MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sstskm Structured version   Visualization version   GIF version

Theorem sstskm 10836
Description: Being a part of (tarskiMapβ€˜π΄). (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
sstskm (𝐴 ∈ 𝑉 β†’ (𝐡 βŠ† (tarskiMapβ€˜π΄) ↔ βˆ€π‘₯ ∈ Tarski (𝐴 ∈ π‘₯ β†’ 𝐡 βŠ† π‘₯)))
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝐡
Allowed substitution hint:   𝑉(π‘₯)

Proof of Theorem sstskm
StepHypRef Expression
1 tskmval 10833 . . . 4 (𝐴 ∈ 𝑉 β†’ (tarskiMapβ€˜π΄) = ∩ {π‘₯ ∈ Tarski ∣ 𝐴 ∈ π‘₯})
2 df-rab 3433 . . . . 5 {π‘₯ ∈ Tarski ∣ 𝐴 ∈ π‘₯} = {π‘₯ ∣ (π‘₯ ∈ Tarski ∧ 𝐴 ∈ π‘₯)}
32inteqi 4954 . . . 4 ∩ {π‘₯ ∈ Tarski ∣ 𝐴 ∈ π‘₯} = ∩ {π‘₯ ∣ (π‘₯ ∈ Tarski ∧ 𝐴 ∈ π‘₯)}
41, 3eqtrdi 2788 . . 3 (𝐴 ∈ 𝑉 β†’ (tarskiMapβ€˜π΄) = ∩ {π‘₯ ∣ (π‘₯ ∈ Tarski ∧ 𝐴 ∈ π‘₯)})
54sseq2d 4014 . 2 (𝐴 ∈ 𝑉 β†’ (𝐡 βŠ† (tarskiMapβ€˜π΄) ↔ 𝐡 βŠ† ∩ {π‘₯ ∣ (π‘₯ ∈ Tarski ∧ 𝐴 ∈ π‘₯)}))
6 impexp 451 . . . 4 (((π‘₯ ∈ Tarski ∧ 𝐴 ∈ π‘₯) β†’ 𝐡 βŠ† π‘₯) ↔ (π‘₯ ∈ Tarski β†’ (𝐴 ∈ π‘₯ β†’ 𝐡 βŠ† π‘₯)))
76albii 1821 . . 3 (βˆ€π‘₯((π‘₯ ∈ Tarski ∧ 𝐴 ∈ π‘₯) β†’ 𝐡 βŠ† π‘₯) ↔ βˆ€π‘₯(π‘₯ ∈ Tarski β†’ (𝐴 ∈ π‘₯ β†’ 𝐡 βŠ† π‘₯)))
8 ssintab 4969 . . 3 (𝐡 βŠ† ∩ {π‘₯ ∣ (π‘₯ ∈ Tarski ∧ 𝐴 ∈ π‘₯)} ↔ βˆ€π‘₯((π‘₯ ∈ Tarski ∧ 𝐴 ∈ π‘₯) β†’ 𝐡 βŠ† π‘₯))
9 df-ral 3062 . . 3 (βˆ€π‘₯ ∈ Tarski (𝐴 ∈ π‘₯ β†’ 𝐡 βŠ† π‘₯) ↔ βˆ€π‘₯(π‘₯ ∈ Tarski β†’ (𝐴 ∈ π‘₯ β†’ 𝐡 βŠ† π‘₯)))
107, 8, 93bitr4i 302 . 2 (𝐡 βŠ† ∩ {π‘₯ ∣ (π‘₯ ∈ Tarski ∧ 𝐴 ∈ π‘₯)} ↔ βˆ€π‘₯ ∈ Tarski (𝐴 ∈ π‘₯ β†’ 𝐡 βŠ† π‘₯))
115, 10bitrdi 286 1 (𝐴 ∈ 𝑉 β†’ (𝐡 βŠ† (tarskiMapβ€˜π΄) ↔ βˆ€π‘₯ ∈ Tarski (𝐴 ∈ π‘₯ β†’ 𝐡 βŠ† π‘₯)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396  βˆ€wal 1539   ∈ wcel 2106  {cab 2709  βˆ€wral 3061  {crab 3432   βŠ† wss 3948  βˆ© cint 4950  β€˜cfv 6543  Tarskictsk 10742  tarskiMapctskm 10831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-groth 10817
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-tsk 10743  df-tskm 10832
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator