MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sstskm Structured version   Visualization version   GIF version

Theorem sstskm 10598
Description: Being a part of (tarskiMap‘𝐴). (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
sstskm (𝐴𝑉 → (𝐵 ⊆ (tarskiMap‘𝐴) ↔ ∀𝑥 ∈ Tarski (𝐴𝑥𝐵𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem sstskm
StepHypRef Expression
1 tskmval 10595 . . . 4 (𝐴𝑉 → (tarskiMap‘𝐴) = {𝑥 ∈ Tarski ∣ 𝐴𝑥})
2 df-rab 3073 . . . . 5 {𝑥 ∈ Tarski ∣ 𝐴𝑥} = {𝑥 ∣ (𝑥 ∈ Tarski ∧ 𝐴𝑥)}
32inteqi 4883 . . . 4 {𝑥 ∈ Tarski ∣ 𝐴𝑥} = {𝑥 ∣ (𝑥 ∈ Tarski ∧ 𝐴𝑥)}
41, 3eqtrdi 2794 . . 3 (𝐴𝑉 → (tarskiMap‘𝐴) = {𝑥 ∣ (𝑥 ∈ Tarski ∧ 𝐴𝑥)})
54sseq2d 3953 . 2 (𝐴𝑉 → (𝐵 ⊆ (tarskiMap‘𝐴) ↔ 𝐵 {𝑥 ∣ (𝑥 ∈ Tarski ∧ 𝐴𝑥)}))
6 impexp 451 . . . 4 (((𝑥 ∈ Tarski ∧ 𝐴𝑥) → 𝐵𝑥) ↔ (𝑥 ∈ Tarski → (𝐴𝑥𝐵𝑥)))
76albii 1822 . . 3 (∀𝑥((𝑥 ∈ Tarski ∧ 𝐴𝑥) → 𝐵𝑥) ↔ ∀𝑥(𝑥 ∈ Tarski → (𝐴𝑥𝐵𝑥)))
8 ssintab 4896 . . 3 (𝐵 {𝑥 ∣ (𝑥 ∈ Tarski ∧ 𝐴𝑥)} ↔ ∀𝑥((𝑥 ∈ Tarski ∧ 𝐴𝑥) → 𝐵𝑥))
9 df-ral 3069 . . 3 (∀𝑥 ∈ Tarski (𝐴𝑥𝐵𝑥) ↔ ∀𝑥(𝑥 ∈ Tarski → (𝐴𝑥𝐵𝑥)))
107, 8, 93bitr4i 303 . 2 (𝐵 {𝑥 ∣ (𝑥 ∈ Tarski ∧ 𝐴𝑥)} ↔ ∀𝑥 ∈ Tarski (𝐴𝑥𝐵𝑥))
115, 10bitrdi 287 1 (𝐴𝑉 → (𝐵 ⊆ (tarskiMap‘𝐴) ↔ ∀𝑥 ∈ Tarski (𝐴𝑥𝐵𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537  wcel 2106  {cab 2715  wral 3064  {crab 3068  wss 3887   cint 4879  cfv 6433  Tarskictsk 10504  tarskiMapctskm 10593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-groth 10579
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-tsk 10505  df-tskm 10594
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator