![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sstskm | Structured version Visualization version GIF version |
Description: Being a part of (tarskiMap‘𝐴). (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
Ref | Expression |
---|---|
sstskm | ⊢ (𝐴 ∈ 𝑉 → (𝐵 ⊆ (tarskiMap‘𝐴) ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ⊆ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tskmval 10058 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (tarskiMap‘𝐴) = ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥}) | |
2 | df-rab 3092 | . . . . 5 ⊢ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} = {𝑥 ∣ (𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥)} | |
3 | 2 | inteqi 4750 | . . . 4 ⊢ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} = ∩ {𝑥 ∣ (𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥)} |
4 | 1, 3 | syl6eq 2825 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (tarskiMap‘𝐴) = ∩ {𝑥 ∣ (𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥)}) |
5 | 4 | sseq2d 3884 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ⊆ (tarskiMap‘𝐴) ↔ 𝐵 ⊆ ∩ {𝑥 ∣ (𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥)})) |
6 | impexp 443 | . . . 4 ⊢ (((𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥) → 𝐵 ⊆ 𝑥) ↔ (𝑥 ∈ Tarski → (𝐴 ∈ 𝑥 → 𝐵 ⊆ 𝑥))) | |
7 | 6 | albii 1783 | . . 3 ⊢ (∀𝑥((𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥) → 𝐵 ⊆ 𝑥) ↔ ∀𝑥(𝑥 ∈ Tarski → (𝐴 ∈ 𝑥 → 𝐵 ⊆ 𝑥))) |
8 | ssintab 4763 | . . 3 ⊢ (𝐵 ⊆ ∩ {𝑥 ∣ (𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥)} ↔ ∀𝑥((𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥) → 𝐵 ⊆ 𝑥)) | |
9 | df-ral 3088 | . . 3 ⊢ (∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ⊆ 𝑥) ↔ ∀𝑥(𝑥 ∈ Tarski → (𝐴 ∈ 𝑥 → 𝐵 ⊆ 𝑥))) | |
10 | 7, 8, 9 | 3bitr4i 295 | . 2 ⊢ (𝐵 ⊆ ∩ {𝑥 ∣ (𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥)} ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ⊆ 𝑥)) |
11 | 5, 10 | syl6bb 279 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ⊆ (tarskiMap‘𝐴) ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ⊆ 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 ∀wal 1506 ∈ wcel 2051 {cab 2753 ∀wral 3083 {crab 3087 ⊆ wss 3824 ∩ cint 4746 ‘cfv 6186 Tarskictsk 9967 tarskiMapctskm 10056 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-sep 5057 ax-nul 5064 ax-pr 5183 ax-groth 10042 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-ral 3088 df-rex 3089 df-rab 3092 df-v 3412 df-sbc 3677 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-nul 4174 df-if 4346 df-pw 4419 df-sn 4437 df-pr 4439 df-op 4443 df-uni 4710 df-int 4747 df-br 4927 df-opab 4989 df-mpt 5006 df-id 5309 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-iota 6150 df-fun 6188 df-fv 6194 df-tsk 9968 df-tskm 10057 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |