![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfuzi | Structured version Visualization version GIF version |
Description: An expression for the upper integers that start at 𝑁 that is analogous to dfnn2 12277 for positive integers. (Contributed by NM, 6-Jul-2005.) (Proof shortened by Mario Carneiro, 3-May-2014.) |
Ref | Expression |
---|---|
dfuzi.1 | ⊢ 𝑁 ∈ ℤ |
Ref | Expression |
---|---|
dfuzi | ⊢ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} = ∩ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssintab 4970 | . . 3 ⊢ ({𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ⊆ ∩ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑥((𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) → {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ⊆ 𝑥)) | |
2 | dfuzi.1 | . . . 4 ⊢ 𝑁 ∈ ℤ | |
3 | 2 | peano5uzi 12705 | . . 3 ⊢ ((𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) → {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ⊆ 𝑥) |
4 | 1, 3 | mpgbir 1796 | . 2 ⊢ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ⊆ ∩ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
5 | 2 | zrei 12617 | . . . . . 6 ⊢ 𝑁 ∈ ℝ |
6 | 5 | leidi 11795 | . . . . 5 ⊢ 𝑁 ≤ 𝑁 |
7 | breq2 5152 | . . . . . 6 ⊢ (𝑧 = 𝑁 → (𝑁 ≤ 𝑧 ↔ 𝑁 ≤ 𝑁)) | |
8 | 7 | elrab 3695 | . . . . 5 ⊢ (𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ↔ (𝑁 ∈ ℤ ∧ 𝑁 ≤ 𝑁)) |
9 | 2, 6, 8 | mpbir2an 711 | . . . 4 ⊢ 𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} |
10 | peano2uz2 12704 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧}) → (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧}) | |
11 | 2, 10 | mpan 690 | . . . . 5 ⊢ (𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} → (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧}) |
12 | 11 | rgen 3061 | . . . 4 ⊢ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} |
13 | zex 12620 | . . . . . 6 ⊢ ℤ ∈ V | |
14 | 13 | rabex 5345 | . . . . 5 ⊢ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ∈ V |
15 | eleq2 2828 | . . . . . 6 ⊢ (𝑥 = {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} → (𝑁 ∈ 𝑥 ↔ 𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧})) | |
16 | eleq2 2828 | . . . . . . 7 ⊢ (𝑥 = {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧})) | |
17 | 16 | raleqbi1dv 3336 | . . . . . 6 ⊢ (𝑥 = {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} → (∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧})) |
18 | 15, 17 | anbi12d 632 | . . . . 5 ⊢ (𝑥 = {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} → ((𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧}))) |
19 | 14, 18 | elab 3681 | . . . 4 ⊢ ({𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ∈ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ (𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧})) |
20 | 9, 12, 19 | mpbir2an 711 | . . 3 ⊢ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ∈ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
21 | intss1 4968 | . . 3 ⊢ ({𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ∈ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} → ∩ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ⊆ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧}) | |
22 | 20, 21 | ax-mp 5 | . 2 ⊢ ∩ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ⊆ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} |
23 | 4, 22 | eqssi 4012 | 1 ⊢ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} = ∩ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {cab 2712 ∀wral 3059 {crab 3433 ⊆ wss 3963 ∩ cint 4951 class class class wbr 5148 (class class class)co 7431 1c1 11154 + caddc 11156 ≤ cle 11294 ℤcz 12611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |