd 454 . . . 4 ((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) → ((𝑁 ∈ ℕ0 ∧ ∃𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))𝑆 = {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0}) → {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀)))
13318, 132biimtrid 241 . . 3 ((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) → (𝑆 ∈ (Dioph‘𝑁) → {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀)))
134133impcom 408 . 2 ((𝑆 ∈ (Dioph‘𝑁) ∧ (𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀))) → {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀))
1351343impb 1115 1 ((𝑆 ∈ (Dioph‘𝑁) ∧ 𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) → {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3073  {crab 3407  Vcvv 3445  cdif 3907  cun 3908  cin 3909  wss 3910  c0 4282   class class class wbr 5105  cmpt 5188   I cid 5530  cres 5635  ccom 5637   Fn wfn 6491  wf 6492  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  ωcom 7802  m cmap 8765  cen 8880  Fincfn 8883  0cc0 11051  1c1 11052   + caddc 11054  cn 12153  0cn0 12413  cz 12499  cuz 12763  ...cfz 13424  mzPolycmzp 41031  Diophcdioph 41064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-hash 14231  df-mzpcl 41032  df-mzp 41033  df-dioph 41065
This theorem is referenced by:  rabrenfdioph  41123
  Copyright terms: Public domain W3C validator