MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfuzi Structured version   Visualization version   GIF version

Theorem dfuzi 12061
Description: An expression for the upper integers that start at 𝑁 that is analogous to dfnn2 11638 for positive integers. (Contributed by NM, 6-Jul-2005.) (Proof shortened by Mario Carneiro, 3-May-2014.)
Hypothesis
Ref Expression
dfuzi.1 𝑁 ∈ ℤ
Assertion
Ref Expression
dfuzi {𝑧 ∈ ℤ ∣ 𝑁𝑧} = {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
Distinct variable group:   𝑥,𝑦,𝑧,𝑁

Proof of Theorem dfuzi
StepHypRef Expression
1 ssintab 4855 . . 3 ({𝑧 ∈ ℤ ∣ 𝑁𝑧} ⊆ {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑥((𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) → {𝑧 ∈ ℤ ∣ 𝑁𝑧} ⊆ 𝑥))
2 dfuzi.1 . . . 4 𝑁 ∈ ℤ
32peano5uzi 12059 . . 3 ((𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) → {𝑧 ∈ ℤ ∣ 𝑁𝑧} ⊆ 𝑥)
41, 3mpgbir 1801 . 2 {𝑧 ∈ ℤ ∣ 𝑁𝑧} ⊆ {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
52zrei 11975 . . . . . 6 𝑁 ∈ ℝ
65leidi 11163 . . . . 5 𝑁𝑁
7 breq2 5034 . . . . . 6 (𝑧 = 𝑁 → (𝑁𝑧𝑁𝑁))
87elrab 3628 . . . . 5 (𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧} ↔ (𝑁 ∈ ℤ ∧ 𝑁𝑁))
92, 6, 8mpbir2an 710 . . . 4 𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}
10 peano2uz2 12058 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}) → (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧})
112, 10mpan 689 . . . . 5 (𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧} → (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧})
1211rgen 3116 . . . 4 𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧} (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}
13 zex 11978 . . . . . 6 ℤ ∈ V
1413rabex 5199 . . . . 5 {𝑧 ∈ ℤ ∣ 𝑁𝑧} ∈ V
15 eleq2 2878 . . . . . 6 (𝑥 = {𝑧 ∈ ℤ ∣ 𝑁𝑧} → (𝑁𝑥𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}))
16 eleq2 2878 . . . . . . 7 (𝑥 = {𝑧 ∈ ℤ ∣ 𝑁𝑧} → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}))
1716raleqbi1dv 3356 . . . . . 6 (𝑥 = {𝑧 ∈ ℤ ∣ 𝑁𝑧} → (∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧} (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}))
1815, 17anbi12d 633 . . . . 5 (𝑥 = {𝑧 ∈ ℤ ∣ 𝑁𝑧} → ((𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧} (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧})))
1914, 18elab 3615 . . . 4 ({𝑧 ∈ ℤ ∣ 𝑁𝑧} ∈ {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ (𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧} (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}))
209, 12, 19mpbir2an 710 . . 3 {𝑧 ∈ ℤ ∣ 𝑁𝑧} ∈ {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
21 intss1 4853 . . 3 ({𝑧 ∈ ℤ ∣ 𝑁𝑧} ∈ {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} → {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ⊆ {𝑧 ∈ ℤ ∣ 𝑁𝑧})
2220, 21ax-mp 5 . 2 {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ⊆ {𝑧 ∈ ℤ ∣ 𝑁𝑧}
234, 22eqssi 3931 1 {𝑧 ∈ ℤ ∣ 𝑁𝑧} = {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  {cab 2776  wral 3106  {crab 3110  wss 3881   cint 4838   class class class wbr 5030  (class class class)co 7135  1c1 10527   + caddc 10529  cle 10665  cz 11969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator