| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sstskm | Structured version Visualization version GIF version | ||
| Description: Being a part of (tarskiMap‘𝐴). (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
| Ref | Expression |
|---|---|
| sstskm | ⊢ (𝐴 ∈ 𝑉 → (𝐵 ⊆ (tarskiMap‘𝐴) ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ⊆ 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tskmval 10799 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (tarskiMap‘𝐴) = ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥}) | |
| 2 | df-rab 3409 | . . . . 5 ⊢ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} = {𝑥 ∣ (𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥)} | |
| 3 | 2 | inteqi 4917 | . . . 4 ⊢ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} = ∩ {𝑥 ∣ (𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥)} |
| 4 | 1, 3 | eqtrdi 2781 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (tarskiMap‘𝐴) = ∩ {𝑥 ∣ (𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥)}) |
| 5 | 4 | sseq2d 3982 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ⊆ (tarskiMap‘𝐴) ↔ 𝐵 ⊆ ∩ {𝑥 ∣ (𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥)})) |
| 6 | impexp 450 | . . . 4 ⊢ (((𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥) → 𝐵 ⊆ 𝑥) ↔ (𝑥 ∈ Tarski → (𝐴 ∈ 𝑥 → 𝐵 ⊆ 𝑥))) | |
| 7 | 6 | albii 1819 | . . 3 ⊢ (∀𝑥((𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥) → 𝐵 ⊆ 𝑥) ↔ ∀𝑥(𝑥 ∈ Tarski → (𝐴 ∈ 𝑥 → 𝐵 ⊆ 𝑥))) |
| 8 | ssintab 4932 | . . 3 ⊢ (𝐵 ⊆ ∩ {𝑥 ∣ (𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥)} ↔ ∀𝑥((𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥) → 𝐵 ⊆ 𝑥)) | |
| 9 | df-ral 3046 | . . 3 ⊢ (∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ⊆ 𝑥) ↔ ∀𝑥(𝑥 ∈ Tarski → (𝐴 ∈ 𝑥 → 𝐵 ⊆ 𝑥))) | |
| 10 | 7, 8, 9 | 3bitr4i 303 | . 2 ⊢ (𝐵 ⊆ ∩ {𝑥 ∣ (𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥)} ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ⊆ 𝑥)) |
| 11 | 5, 10 | bitrdi 287 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ⊆ (tarskiMap‘𝐴) ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ⊆ 𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∈ wcel 2109 {cab 2708 ∀wral 3045 {crab 3408 ⊆ wss 3917 ∩ cint 4913 ‘cfv 6514 Tarskictsk 10708 tarskiMapctskm 10797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-groth 10783 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-tsk 10709 df-tskm 10798 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |