Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diophren Structured version   Visualization version   GIF version

Theorem diophren 42916
Description: Change variables in a Diophantine set, using class notation. This allows already proved Diophantine sets to be reused in contexts with more variables. (Contributed by Stefan O'Rear, 16-Oct-2014.) (Revised by Stefan O'Rear, 5-Jun-2015.)
Assertion
Ref Expression
diophren ((𝑆 ∈ (Dioph‘𝑁) ∧ 𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) → {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀))
Distinct variable groups:   𝑆,𝑎   𝑀,𝑎   𝑁,𝑎   𝐹,𝑎

Proof of Theorem diophren
Dummy variables 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zex 12477 . . . . . 6 ℤ ∈ V
2 difexg 5265 . . . . . 6 (ℤ ∈ V → (ℤ ∖ ℕ) ∈ V)
31, 2ax-mp 5 . . . . 5 (ℤ ∖ ℕ) ∈ V
4 ominf 9148 . . . . . 6 ¬ ω ∈ Fin
5 nnuz 12775 . . . . . . . . . 10 ℕ = (ℤ‘1)
6 0p1e1 12242 . . . . . . . . . . 11 (0 + 1) = 1
76fveq2i 6825 . . . . . . . . . 10 (ℤ‘(0 + 1)) = (ℤ‘1)
85, 7eqtr4i 2757 . . . . . . . . 9 ℕ = (ℤ‘(0 + 1))
98difeq2i 4070 . . . . . . . 8 (ℤ ∖ ℕ) = (ℤ ∖ (ℤ‘(0 + 1)))
10 0z 12479 . . . . . . . . 9 0 ∈ ℤ
11 lzenom 42873 . . . . . . . . 9 (0 ∈ ℤ → (ℤ ∖ (ℤ‘(0 + 1))) ≈ ω)
1210, 11ax-mp 5 . . . . . . . 8 (ℤ ∖ (ℤ‘(0 + 1))) ≈ ω
139, 12eqbrtri 5110 . . . . . . 7 (ℤ ∖ ℕ) ≈ ω
14 enfi 9096 . . . . . . 7 ((ℤ ∖ ℕ) ≈ ω → ((ℤ ∖ ℕ) ∈ Fin ↔ ω ∈ Fin))
1513, 14ax-mp 5 . . . . . 6 ((ℤ ∖ ℕ) ∈ Fin ↔ ω ∈ Fin)
164, 15mtbir 323 . . . . 5 ¬ (ℤ ∖ ℕ) ∈ Fin
17 disjdifr 4420 . . . . 5 ((ℤ ∖ ℕ) ∩ ℕ) = ∅
183, 16, 17eldioph4b 42914 . . . 4 (𝑆 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))𝑆 = {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0}))
19 simpr 484 . . . . . . . . . . . 12 (((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) → 𝑎 ∈ (ℕ0m (1...𝑀)))
20 simp-4r 783 . . . . . . . . . . . 12 (((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) → 𝐹:(1...𝑁)⟶(1...𝑀))
21 ovex 7379 . . . . . . . . . . . . 13 (1...𝑁) ∈ V
2221mapco2 42818 . . . . . . . . . . . 12 ((𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝐹:(1...𝑁)⟶(1...𝑀)) → (𝑎𝐹) ∈ (ℕ0m (1...𝑁)))
2319, 20, 22syl2anc 584 . . . . . . . . . . 11 (((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) → (𝑎𝐹) ∈ (ℕ0m (1...𝑁)))
24 uneq1 4108 . . . . . . . . . . . . . 14 (𝑐 = (𝑎𝐹) → (𝑐𝑑) = ((𝑎𝐹) ∪ 𝑑))
2524fveqeq2d 6830 . . . . . . . . . . . . 13 (𝑐 = (𝑎𝐹) → ((𝑏‘(𝑐𝑑)) = 0 ↔ (𝑏‘((𝑎𝐹) ∪ 𝑑)) = 0))
2625rexbidv 3156 . . . . . . . . . . . 12 (𝑐 = (𝑎𝐹) → (∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0 ↔ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘((𝑎𝐹) ∪ 𝑑)) = 0))
2726elrab3 3643 . . . . . . . . . . 11 ((𝑎𝐹) ∈ (ℕ0m (1...𝑁)) → ((𝑎𝐹) ∈ {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0} ↔ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘((𝑎𝐹) ∪ 𝑑)) = 0))
2823, 27syl 17 . . . . . . . . . 10 (((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) → ((𝑎𝐹) ∈ {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0} ↔ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘((𝑎𝐹) ∪ 𝑑)) = 0))
29 simp-5r 785 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → 𝐹:(1...𝑁)⟶(1...𝑀))
30 simplr 768 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → 𝑎 ∈ (ℕ0m (1...𝑀)))
31 simpr 484 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ)))
32 coundi 6194 . . . . . . . . . . . . . . . 16 ((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))) = (((𝑎𝑑) ∘ 𝐹) ∪ ((𝑎𝑑) ∘ ( I ↾ (ℤ ∖ ℕ))))
33 coundir 6195 . . . . . . . . . . . . . . . . . . 19 ((𝑎𝑑) ∘ 𝐹) = ((𝑎𝐹) ∪ (𝑑𝐹))
34 elmapi 8773 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 ∈ (ℕ0m (ℤ ∖ ℕ)) → 𝑑:(ℤ ∖ ℕ)⟶ℕ0)
35343ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → 𝑑:(ℤ ∖ ℕ)⟶ℕ0)
36 simp1 1136 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → 𝐹:(1...𝑁)⟶(1...𝑀))
37 incom 4156 . . . . . . . . . . . . . . . . . . . . . . 23 ((ℤ ∖ ℕ) ∩ (1...𝑀)) = ((1...𝑀) ∩ (ℤ ∖ ℕ))
38 fz1ssnn 13455 . . . . . . . . . . . . . . . . . . . . . . . 24 (1...𝑀) ⊆ ℕ
39 disjdif 4419 . . . . . . . . . . . . . . . . . . . . . . . 24 (ℕ ∩ (ℤ ∖ ℕ)) = ∅
40 ssdisj 4407 . . . . . . . . . . . . . . . . . . . . . . . 24 (((1...𝑀) ⊆ ℕ ∧ (ℕ ∩ (ℤ ∖ ℕ)) = ∅) → ((1...𝑀) ∩ (ℤ ∖ ℕ)) = ∅)
4138, 39, 40mp2an 692 . . . . . . . . . . . . . . . . . . . . . . 23 ((1...𝑀) ∩ (ℤ ∖ ℕ)) = ∅
4237, 41eqtri 2754 . . . . . . . . . . . . . . . . . . . . . 22 ((ℤ ∖ ℕ) ∩ (1...𝑀)) = ∅
4342a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → ((ℤ ∖ ℕ) ∩ (1...𝑀)) = ∅)
44 coeq0i 42856 . . . . . . . . . . . . . . . . . . . . 21 ((𝑑:(ℤ ∖ ℕ)⟶ℕ0𝐹:(1...𝑁)⟶(1...𝑀) ∧ ((ℤ ∖ ℕ) ∩ (1...𝑀)) = ∅) → (𝑑𝐹) = ∅)
4535, 36, 43, 44syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → (𝑑𝐹) = ∅)
4645uneq2d 4115 . . . . . . . . . . . . . . . . . . 19 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → ((𝑎𝐹) ∪ (𝑑𝐹)) = ((𝑎𝐹) ∪ ∅))
4733, 46eqtrid 2778 . . . . . . . . . . . . . . . . . 18 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → ((𝑎𝑑) ∘ 𝐹) = ((𝑎𝐹) ∪ ∅))
48 un0 4341 . . . . . . . . . . . . . . . . . 18 ((𝑎𝐹) ∪ ∅) = (𝑎𝐹)
4947, 48eqtrdi 2782 . . . . . . . . . . . . . . . . 17 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → ((𝑎𝑑) ∘ 𝐹) = (𝑎𝐹))
50 coundir 6195 . . . . . . . . . . . . . . . . . . 19 ((𝑎𝑑) ∘ ( I ↾ (ℤ ∖ ℕ))) = ((𝑎 ∘ ( I ↾ (ℤ ∖ ℕ))) ∪ (𝑑 ∘ ( I ↾ (ℤ ∖ ℕ))))
51 elmapi 8773 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 ∈ (ℕ0m (1...𝑀)) → 𝑎:(1...𝑀)⟶ℕ0)
52513ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → 𝑎:(1...𝑀)⟶ℕ0)
53 f1oi 6801 . . . . . . . . . . . . . . . . . . . . . . 23 ( I ↾ (ℤ ∖ ℕ)):(ℤ ∖ ℕ)–1-1-onto→(ℤ ∖ ℕ)
54 f1of 6763 . . . . . . . . . . . . . . . . . . . . . . 23 (( I ↾ (ℤ ∖ ℕ)):(ℤ ∖ ℕ)–1-1-onto→(ℤ ∖ ℕ) → ( I ↾ (ℤ ∖ ℕ)):(ℤ ∖ ℕ)⟶(ℤ ∖ ℕ))
5553, 54ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 ( I ↾ (ℤ ∖ ℕ)):(ℤ ∖ ℕ)⟶(ℤ ∖ ℕ)
56 coeq0i 42856 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎:(1...𝑀)⟶ℕ0 ∧ ( I ↾ (ℤ ∖ ℕ)):(ℤ ∖ ℕ)⟶(ℤ ∖ ℕ) ∧ ((1...𝑀) ∩ (ℤ ∖ ℕ)) = ∅) → (𝑎 ∘ ( I ↾ (ℤ ∖ ℕ))) = ∅)
5755, 41, 56mp3an23 1455 . . . . . . . . . . . . . . . . . . . . 21 (𝑎:(1...𝑀)⟶ℕ0 → (𝑎 ∘ ( I ↾ (ℤ ∖ ℕ))) = ∅)
5852, 57syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → (𝑎 ∘ ( I ↾ (ℤ ∖ ℕ))) = ∅)
59 coires1 6212 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 ∘ ( I ↾ (ℤ ∖ ℕ))) = (𝑑 ↾ (ℤ ∖ ℕ))
60 ffn 6651 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑:(ℤ ∖ ℕ)⟶ℕ0𝑑 Fn (ℤ ∖ ℕ))
61 fnresdm 6600 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 Fn (ℤ ∖ ℕ) → (𝑑 ↾ (ℤ ∖ ℕ)) = 𝑑)
6234, 60, 613syl 18 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 ∈ (ℕ0m (ℤ ∖ ℕ)) → (𝑑 ↾ (ℤ ∖ ℕ)) = 𝑑)
6359, 62eqtrid 2778 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ (ℕ0m (ℤ ∖ ℕ)) → (𝑑 ∘ ( I ↾ (ℤ ∖ ℕ))) = 𝑑)
64633ad2ant3 1135 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → (𝑑 ∘ ( I ↾ (ℤ ∖ ℕ))) = 𝑑)
6558, 64uneq12d 4116 . . . . . . . . . . . . . . . . . . 19 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → ((𝑎 ∘ ( I ↾ (ℤ ∖ ℕ))) ∪ (𝑑 ∘ ( I ↾ (ℤ ∖ ℕ)))) = (∅ ∪ 𝑑))
6650, 65eqtrid 2778 . . . . . . . . . . . . . . . . . 18 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → ((𝑎𝑑) ∘ ( I ↾ (ℤ ∖ ℕ))) = (∅ ∪ 𝑑))
67 uncom 4105 . . . . . . . . . . . . . . . . . . 19 (∅ ∪ 𝑑) = (𝑑 ∪ ∅)
68 un0 4341 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∪ ∅) = 𝑑
6967, 68eqtri 2754 . . . . . . . . . . . . . . . . . 18 (∅ ∪ 𝑑) = 𝑑
7066, 69eqtrdi 2782 . . . . . . . . . . . . . . . . 17 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → ((𝑎𝑑) ∘ ( I ↾ (ℤ ∖ ℕ))) = 𝑑)
7149, 70uneq12d 4116 . . . . . . . . . . . . . . . 16 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → (((𝑎𝑑) ∘ 𝐹) ∪ ((𝑎𝑑) ∘ ( I ↾ (ℤ ∖ ℕ)))) = ((𝑎𝐹) ∪ 𝑑))
7232, 71eqtr2id 2779 . . . . . . . . . . . . . . 15 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → ((𝑎𝐹) ∪ 𝑑) = ((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))))
7329, 30, 31, 72syl3anc 1373 . . . . . . . . . . . . . 14 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → ((𝑎𝐹) ∪ 𝑑) = ((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))))
7473fveq2d 6826 . . . . . . . . . . . . 13 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → (𝑏‘((𝑎𝐹) ∪ 𝑑)) = (𝑏‘((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))
75 nn0ssz 12491 . . . . . . . . . . . . . . . . 17 0 ⊆ ℤ
76 mapss 8813 . . . . . . . . . . . . . . . . 17 ((ℤ ∈ V ∧ ℕ0 ⊆ ℤ) → (ℕ0m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ⊆ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))))
771, 75, 76mp2an 692 . . . . . . . . . . . . . . . 16 (ℕ0m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ⊆ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀)))
7841reseq2i 5924 . . . . . . . . . . . . . . . . . . 19 (𝑎 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ))) = (𝑎 ↾ ∅)
79 res0 5931 . . . . . . . . . . . . . . . . . . 19 (𝑎 ↾ ∅) = ∅
8078, 79eqtri 2754 . . . . . . . . . . . . . . . . . 18 (𝑎 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ))) = ∅
8141reseq2i 5924 . . . . . . . . . . . . . . . . . . 19 (𝑑 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ))) = (𝑑 ↾ ∅)
82 res0 5931 . . . . . . . . . . . . . . . . . . 19 (𝑑 ↾ ∅) = ∅
8381, 82eqtri 2754 . . . . . . . . . . . . . . . . . 18 (𝑑 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ))) = ∅
8480, 83eqtr4i 2757 . . . . . . . . . . . . . . . . 17 (𝑎 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ))) = (𝑑 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ)))
85 elmapresaun 8804 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ)) ∧ (𝑎 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ))) = (𝑑 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ)))) → (𝑎𝑑) ∈ (ℕ0m ((1...𝑀) ∪ (ℤ ∖ ℕ))))
86 uncom 4105 . . . . . . . . . . . . . . . . . . 19 ((1...𝑀) ∪ (ℤ ∖ ℕ)) = ((ℤ ∖ ℕ) ∪ (1...𝑀))
8786oveq2i 7357 . . . . . . . . . . . . . . . . . 18 (ℕ0m ((1...𝑀) ∪ (ℤ ∖ ℕ))) = (ℕ0m ((ℤ ∖ ℕ) ∪ (1...𝑀)))
8885, 87eleqtrdi 2841 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ)) ∧ (𝑎 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ))) = (𝑑 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ)))) → (𝑎𝑑) ∈ (ℕ0m ((ℤ ∖ ℕ) ∪ (1...𝑀))))
8984, 88mp3an3 1452 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → (𝑎𝑑) ∈ (ℕ0m ((ℤ ∖ ℕ) ∪ (1...𝑀))))
9077, 89sselid 3927 . . . . . . . . . . . . . . 15 ((𝑎 ∈ (ℕ0m (1...𝑀)) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → (𝑎𝑑) ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))))
9190adantll 714 . . . . . . . . . . . . . 14 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → (𝑎𝑑) ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))))
92 coeq1 5796 . . . . . . . . . . . . . . . 16 (𝑒 = (𝑎𝑑) → (𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))) = ((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))))
9392fveq2d 6826 . . . . . . . . . . . . . . 15 (𝑒 = (𝑎𝑑) → (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))) = (𝑏‘((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))
94 eqid 2731 . . . . . . . . . . . . . . 15 (𝑒 ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))))) = (𝑒 ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))
95 fvex 6835 . . . . . . . . . . . . . . 15 (𝑏‘((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))) ∈ V
9693, 94, 95fvmpt 6929 . . . . . . . . . . . . . 14 ((𝑎𝑑) ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) → ((𝑒 ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)) = (𝑏‘((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))
9791, 96syl 17 . . . . . . . . . . . . 13 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → ((𝑒 ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)) = (𝑏‘((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))
9874, 97eqtr4d 2769 . . . . . . . . . . . 12 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → (𝑏‘((𝑎𝐹) ∪ 𝑑)) = ((𝑒 ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)))
9998eqeq1d 2733 . . . . . . . . . . 11 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))) → ((𝑏‘((𝑎𝐹) ∪ 𝑑)) = 0 ↔ ((𝑒 ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)) = 0))
10099rexbidva 3154 . . . . . . . . . 10 (((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) → (∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘((𝑎𝐹) ∪ 𝑑)) = 0 ↔ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))((𝑒 ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)) = 0))
10128, 100bitrd 279 . . . . . . . . 9 (((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0m (1...𝑀))) → ((𝑎𝐹) ∈ {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0} ↔ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))((𝑒 ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)) = 0))
102101rabbidva 3401 . . . . . . . 8 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ (𝑎𝐹) ∈ {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0}} = {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))((𝑒 ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)) = 0})
103 simplll 774 . . . . . . . . 9 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → 𝑀 ∈ ℕ0)
104 ovex 7379 . . . . . . . . . . . 12 (1...𝑀) ∈ V
1053, 104unex 7677 . . . . . . . . . . 11 ((ℤ ∖ ℕ) ∪ (1...𝑀)) ∈ V
106105a1i 11 . . . . . . . . . 10 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → ((ℤ ∖ ℕ) ∪ (1...𝑀)) ∈ V)
107 simpr 484 . . . . . . . . . 10 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁))))
10855a1i 11 . . . . . . . . . . . . 13 (𝐹:(1...𝑁)⟶(1...𝑀) → ( I ↾ (ℤ ∖ ℕ)):(ℤ ∖ ℕ)⟶(ℤ ∖ ℕ))
109 id 22 . . . . . . . . . . . . 13 (𝐹:(1...𝑁)⟶(1...𝑀) → 𝐹:(1...𝑁)⟶(1...𝑀))
110 incom 4156 . . . . . . . . . . . . . . 15 ((ℤ ∖ ℕ) ∩ (1...𝑁)) = ((1...𝑁) ∩ (ℤ ∖ ℕ))
111 fz1ssnn 13455 . . . . . . . . . . . . . . . 16 (1...𝑁) ⊆ ℕ
112 ssdisj 4407 . . . . . . . . . . . . . . . 16 (((1...𝑁) ⊆ ℕ ∧ (ℕ ∩ (ℤ ∖ ℕ)) = ∅) → ((1...𝑁) ∩ (ℤ ∖ ℕ)) = ∅)
113111, 39, 112mp2an 692 . . . . . . . . . . . . . . 15 ((1...𝑁) ∩ (ℤ ∖ ℕ)) = ∅
114110, 113eqtri 2754 . . . . . . . . . . . . . 14 ((ℤ ∖ ℕ) ∩ (1...𝑁)) = ∅
115114a1i 11 . . . . . . . . . . . . 13 (𝐹:(1...𝑁)⟶(1...𝑀) → ((ℤ ∖ ℕ) ∩ (1...𝑁)) = ∅)
116 fun 6685 . . . . . . . . . . . . 13 (((( I ↾ (ℤ ∖ ℕ)):(ℤ ∖ ℕ)⟶(ℤ ∖ ℕ) ∧ 𝐹:(1...𝑁)⟶(1...𝑀)) ∧ ((ℤ ∖ ℕ) ∩ (1...𝑁)) = ∅) → (( I ↾ (ℤ ∖ ℕ)) ∪ 𝐹):((ℤ ∖ ℕ) ∪ (1...𝑁))⟶((ℤ ∖ ℕ) ∪ (1...𝑀)))
117108, 109, 115, 116syl21anc 837 . . . . . . . . . . . 12 (𝐹:(1...𝑁)⟶(1...𝑀) → (( I ↾ (ℤ ∖ ℕ)) ∪ 𝐹):((ℤ ∖ ℕ) ∪ (1...𝑁))⟶((ℤ ∖ ℕ) ∪ (1...𝑀)))
118 uncom 4105 . . . . . . . . . . . . 13 (( I ↾ (ℤ ∖ ℕ)) ∪ 𝐹) = (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))
119118feq1i 6642 . . . . . . . . . . . 12 ((( I ↾ (ℤ ∖ ℕ)) ∪ 𝐹):((ℤ ∖ ℕ) ∪ (1...𝑁))⟶((ℤ ∖ ℕ) ∪ (1...𝑀)) ↔ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))):((ℤ ∖ ℕ) ∪ (1...𝑁))⟶((ℤ ∖ ℕ) ∪ (1...𝑀)))
120117, 119sylib 218 . . . . . . . . . . 11 (𝐹:(1...𝑁)⟶(1...𝑀) → (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))):((ℤ ∖ ℕ) ∪ (1...𝑁))⟶((ℤ ∖ ℕ) ∪ (1...𝑀)))
121120ad3antlr 731 . . . . . . . . . 10 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))):((ℤ ∖ ℕ) ∪ (1...𝑁))⟶((ℤ ∖ ℕ) ∪ (1...𝑀)))
122 mzprename 42852 . . . . . . . . . 10 ((((ℤ ∖ ℕ) ∪ (1...𝑀)) ∈ V ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁))) ∧ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))):((ℤ ∖ ℕ) ∪ (1...𝑁))⟶((ℤ ∖ ℕ) ∪ (1...𝑀))) → (𝑒 ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))))) ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑀))))
123106, 107, 121, 122syl3anc 1373 . . . . . . . . 9 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → (𝑒 ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))))) ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑀))))
1243, 16, 17eldioph4i 42915 . . . . . . . . 9 ((𝑀 ∈ ℕ0 ∧ (𝑒 ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))))) ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑀)))) → {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))((𝑒 ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)) = 0} ∈ (Dioph‘𝑀))
125103, 123, 124syl2anc 584 . . . . . . . 8 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))((𝑒 ∈ (ℤ ↑m ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)) = 0} ∈ (Dioph‘𝑀))
126102, 125eqeltrd 2831 . . . . . . 7 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ (𝑎𝐹) ∈ {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0}} ∈ (Dioph‘𝑀))
127 eleq2 2820 . . . . . . . . 9 (𝑆 = {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0} → ((𝑎𝐹) ∈ 𝑆 ↔ (𝑎𝐹) ∈ {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0}))
128127rabbidv 3402 . . . . . . . 8 (𝑆 = {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0} → {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} = {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ (𝑎𝐹) ∈ {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0}})
129128eleq1d 2816 . . . . . . 7 (𝑆 = {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0} → ({𝑎 ∈ (ℕ0m (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀) ↔ {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ (𝑎𝐹) ∈ {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0}} ∈ (Dioph‘𝑀)))
130126, 129syl5ibrcom 247 . . . . . 6 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → (𝑆 = {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0} → {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀)))
131130rexlimdva 3133 . . . . 5 (((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) → (∃𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))𝑆 = {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0} → {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀)))
132131expimpd 453 . . . 4 ((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) → ((𝑁 ∈ ℕ0 ∧ ∃𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))𝑆 = {𝑐 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0}) → {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀)))
13318, 132biimtrid 242 . . 3 ((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) → (𝑆 ∈ (Dioph‘𝑁) → {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀)))
134133impcom 407 . 2 ((𝑆 ∈ (Dioph‘𝑁) ∧ (𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀))) → {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀))
1351343impb 1114 1 ((𝑆 ∈ (Dioph‘𝑁) ∧ 𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) → {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wrex 3056  {crab 3395  Vcvv 3436  cdif 3894  cun 3895  cin 3896  wss 3897  c0 4280   class class class wbr 5089  cmpt 5170   I cid 5508  cres 5616  ccom 5618   Fn wfn 6476  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  ωcom 7796  m cmap 8750  cen 8866  Fincfn 8869  0cc0 11006  1c1 11007   + caddc 11009  cn 12125  0cn0 12381  cz 12468  cuz 12732  ...cfz 13407  mzPolycmzp 42825  Diophcdioph 42858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-hash 14238  df-mzpcl 42826  df-mzp 42827  df-dioph 42859
This theorem is referenced by:  rabrenfdioph  42917
  Copyright terms: Public domain W3C validator