MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sstskm Structured version   Visualization version   GIF version

Theorem sstskm 10834
Description: Being a part of (tarskiMapβ€˜π΄). (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
sstskm (𝐴 ∈ 𝑉 β†’ (𝐡 βŠ† (tarskiMapβ€˜π΄) ↔ βˆ€π‘₯ ∈ Tarski (𝐴 ∈ π‘₯ β†’ 𝐡 βŠ† π‘₯)))
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝐡
Allowed substitution hint:   𝑉(π‘₯)

Proof of Theorem sstskm
StepHypRef Expression
1 tskmval 10831 . . . 4 (𝐴 ∈ 𝑉 β†’ (tarskiMapβ€˜π΄) = ∩ {π‘₯ ∈ Tarski ∣ 𝐴 ∈ π‘₯})
2 df-rab 3425 . . . . 5 {π‘₯ ∈ Tarski ∣ 𝐴 ∈ π‘₯} = {π‘₯ ∣ (π‘₯ ∈ Tarski ∧ 𝐴 ∈ π‘₯)}
32inteqi 4945 . . . 4 ∩ {π‘₯ ∈ Tarski ∣ 𝐴 ∈ π‘₯} = ∩ {π‘₯ ∣ (π‘₯ ∈ Tarski ∧ 𝐴 ∈ π‘₯)}
41, 3eqtrdi 2780 . . 3 (𝐴 ∈ 𝑉 β†’ (tarskiMapβ€˜π΄) = ∩ {π‘₯ ∣ (π‘₯ ∈ Tarski ∧ 𝐴 ∈ π‘₯)})
54sseq2d 4007 . 2 (𝐴 ∈ 𝑉 β†’ (𝐡 βŠ† (tarskiMapβ€˜π΄) ↔ 𝐡 βŠ† ∩ {π‘₯ ∣ (π‘₯ ∈ Tarski ∧ 𝐴 ∈ π‘₯)}))
6 impexp 450 . . . 4 (((π‘₯ ∈ Tarski ∧ 𝐴 ∈ π‘₯) β†’ 𝐡 βŠ† π‘₯) ↔ (π‘₯ ∈ Tarski β†’ (𝐴 ∈ π‘₯ β†’ 𝐡 βŠ† π‘₯)))
76albii 1813 . . 3 (βˆ€π‘₯((π‘₯ ∈ Tarski ∧ 𝐴 ∈ π‘₯) β†’ 𝐡 βŠ† π‘₯) ↔ βˆ€π‘₯(π‘₯ ∈ Tarski β†’ (𝐴 ∈ π‘₯ β†’ 𝐡 βŠ† π‘₯)))
8 ssintab 4960 . . 3 (𝐡 βŠ† ∩ {π‘₯ ∣ (π‘₯ ∈ Tarski ∧ 𝐴 ∈ π‘₯)} ↔ βˆ€π‘₯((π‘₯ ∈ Tarski ∧ 𝐴 ∈ π‘₯) β†’ 𝐡 βŠ† π‘₯))
9 df-ral 3054 . . 3 (βˆ€π‘₯ ∈ Tarski (𝐴 ∈ π‘₯ β†’ 𝐡 βŠ† π‘₯) ↔ βˆ€π‘₯(π‘₯ ∈ Tarski β†’ (𝐴 ∈ π‘₯ β†’ 𝐡 βŠ† π‘₯)))
107, 8, 93bitr4i 303 . 2 (𝐡 βŠ† ∩ {π‘₯ ∣ (π‘₯ ∈ Tarski ∧ 𝐴 ∈ π‘₯)} ↔ βˆ€π‘₯ ∈ Tarski (𝐴 ∈ π‘₯ β†’ 𝐡 βŠ† π‘₯))
115, 10bitrdi 287 1 (𝐴 ∈ 𝑉 β†’ (𝐡 βŠ† (tarskiMapβ€˜π΄) ↔ βˆ€π‘₯ ∈ Tarski (𝐴 ∈ π‘₯ β†’ 𝐡 βŠ† π‘₯)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395  βˆ€wal 1531   ∈ wcel 2098  {cab 2701  βˆ€wral 3053  {crab 3424   βŠ† wss 3941  βˆ© cint 4941  β€˜cfv 6534  Tarskictsk 10740  tarskiMapctskm 10829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418  ax-groth 10815
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-iota 6486  df-fun 6536  df-fv 6542  df-tsk 10741  df-tskm 10830
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator