Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diophren Structured version   Visualization version   GIF version

Theorem diophren 42774
Description: Change variables in a Diophantine set, using class notation. This allows already proved Diophantine sets to be reused in contexts with more variables. (Contributed by Stefan O'Rear, 16-Oct-2014.) (Revised by Stefan O'Rear, 5-Jun-2015.)
Assertion
Ref Expression
diophren ((𝑆 ∈ (Dioph‘𝑁) ∧ 𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) → {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀))
Distinct variable groups:   𝑆,𝑎   𝑀,𝑎   𝑁,𝑎   𝐹,𝑎

Proof of Theorem diophren
Dummy variables 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zex 12514 . . . . . 6 ℤ ∈ V
2 difexg 5279 . . . . . 6 (ℤ ∈ V → (ℤ ∖ ℕ) ∈ V)
31, 2ax-mp 5 . . . . 5 (ℤ ∖ ℕ) ∈ V
4 ominf 9181 . . . . . 6 ¬ ω ∈ Fin
5 nnuz 12812 . . . . . . . . . 10 ℕ = (ℤ‘1)
6 0p1e1 12279 . . . . . . . . . . 11 (0 + 1) = 1
76fveq2i 6843 . . . . . . . . . 10 (ℤ‘(0 + 1)) = (ℤ‘1)
85, 7eqtr4i 2755 . . . . . . . . 9 ℕ = (ℤ‘(0 + 1))
98difeq2i 4082 . . . . . . . 8 (ℤ ∖ ℕ) = (ℤ ∖ (ℤ‘(0 + 1)))
10 0z 12516 . . . . . . . . 9 0 ∈ ℤ
11 lzenom 42731 . . . . . . . . 9 (0 ∈ ℤ → (ℤ ∖ (ℤ‘(0 + 1))) ≈ ω)
1210, 11ax-mp 5 . . . . . . . 8 (ℤ ∖ (ℤ‘(0 + 1))) ≈ ω
139, 12eqbrtri 5123 . . . . . . 7 (ℤ ∖ ℕ) ≈ ω
14 enfi 9128 . . . . . . 7 ((ℤ ∖ ℕ) ≈ ω → ((ℤ ∖ ℕ) ∈ Fin ↔ ω ∈ Fin))
1513, 14ax-mp 5 . . . . . 6 ((ℤ ∖ ℕ) ∈ Fin ↔ ω ∈ Fin)
164, 15mtbir 323 . . . . 5 ¬ (ℤ ∖ ℕ) ∈ Fin
17 disjdifr 4432 . . . . 5 ((ℤ ∖ ℕ) ∩ ℕ) = ∅
183, 16, 17eldioph4b 42772 . . . 4 (𝑆 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))𝑆 = {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0}))
19 simpr 484 . . . . . . . . . . . 12 (((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) → 𝑎 ∈ (ℕ0m (1...𝑀)))
20 simp-4r 783 . . . . . . . . . . . 12 (((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) → 𝐹:(1...𝑁)⟶(1...𝑀))
21 ovex 7402 . . . . . . . . . . . . 13 (1...𝑁) ∈ V
2221mapco2 42676 . . . . . . . . . . . 12 ((𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝐹:(1...𝑁)⟶(1...𝑀)) → (𝑎𝐹) ∈ (ℕ0m (1...𝑁)))
2319, 20, 22syl2anc 584 . . . . . . . . . . 11 (((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) → (𝑎𝐹) ∈ (ℕ0m (1...𝑁)))
24 uneq1 4120 . . . . . . . . . . . . . 14 (𝑐 = (𝑎𝐹) → (𝑐𝑑) = ((𝑎𝐹) ∪ 𝑑))
2524fveqeq2d 6848 . . . . . . . . . . . . 13 (𝑐 = (𝑎𝐹) → ((𝑏‘(𝑐𝑑)) = 0 ↔ (𝑏‘((𝑎𝐹) ∪ 𝑑)) = 0))
2625rexbidv 3157 . . . . . . . . . . . 12 (𝑐 = (𝑎𝐹) → (∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0 ↔ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘((𝑎𝐹) ∪ 𝑑)) = 0))
2726elrab3 3657 . . . . . . . . . . 11 ((𝑎𝐹) ∈ (ℕ0m (1...𝑁)) → ((𝑎𝐹) ∈ {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0} ↔ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘((𝑎𝐹) ∪ 𝑑)) = 0))
2823, 27syl 17 . . . . . . . . . 10 (((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) → ((𝑎𝐹) ∈ {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0} ↔ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘((𝑎𝐹) ∪ 𝑑)) = 0))
29 simp-5r 785 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → 𝐹:(1...𝑁)⟶(1...𝑀))
30 simplr 768 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → 𝑎 ∈ (ℕ0m (1...𝑀)))
31 simpr 484 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ)))
32 coundi 6208 . . . . . . . . . . . . . . . 16 ((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))) = (((𝑎𝑑) ∘ 𝐹) ∪ ((𝑎𝑑) ∘ ( I ↾ (ℤ ∖ ℕ))))
33 coundir 6209 . . . . . . . . . . . . . . . . . . 19 ((𝑎𝑑) ∘ 𝐹) = ((𝑎𝐹) ∪ (𝑑𝐹))
34 elmapi 8799 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 ∈ (ℕ0m (ℤ ∖ ℕ)) → 𝑑:(ℤ ∖ ℕ)⟶ℕ0)
35343ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → 𝑑:(ℤ ∖ ℕ)⟶ℕ0)
36 simp1 1136 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → 𝐹:(1...𝑁)⟶(1...𝑀))
37 incom 4168 . . . . . . . . . . . . . . . . . . . . . . 23 ((ℤ ∖ ℕ) ∩ (1...𝑀)) = ((1...𝑀) ∩ (ℤ ∖ ℕ))
38 fz1ssnn 13492 . . . . . . . . . . . . . . . . . . . . . . . 24 (1...𝑀) ⊆ ℕ
39 disjdif 4431 . . . . . . . . . . . . . . . . . . . . . . . 24 (ℕ ∩ (ℤ ∖ ℕ)) = ∅
40 ssdisj 4419 . . . . . . . . . . . . . . . . . . . . . . . 24 (((1...𝑀) ⊆ ℕ ∧ (ℕ ∩ (ℤ ∖ ℕ)) = ∅) → ((1...𝑀) ∩ (ℤ ∖ ℕ)) = ∅)
4138, 39, 40mp2an 692 . . . . . . . . . . . . . . . . . . . . . . 23 ((1...𝑀) ∩ (ℤ ∖ ℕ)) = ∅
4237, 41eqtri 2752 . . . . . . . . . . . . . . . . . . . . . 22 ((ℤ ∖ ℕ) ∩ (1...𝑀)) = ∅
4342a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → ((ℤ ∖ ℕ) ∩ (1...𝑀)) = ∅)
44 coeq0i 42714 . . . . . . . . . . . . . . . . . . . . 21 ((𝑑:(ℤ ∖ ℕ)⟶ℕ0𝐹:(1...𝑁)⟶(1...𝑀) ∧ ((ℤ ∖ ℕ) ∩ (1...𝑀)) = ∅) → (𝑑𝐹) = ∅)
4535, 36, 43, 44syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → (𝑑𝐹) = ∅)
4645uneq2d 4127 . . . . . . . . . . . . . . . . . . 19 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → ((𝑎𝐹) ∪ (𝑑𝐹)) = ((𝑎𝐹) ∪ ∅))
4733, 46eqtrid 2776 . . . . . . . . . . . . . . . . . 18 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → ((𝑎𝑑) ∘ 𝐹) = ((𝑎𝐹) ∪ ∅))
48 un0 4353 . . . . . . . . . . . . . . . . . 18 ((𝑎𝐹) ∪ ∅) = (𝑎𝐹)
4947, 48eqtrdi 2780 . . . . . . . . . . . . . . . . 17 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → ((𝑎𝑑) ∘ 𝐹) = (𝑎𝐹))
50 coundir 6209 . . . . . . . . . . . . . . . . . . 19 ((𝑎𝑑) ∘ ( I ↾ (ℤ ∖ ℕ))) = ((𝑎 ∘ ( I ↾ (ℤ ∖ ℕ))) ∪ (𝑑 ∘ ( I ↾ (ℤ ∖ ℕ))))
51 elmapi 8799 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 ∈ (ℕ0m (1...𝑀)) → 𝑎:(1...𝑀)⟶ℕ0)
52513ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → 𝑎:(1...𝑀)⟶ℕ0)
53 f1oi 6820 . . . . . . . . . . . . . . . . . . . . . . 23 ( I ↾ (ℤ ∖ ℕ)):(ℤ ∖ ℕ)–1-1-onto→(ℤ ∖ ℕ)
54 f1of 6782 . . . . . . . . . . . . . . . . . . . . . . 23 (( I ↾ (ℤ ∖ ℕ)):(ℤ ∖ ℕ)–1-1-onto→(ℤ ∖ ℕ) → ( I ↾ (ℤ ∖ ℕ)):(ℤ ∖ ℕ)⟶(ℤ ∖ ℕ))
5553, 54ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 ( I ↾ (ℤ ∖ ℕ)):(ℤ ∖ ℕ)⟶(ℤ ∖ ℕ)
56 coeq0i 42714 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎:(1...𝑀)⟶ℕ0 ∧ ( I ↾ (ℤ ∖ ℕ)):(ℤ ∖ ℕ)⟶(ℤ ∖ ℕ) ∧ ((1...𝑀) ∩ (ℤ ∖ ℕ)) = ∅) → (𝑎 ∘ ( I ↾ (ℤ ∖ ℕ))) = ∅)
5755, 41, 56mp3an23 1455 . . . . . . . . . . . . . . . . . . . . 21 (𝑎:(1...𝑀)⟶ℕ0 → (𝑎 ∘ ( I ↾ (ℤ ∖ ℕ))) = ∅)
5852, 57syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → (𝑎 ∘ ( I ↾ (ℤ ∖ ℕ))) = ∅)
59 coires1 6225 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 ∘ ( I ↾ (ℤ ∖ ℕ))) = (𝑑 ↾ (ℤ ∖ ℕ))
60 ffn 6670 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑:(ℤ ∖ ℕ)⟶ℕ0𝑑 Fn (ℤ ∖ ℕ))
61 fnresdm 6619 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 Fn (ℤ ∖ ℕ) → (𝑑 ↾ (ℤ ∖ ℕ)) = 𝑑)
6234, 60, 613syl 18 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 ∈ (ℕ0m (ℤ ∖ ℕ)) → (𝑑 ↾ (ℤ ∖ ℕ)) = 𝑑)
6359, 62eqtrid 2776 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ (ℕ0m (ℤ ∖ ℕ)) → (𝑑 ∘ ( I ↾ (ℤ ∖ ℕ))) = 𝑑)
64633ad2ant3 1135 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → (𝑑 ∘ ( I ↾ (ℤ ∖ ℕ))) = 𝑑)
6558, 64uneq12d 4128 . . . . . . . . . . . . . . . . . . 19 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → ((𝑎 ∘ ( I ↾ (ℤ ∖ ℕ))) ∪ (𝑑 ∘ ( I ↾ (ℤ ∖ ℕ)))) = (∅ ∪ 𝑑))
6650, 65eqtrid 2776 . . . . . . . . . . . . . . . . . 18 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → ((𝑎𝑑) ∘ ( I ↾ (ℤ ∖ ℕ))) = (∅ ∪ 𝑑))
67 uncom 4117 . . . . . . . . . . . . . . . . . . 19 (∅ ∪ 𝑑) = (𝑑 ∪ ∅)
68 un0 4353 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∪ ∅) = 𝑑
6967, 68eqtri 2752 . . . . . . . . . . . . . . . . . 18 (∅ ∪ 𝑑) = 𝑑
7066, 69eqtrdi 2780 . . . . . . . . . . . . . . . . 17 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → ((𝑎𝑑) ∘ ( I ↾ (ℤ ∖ ℕ))) = 𝑑)
7149, 70uneq12d 4128 . . . . . . . . . . . . . . . 16 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → (((𝑎𝑑) ∘ 𝐹) ∪ ((𝑎𝑑) ∘ ( I ↾ (ℤ ∖ ℕ)))) = ((𝑎𝐹) ∪ 𝑑))
7232, 71eqtr2id 2777 . . . . . . . . . . . . . . 15 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → ((𝑎𝐹) ∪ 𝑑) = ((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))))
7329, 30, 31, 72syl3anc 1373 . . . . . . . . . . . . . 14 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → ((𝑎𝐹) ∪ 𝑑) = ((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))))
7473fveq2d 6844 . . . . . . . . . . . . 13 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → (𝑏‘((𝑎𝐹) ∪ 𝑑)) = (𝑏‘((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))
75 nn0ssz 12528 . . . . . . . . . . . . . . . . 17 0 ⊆ ℤ
76 mapss 8839 . . . . . . . . . . . . . . . . 17 ((ℤ ∈ V ∧ ℕ0 ⊆ ℤ) → (ℕ0m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ⊆ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))))
771, 75, 76mp2an 692 . . . . . . . . . . . . . . . 16 (ℕ0m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ⊆ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀)))
7841reseq2i 5936 . . . . . . . . . . . . . . . . . . 19 (𝑎 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ))) = (𝑎 ↾ ∅)
79 res0 5943 . . . . . . . . . . . . . . . . . . 19 (𝑎 ↾ ∅) = ∅
8078, 79eqtri 2752 . . . . . . . . . . . . . . . . . 18 (𝑎 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ))) = ∅
8141reseq2i 5936 . . . . . . . . . . . . . . . . . . 19 (𝑑 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ))) = (𝑑 ↾ ∅)
82 res0 5943 . . . . . . . . . . . . . . . . . . 19 (𝑑 ↾ ∅) = ∅
8381, 82eqtri 2752 . . . . . . . . . . . . . . . . . 18 (𝑑 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ))) = ∅
8480, 83eqtr4i 2755 . . . . . . . . . . . . . . . . 17 (𝑎 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ))) = (𝑑 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ)))
85 elmapresaun 8830 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ)) ∧ (𝑎 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ))) = (𝑑 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ)))) → (𝑎𝑑) ∈ (ℕ0m ((1...𝑀) ∪ (ℤ ∖ ℕ))))
86 uncom 4117 . . . . . . . . . . . . . . . . . . 19 ((1...𝑀) ∪ (ℤ ∖ ℕ)) = ((ℤ ∖ ℕ) ∪ (1...𝑀))
8786oveq2i 7380 . . . . . . . . . . . . . . . . . 18 (ℕ0m ((1...𝑀) ∪ (ℤ ∖ ℕ))) = (ℕ0m ((ℤ ∖ ℕ) ∪ (1...𝑀)))
8885, 87eleqtrdi 2838 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ)) ∧ (𝑎 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ))) = (𝑑 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ)))) → (𝑎𝑑) ∈ (ℕ0m ((ℤ ∖ ℕ) ∪ (1...𝑀))))
8984, 88mp3an3 1452 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → (𝑎𝑑) ∈ (ℕ0m ((ℤ ∖ ℕ) ∪ (1...𝑀))))
9077, 89sselid 3941 . . . . . . . . . . . . . . 15 ((𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → (𝑎𝑑) ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))))
9190adantll 714 . . . . . . . . . . . . . 14 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → (𝑎𝑑) ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))))
92 coeq1 5811 . . . . . . . . . . . . . . . 16 (𝑒 = (𝑎𝑑) → (𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))) = ((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))))
9392fveq2d 6844 . . . . . . . . . . . . . . 15 (𝑒 = (𝑎𝑑) → (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))) = (𝑏‘((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))
94 eqid 2729 . . . . . . . . . . . . . . 15 (𝑒 ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))))) = (𝑒 ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))
95 fvex 6853 . . . . . . . . . . . . . . 15 (𝑏‘((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))) ∈ V
9693, 94, 95fvmpt 6950 . . . . . . . . . . . . . 14 ((𝑎𝑑) ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) → ((𝑒 ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)) = (𝑏‘((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))
9791, 96syl 17 . . . . . . . . . . . . 13 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → ((𝑒 ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)) = (𝑏‘((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))
9874, 97eqtr4d 2767 . . . . . . . . . . . 12 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → (𝑏‘((𝑎𝐹) ∪ 𝑑)) = ((𝑒 ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)))
9998eqeq1d 2731 . . . . . . . . . . 11 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → ((𝑏‘((𝑎𝐹) ∪ 𝑑)) = 0 ↔ ((𝑒 ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)) = 0))
10099rexbidva 3155 . . . . . . . . . 10 (((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) → (∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘((𝑎𝐹) ∪ 𝑑)) = 0 ↔ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))((𝑒 ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)) = 0))
10128, 100bitrd 279 . . . . . . . . 9 (((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) → ((𝑎𝐹) ∈ {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0} ↔ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))((𝑒 ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)) = 0))
102101rabbidva 3409 . . . . . . . 8 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ (𝑎𝐹) ∈ {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0}} = {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))((𝑒 ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)) = 0})
103 simplll 774 . . . . . . . . 9 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → 𝑀 ∈ ℕ0)
104 ovex 7402 . . . . . . . . . . . 12 (1...𝑀) ∈ V
1053, 104unex 7700 . . . . . . . . . . 11 ((ℤ ∖ ℕ) ∪ (1...𝑀)) ∈ V
106105a1i 11 . . . . . . . . . 10 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → ((ℤ ∖ ℕ) ∪ (1...𝑀)) ∈ V)
107 simpr 484 . . . . . . . . . 10 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁))))
10855a1i 11 . . . . . . . . . . . . 13 (𝐹:(1...𝑁)⟶(1...𝑀) → ( I ↾ (ℤ ∖ ℕ)):(ℤ ∖ ℕ)⟶(ℤ ∖ ℕ))
109 id 22 . . . . . . . . . . . . 13 (𝐹:(1...𝑁)⟶(1...𝑀) → 𝐹:(1...𝑁)⟶(1...𝑀))
110 incom 4168 . . . . . . . . . . . . . . 15 ((ℤ ∖ ℕ) ∩ (1...𝑁)) = ((1...𝑁) ∩ (ℤ ∖ ℕ))
111 fz1ssnn 13492 . . . . . . . . . . . . . . . 16 (1...𝑁) ⊆ ℕ
112 ssdisj 4419 . . . . . . . . . . . . . . . 16 (((1...𝑁) ⊆ ℕ ∧ (ℕ ∩ (ℤ ∖ ℕ)) = ∅) → ((1...𝑁) ∩ (ℤ ∖ ℕ)) = ∅)
113111, 39, 112mp2an 692 . . . . . . . . . . . . . . 15 ((1...𝑁) ∩ (ℤ ∖ ℕ)) = ∅
114110, 113eqtri 2752 . . . . . . . . . . . . . 14 ((ℤ ∖ ℕ) ∩ (1...𝑁)) = ∅
115114a1i 11 . . . . . . . . . . . . 13 (𝐹:(1...𝑁)⟶(1...𝑀) → ((ℤ ∖ ℕ) ∩ (1...𝑁)) = ∅)
116 fun 6704 . . . . . . . . . . . . 13 (((( I ↾ (ℤ ∖ ℕ)):(ℤ ∖ ℕ)⟶(ℤ ∖ ℕ) ∧ 𝐹:(1...𝑁)⟶(1...𝑀)) ∧ ((ℤ ∖ ℕ) ∩ (1...𝑁)) = ∅) → (( I ↾ (ℤ ∖ ℕ)) ∪ 𝐹):((ℤ ∖ ℕ) ∪ (1...𝑁))⟶((ℤ ∖ ℕ) ∪ (1...𝑀)))
117108, 109, 115, 116syl21anc 837 . . . . . . . . . . . 12 (𝐹:(1...𝑁)⟶(1...𝑀) → (( I ↾ (ℤ ∖ ℕ)) ∪ 𝐹):((ℤ ∖ ℕ) ∪ (1...𝑁))⟶((ℤ ∖ ℕ) ∪ (1...𝑀)))
118 uncom 4117 . . . . . . . . . . . . 13 (( I ↾ (ℤ ∖ ℕ)) ∪ 𝐹) = (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))
119118feq1i 6661 . . . . . . . . . . . 12 ((( I ↾ (ℤ ∖ ℕ)) ∪ 𝐹):((ℤ ∖ ℕ) ∪ (1...𝑁))⟶((ℤ ∖ ℕ) ∪ (1...𝑀)) ↔ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))):((ℤ ∖ ℕ) ∪ (1...𝑁))⟶((ℤ ∖ ℕ) ∪ (1...𝑀)))
120117, 119sylib 218 . . . . . . . . . . 11 (𝐹:(1...𝑁)⟶(1...𝑀) → (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))):((ℤ ∖ ℕ) ∪ (1...𝑁))⟶((ℤ ∖ ℕ) ∪ (1...𝑀)))
121120ad3antlr 731 . . . . . . . . . 10 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))):((ℤ ∖ ℕ) ∪ (1...𝑁))⟶((ℤ ∖ ℕ) ∪ (1...𝑀)))
122 mzprename 42710 . . . . . . . . . 10 ((((ℤ ∖ ℕ) ∪ (1...𝑀)) ∈ V ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁))) ∧ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))):((ℤ ∖ ℕ) ∪ (1...𝑁))⟶((ℤ ∖ ℕ) ∪ (1...𝑀))) → (𝑒 ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))))) ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑀))))
123106, 107, 121, 122syl3anc 1373 . . . . . . . . 9 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → (𝑒 ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))))) ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑀))))
1243, 16, 17eldioph4i 42773 . . . . . . . . 9 ((𝑀 ∈ ℕ0 ∧ (𝑒 ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))))) ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑀)))) → {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))((𝑒 ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)) = 0} ∈ (Dioph‘𝑀))
125103, 123, 124syl2anc 584 . . . . . . . 8 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))((𝑒 ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)) = 0} ∈ (Dioph‘𝑀))
126102, 125eqeltrd 2828 . . . . . . 7 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ (𝑎𝐹) ∈ {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0}} ∈ (Dioph‘𝑀))
127 eleq2 2817 . . . . . . . . 9 (𝑆 = {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0} → ((𝑎𝐹) ∈ 𝑆 ↔ (𝑎𝐹) ∈ {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0}))
128127rabbidv 3410 . . . . . . . 8 (𝑆 = {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0} → {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} = {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ (𝑎𝐹) ∈ {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0}})
129128eleq1d 2813 . . . . . . 7 (𝑆 = {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0} → ({𝑎 ∈ (ℕ0m (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀) ↔ {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ (𝑎𝐹) ∈ {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0}} ∈ (Dioph‘𝑀)))
130126, 129syl5ibrcom 247 . . . . . 6 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → (𝑆 = {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0} → {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀)))
131130rexlimdva 3134 . . . . 5 (((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) → (∃𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))𝑆 = {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0} → {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀)))
132131expimpd 453 . . . 4 ((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) → ((𝑁 ∈ ℕ0 ∧ ∃𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))𝑆 = {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0}) → {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀)))
13318, 132biimtrid 242 . . 3 ((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) → (𝑆 ∈ (Dioph‘𝑁) → {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀)))
134133impcom 407 . 2 ((𝑆 ∈ (Dioph‘𝑁) ∧ (𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀))) → {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀))
1351343impb 1114 1 ((𝑆 ∈ (Dioph‘𝑁) ∧ 𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) → {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  {crab 3402  Vcvv 3444  cdif 3908  cun 3909  cin 3910  wss 3911  c0 4292   class class class wbr 5102  cmpt 5183   I cid 5525  cres 5633  ccom 5635   Fn wfn 6494  wf 6495  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  ωcom 7822  m cmap 8776  cen 8892  Fincfn 8895  0cc0 11044  1c1 11045   + caddc 11047  cn 12162  0cn0 12418  cz 12505  cuz 12769  ...cfz 13444  mzPolycmzp 42683  Diophcdioph 42716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-hash 14272  df-mzpcl 42684  df-mzp 42685  df-dioph 42717
This theorem is referenced by:  rabrenfdioph  42775
  Copyright terms: Public domain W3C validator