![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssmclslem | Structured version Visualization version GIF version |
Description: Lemma for ssmcls 35565. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mclsval.d | ⊢ 𝐷 = (mDV‘𝑇) |
mclsval.e | ⊢ 𝐸 = (mEx‘𝑇) |
mclsval.c | ⊢ 𝐶 = (mCls‘𝑇) |
mclsval.1 | ⊢ (𝜑 → 𝑇 ∈ mFS) |
mclsval.2 | ⊢ (𝜑 → 𝐾 ⊆ 𝐷) |
mclsval.3 | ⊢ (𝜑 → 𝐵 ⊆ 𝐸) |
ssmclslem.h | ⊢ 𝐻 = (mVH‘𝑇) |
Ref | Expression |
---|---|
ssmclslem | ⊢ (𝜑 → (𝐵 ∪ ran 𝐻) ⊆ (𝐾𝐶𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . . 5 ⊢ (((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘(𝐻‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐))) → (𝐵 ∪ ran 𝐻) ⊆ 𝑐) | |
2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → (((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘(𝐻‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐))) → (𝐵 ∪ ran 𝐻) ⊆ 𝑐)) |
3 | 2 | alrimiv 1927 | . . 3 ⊢ (𝜑 → ∀𝑐(((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘(𝐻‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐))) → (𝐵 ∪ ran 𝐻) ⊆ 𝑐)) |
4 | ssintab 4973 | . . 3 ⊢ ((𝐵 ∪ ran 𝐻) ⊆ ∩ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘(𝐻‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))} ↔ ∀𝑐(((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘(𝐻‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐))) → (𝐵 ∪ ran 𝐻) ⊆ 𝑐)) | |
5 | 3, 4 | sylibr 234 | . 2 ⊢ (𝜑 → (𝐵 ∪ ran 𝐻) ⊆ ∩ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘(𝐻‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))}) |
6 | mclsval.d | . . 3 ⊢ 𝐷 = (mDV‘𝑇) | |
7 | mclsval.e | . . 3 ⊢ 𝐸 = (mEx‘𝑇) | |
8 | mclsval.c | . . 3 ⊢ 𝐶 = (mCls‘𝑇) | |
9 | mclsval.1 | . . 3 ⊢ (𝜑 → 𝑇 ∈ mFS) | |
10 | mclsval.2 | . . 3 ⊢ (𝜑 → 𝐾 ⊆ 𝐷) | |
11 | mclsval.3 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝐸) | |
12 | ssmclslem.h | . . 3 ⊢ 𝐻 = (mVH‘𝑇) | |
13 | eqid 2737 | . . 3 ⊢ (mAx‘𝑇) = (mAx‘𝑇) | |
14 | eqid 2737 | . . 3 ⊢ (mSubst‘𝑇) = (mSubst‘𝑇) | |
15 | eqid 2737 | . . 3 ⊢ (mVars‘𝑇) = (mVars‘𝑇) | |
16 | 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 | mclsval 35561 | . 2 ⊢ (𝜑 → (𝐾𝐶𝐵) = ∩ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇) → ∀𝑠 ∈ ran (mSubst‘𝑇)(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑇)‘(𝑠‘(𝐻‘𝑥))) × ((mVars‘𝑇)‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))}) |
17 | 5, 16 | sseqtrrd 4040 | 1 ⊢ (𝜑 → (𝐵 ∪ ran 𝐻) ⊆ (𝐾𝐶𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 = wceq 1539 ∈ wcel 2108 {cab 2714 ∀wral 3061 ∪ cun 3964 ⊆ wss 3966 〈cotp 4642 ∩ cint 4954 class class class wbr 5151 × cxp 5691 ran crn 5694 “ cima 5696 ‘cfv 6569 (class class class)co 7438 mAxcmax 35463 mExcmex 35465 mDVcmdv 35466 mVarscmvrs 35467 mSubstcmsub 35469 mVHcmvh 35470 mFScmfs 35474 mClscmcls 35475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-ot 4643 df-uni 4916 df-int 4955 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-er 8753 df-map 8876 df-pm 8877 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-card 9986 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-n0 12534 df-z 12621 df-uz 12886 df-fz 13554 df-fzo 13701 df-seq 14049 df-hash 14376 df-word 14559 df-concat 14615 df-s1 14640 df-struct 17190 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-ress 17284 df-plusg 17320 df-0g 17497 df-gsum 17498 df-mgm 18675 df-sgrp 18754 df-mnd 18770 df-submnd 18819 df-frmd 18884 df-mrex 35484 df-mex 35485 df-mrsub 35488 df-msub 35489 df-mvh 35490 df-mpst 35491 df-msr 35492 df-msta 35493 df-mfs 35494 df-mcls 35495 |
This theorem is referenced by: vhmcls 35564 ssmcls 35565 |
Copyright terms: Public domain | W3C validator |