| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sstskm | Structured version Visualization version GIF version | ||
| Description: Being a part of (tarskiMap‘𝐴). (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
| Ref | Expression |
|---|---|
| sstskm | ⊢ (𝐴 ∈ 𝑉 → (𝐵 ⊆ (tarskiMap‘𝐴) ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ⊆ 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tskmval 10740 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (tarskiMap‘𝐴) = ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥}) | |
| 2 | df-rab 3398 | . . . . 5 ⊢ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} = {𝑥 ∣ (𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥)} | |
| 3 | 2 | inteqi 4903 | . . . 4 ⊢ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} = ∩ {𝑥 ∣ (𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥)} |
| 4 | 1, 3 | eqtrdi 2784 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (tarskiMap‘𝐴) = ∩ {𝑥 ∣ (𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥)}) |
| 5 | 4 | sseq2d 3964 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ⊆ (tarskiMap‘𝐴) ↔ 𝐵 ⊆ ∩ {𝑥 ∣ (𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥)})) |
| 6 | impexp 450 | . . . 4 ⊢ (((𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥) → 𝐵 ⊆ 𝑥) ↔ (𝑥 ∈ Tarski → (𝐴 ∈ 𝑥 → 𝐵 ⊆ 𝑥))) | |
| 7 | 6 | albii 1820 | . . 3 ⊢ (∀𝑥((𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥) → 𝐵 ⊆ 𝑥) ↔ ∀𝑥(𝑥 ∈ Tarski → (𝐴 ∈ 𝑥 → 𝐵 ⊆ 𝑥))) |
| 8 | ssintab 4917 | . . 3 ⊢ (𝐵 ⊆ ∩ {𝑥 ∣ (𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥)} ↔ ∀𝑥((𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥) → 𝐵 ⊆ 𝑥)) | |
| 9 | df-ral 3050 | . . 3 ⊢ (∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ⊆ 𝑥) ↔ ∀𝑥(𝑥 ∈ Tarski → (𝐴 ∈ 𝑥 → 𝐵 ⊆ 𝑥))) | |
| 10 | 7, 8, 9 | 3bitr4i 303 | . 2 ⊢ (𝐵 ⊆ ∩ {𝑥 ∣ (𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥)} ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ⊆ 𝑥)) |
| 11 | 5, 10 | bitrdi 287 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ⊆ (tarskiMap‘𝐴) ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ⊆ 𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 ∈ wcel 2113 {cab 2711 ∀wral 3049 {crab 3397 ⊆ wss 3899 ∩ cint 4899 ‘cfv 6489 Tarskictsk 10649 tarskiMapctskm 10738 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-groth 10724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6445 df-fun 6491 df-fv 6497 df-tsk 10650 df-tskm 10739 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |