![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sstskm | Structured version Visualization version GIF version |
Description: Being a part of (tarskiMapβπ΄). (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
Ref | Expression |
---|---|
sstskm | β’ (π΄ β π β (π΅ β (tarskiMapβπ΄) β βπ₯ β Tarski (π΄ β π₯ β π΅ β π₯))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tskmval 10831 | . . . 4 β’ (π΄ β π β (tarskiMapβπ΄) = β© {π₯ β Tarski β£ π΄ β π₯}) | |
2 | df-rab 3425 | . . . . 5 β’ {π₯ β Tarski β£ π΄ β π₯} = {π₯ β£ (π₯ β Tarski β§ π΄ β π₯)} | |
3 | 2 | inteqi 4945 | . . . 4 β’ β© {π₯ β Tarski β£ π΄ β π₯} = β© {π₯ β£ (π₯ β Tarski β§ π΄ β π₯)} |
4 | 1, 3 | eqtrdi 2780 | . . 3 β’ (π΄ β π β (tarskiMapβπ΄) = β© {π₯ β£ (π₯ β Tarski β§ π΄ β π₯)}) |
5 | 4 | sseq2d 4007 | . 2 β’ (π΄ β π β (π΅ β (tarskiMapβπ΄) β π΅ β β© {π₯ β£ (π₯ β Tarski β§ π΄ β π₯)})) |
6 | impexp 450 | . . . 4 β’ (((π₯ β Tarski β§ π΄ β π₯) β π΅ β π₯) β (π₯ β Tarski β (π΄ β π₯ β π΅ β π₯))) | |
7 | 6 | albii 1813 | . . 3 β’ (βπ₯((π₯ β Tarski β§ π΄ β π₯) β π΅ β π₯) β βπ₯(π₯ β Tarski β (π΄ β π₯ β π΅ β π₯))) |
8 | ssintab 4960 | . . 3 β’ (π΅ β β© {π₯ β£ (π₯ β Tarski β§ π΄ β π₯)} β βπ₯((π₯ β Tarski β§ π΄ β π₯) β π΅ β π₯)) | |
9 | df-ral 3054 | . . 3 β’ (βπ₯ β Tarski (π΄ β π₯ β π΅ β π₯) β βπ₯(π₯ β Tarski β (π΄ β π₯ β π΅ β π₯))) | |
10 | 7, 8, 9 | 3bitr4i 303 | . 2 β’ (π΅ β β© {π₯ β£ (π₯ β Tarski β§ π΄ β π₯)} β βπ₯ β Tarski (π΄ β π₯ β π΅ β π₯)) |
11 | 5, 10 | bitrdi 287 | 1 β’ (π΄ β π β (π΅ β (tarskiMapβπ΄) β βπ₯ β Tarski (π΄ β π₯ β π΅ β π₯))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 βwal 1531 β wcel 2098 {cab 2701 βwral 3053 {crab 3424 β wss 3941 β© cint 4941 βcfv 6534 Tarskictsk 10740 tarskiMapctskm 10829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 ax-groth 10815 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-int 4942 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-iota 6486 df-fun 6536 df-fv 6542 df-tsk 10741 df-tskm 10830 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |