![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssmclslem | Structured version Visualization version GIF version |
Description: Lemma for ssmcls 35013. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mclsval.d | β’ π· = (mDVβπ) |
mclsval.e | β’ πΈ = (mExβπ) |
mclsval.c | β’ πΆ = (mClsβπ) |
mclsval.1 | β’ (π β π β mFS) |
mclsval.2 | β’ (π β πΎ β π·) |
mclsval.3 | β’ (π β π΅ β πΈ) |
ssmclslem.h | β’ π» = (mVHβπ) |
Ref | Expression |
---|---|
ssmclslem | β’ (π β (π΅ βͺ ran π») β (πΎπΆπ΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . . 5 β’ (((π΅ βͺ ran π») β π β§ βπβπβπ(β¨π, π, πβ© β (mAxβπ) β βπ β ran (mSubstβπ)(((π β (π βͺ ran π»)) β π β§ βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ)β(π β(π»βπ₯))) Γ ((mVarsβπ)β(π β(π»βπ¦)))) β πΎ)) β (π βπ) β π))) β (π΅ βͺ ran π») β π) | |
2 | 1 | a1i 11 | . . . 4 β’ (π β (((π΅ βͺ ran π») β π β§ βπβπβπ(β¨π, π, πβ© β (mAxβπ) β βπ β ran (mSubstβπ)(((π β (π βͺ ran π»)) β π β§ βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ)β(π β(π»βπ₯))) Γ ((mVarsβπ)β(π β(π»βπ¦)))) β πΎ)) β (π βπ) β π))) β (π΅ βͺ ran π») β π)) |
3 | 2 | alrimiv 1922 | . . 3 β’ (π β βπ(((π΅ βͺ ran π») β π β§ βπβπβπ(β¨π, π, πβ© β (mAxβπ) β βπ β ran (mSubstβπ)(((π β (π βͺ ran π»)) β π β§ βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ)β(π β(π»βπ₯))) Γ ((mVarsβπ)β(π β(π»βπ¦)))) β πΎ)) β (π βπ) β π))) β (π΅ βͺ ran π») β π)) |
4 | ssintab 4959 | . . 3 β’ ((π΅ βͺ ran π») β β© {π β£ ((π΅ βͺ ran π») β π β§ βπβπβπ(β¨π, π, πβ© β (mAxβπ) β βπ β ran (mSubstβπ)(((π β (π βͺ ran π»)) β π β§ βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ)β(π β(π»βπ₯))) Γ ((mVarsβπ)β(π β(π»βπ¦)))) β πΎ)) β (π βπ) β π)))} β βπ(((π΅ βͺ ran π») β π β§ βπβπβπ(β¨π, π, πβ© β (mAxβπ) β βπ β ran (mSubstβπ)(((π β (π βͺ ran π»)) β π β§ βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ)β(π β(π»βπ₯))) Γ ((mVarsβπ)β(π β(π»βπ¦)))) β πΎ)) β (π βπ) β π))) β (π΅ βͺ ran π») β π)) | |
5 | 3, 4 | sylibr 233 | . 2 β’ (π β (π΅ βͺ ran π») β β© {π β£ ((π΅ βͺ ran π») β π β§ βπβπβπ(β¨π, π, πβ© β (mAxβπ) β βπ β ran (mSubstβπ)(((π β (π βͺ ran π»)) β π β§ βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ)β(π β(π»βπ₯))) Γ ((mVarsβπ)β(π β(π»βπ¦)))) β πΎ)) β (π βπ) β π)))}) |
6 | mclsval.d | . . 3 β’ π· = (mDVβπ) | |
7 | mclsval.e | . . 3 β’ πΈ = (mExβπ) | |
8 | mclsval.c | . . 3 β’ πΆ = (mClsβπ) | |
9 | mclsval.1 | . . 3 β’ (π β π β mFS) | |
10 | mclsval.2 | . . 3 β’ (π β πΎ β π·) | |
11 | mclsval.3 | . . 3 β’ (π β π΅ β πΈ) | |
12 | ssmclslem.h | . . 3 β’ π» = (mVHβπ) | |
13 | eqid 2724 | . . 3 β’ (mAxβπ) = (mAxβπ) | |
14 | eqid 2724 | . . 3 β’ (mSubstβπ) = (mSubstβπ) | |
15 | eqid 2724 | . . 3 β’ (mVarsβπ) = (mVarsβπ) | |
16 | 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 | mclsval 35009 | . 2 β’ (π β (πΎπΆπ΅) = β© {π β£ ((π΅ βͺ ran π») β π β§ βπβπβπ(β¨π, π, πβ© β (mAxβπ) β βπ β ran (mSubstβπ)(((π β (π βͺ ran π»)) β π β§ βπ₯βπ¦(π₯ππ¦ β (((mVarsβπ)β(π β(π»βπ₯))) Γ ((mVarsβπ)β(π β(π»βπ¦)))) β πΎ)) β (π βπ) β π)))}) |
17 | 5, 16 | sseqtrrd 4015 | 1 β’ (π β (π΅ βͺ ran π») β (πΎπΆπ΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 βwal 1531 = wceq 1533 β wcel 2098 {cab 2701 βwral 3053 βͺ cun 3938 β wss 3940 β¨cotp 4628 β© cint 4940 class class class wbr 5138 Γ cxp 5664 ran crn 5667 β cima 5669 βcfv 6533 (class class class)co 7401 mAxcmax 34911 mExcmex 34913 mDVcmdv 34914 mVarscmvrs 34915 mSubstcmsub 34917 mVHcmvh 34918 mFScmfs 34922 mClscmcls 34923 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-ot 4629 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8698 df-map 8817 df-pm 8818 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-card 9929 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-fzo 13624 df-seq 13963 df-hash 14287 df-word 14461 df-concat 14517 df-s1 14542 df-struct 17078 df-sets 17095 df-slot 17113 df-ndx 17125 df-base 17143 df-ress 17172 df-plusg 17208 df-0g 17385 df-gsum 17386 df-mgm 18562 df-sgrp 18641 df-mnd 18657 df-submnd 18703 df-frmd 18763 df-mrex 34932 df-mex 34933 df-mrsub 34936 df-msub 34937 df-mvh 34938 df-mpst 34939 df-msr 34940 df-msta 34941 df-mfs 34942 df-mcls 34943 |
This theorem is referenced by: vhmcls 35012 ssmcls 35013 |
Copyright terms: Public domain | W3C validator |