![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sstskm | Structured version Visualization version GIF version |
Description: Being a part of (tarskiMapβπ΄). (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
Ref | Expression |
---|---|
sstskm | β’ (π΄ β π β (π΅ β (tarskiMapβπ΄) β βπ₯ β Tarski (π΄ β π₯ β π΅ β π₯))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tskmval 10833 | . . . 4 β’ (π΄ β π β (tarskiMapβπ΄) = β© {π₯ β Tarski β£ π΄ β π₯}) | |
2 | df-rab 3433 | . . . . 5 β’ {π₯ β Tarski β£ π΄ β π₯} = {π₯ β£ (π₯ β Tarski β§ π΄ β π₯)} | |
3 | 2 | inteqi 4954 | . . . 4 β’ β© {π₯ β Tarski β£ π΄ β π₯} = β© {π₯ β£ (π₯ β Tarski β§ π΄ β π₯)} |
4 | 1, 3 | eqtrdi 2788 | . . 3 β’ (π΄ β π β (tarskiMapβπ΄) = β© {π₯ β£ (π₯ β Tarski β§ π΄ β π₯)}) |
5 | 4 | sseq2d 4014 | . 2 β’ (π΄ β π β (π΅ β (tarskiMapβπ΄) β π΅ β β© {π₯ β£ (π₯ β Tarski β§ π΄ β π₯)})) |
6 | impexp 451 | . . . 4 β’ (((π₯ β Tarski β§ π΄ β π₯) β π΅ β π₯) β (π₯ β Tarski β (π΄ β π₯ β π΅ β π₯))) | |
7 | 6 | albii 1821 | . . 3 β’ (βπ₯((π₯ β Tarski β§ π΄ β π₯) β π΅ β π₯) β βπ₯(π₯ β Tarski β (π΄ β π₯ β π΅ β π₯))) |
8 | ssintab 4969 | . . 3 β’ (π΅ β β© {π₯ β£ (π₯ β Tarski β§ π΄ β π₯)} β βπ₯((π₯ β Tarski β§ π΄ β π₯) β π΅ β π₯)) | |
9 | df-ral 3062 | . . 3 β’ (βπ₯ β Tarski (π΄ β π₯ β π΅ β π₯) β βπ₯(π₯ β Tarski β (π΄ β π₯ β π΅ β π₯))) | |
10 | 7, 8, 9 | 3bitr4i 302 | . 2 β’ (π΅ β β© {π₯ β£ (π₯ β Tarski β§ π΄ β π₯)} β βπ₯ β Tarski (π΄ β π₯ β π΅ β π₯)) |
11 | 5, 10 | bitrdi 286 | 1 β’ (π΄ β π β (π΅ β (tarskiMapβπ΄) β βπ₯ β Tarski (π΄ β π₯ β π΅ β π₯))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 βwal 1539 β wcel 2106 {cab 2709 βwral 3061 {crab 3432 β wss 3948 β© cint 4950 βcfv 6543 Tarskictsk 10742 tarskiMapctskm 10831 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-groth 10817 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-tsk 10743 df-tskm 10832 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |