![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sstskm | Structured version Visualization version GIF version |
Description: Being a part of (tarskiMap‘𝐴). (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
Ref | Expression |
---|---|
sstskm | ⊢ (𝐴 ∈ 𝑉 → (𝐵 ⊆ (tarskiMap‘𝐴) ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ⊆ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tskmval 10908 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (tarskiMap‘𝐴) = ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥}) | |
2 | df-rab 3444 | . . . . 5 ⊢ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} = {𝑥 ∣ (𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥)} | |
3 | 2 | inteqi 4974 | . . . 4 ⊢ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} = ∩ {𝑥 ∣ (𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥)} |
4 | 1, 3 | eqtrdi 2796 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (tarskiMap‘𝐴) = ∩ {𝑥 ∣ (𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥)}) |
5 | 4 | sseq2d 4041 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ⊆ (tarskiMap‘𝐴) ↔ 𝐵 ⊆ ∩ {𝑥 ∣ (𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥)})) |
6 | impexp 450 | . . . 4 ⊢ (((𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥) → 𝐵 ⊆ 𝑥) ↔ (𝑥 ∈ Tarski → (𝐴 ∈ 𝑥 → 𝐵 ⊆ 𝑥))) | |
7 | 6 | albii 1817 | . . 3 ⊢ (∀𝑥((𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥) → 𝐵 ⊆ 𝑥) ↔ ∀𝑥(𝑥 ∈ Tarski → (𝐴 ∈ 𝑥 → 𝐵 ⊆ 𝑥))) |
8 | ssintab 4989 | . . 3 ⊢ (𝐵 ⊆ ∩ {𝑥 ∣ (𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥)} ↔ ∀𝑥((𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥) → 𝐵 ⊆ 𝑥)) | |
9 | df-ral 3068 | . . 3 ⊢ (∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ⊆ 𝑥) ↔ ∀𝑥(𝑥 ∈ Tarski → (𝐴 ∈ 𝑥 → 𝐵 ⊆ 𝑥))) | |
10 | 7, 8, 9 | 3bitr4i 303 | . 2 ⊢ (𝐵 ⊆ ∩ {𝑥 ∣ (𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥)} ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ⊆ 𝑥)) |
11 | 5, 10 | bitrdi 287 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ⊆ (tarskiMap‘𝐴) ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ⊆ 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 ∈ wcel 2108 {cab 2717 ∀wral 3067 {crab 3443 ⊆ wss 3976 ∩ cint 4970 ‘cfv 6573 Tarskictsk 10817 tarskiMapctskm 10906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-groth 10892 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-tsk 10818 df-tskm 10907 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |