MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfuzi Structured version   Visualization version   GIF version

Theorem dfuzi 12559
Description: An expression for the upper integers that start at 𝑁 that is analogous to dfnn2 12133 for positive integers. (Contributed by NM, 6-Jul-2005.) (Proof shortened by Mario Carneiro, 3-May-2014.)
Hypothesis
Ref Expression
dfuzi.1 𝑁 ∈ ℤ
Assertion
Ref Expression
dfuzi {𝑧 ∈ ℤ ∣ 𝑁𝑧} = {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
Distinct variable group:   𝑥,𝑦,𝑧,𝑁

Proof of Theorem dfuzi
StepHypRef Expression
1 ssintab 4910 . . 3 ({𝑧 ∈ ℤ ∣ 𝑁𝑧} ⊆ {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑥((𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) → {𝑧 ∈ ℤ ∣ 𝑁𝑧} ⊆ 𝑥))
2 dfuzi.1 . . . 4 𝑁 ∈ ℤ
32peano5uzi 12557 . . 3 ((𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) → {𝑧 ∈ ℤ ∣ 𝑁𝑧} ⊆ 𝑥)
41, 3mpgbir 1800 . 2 {𝑧 ∈ ℤ ∣ 𝑁𝑧} ⊆ {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
52zrei 12469 . . . . . 6 𝑁 ∈ ℝ
65leidi 11646 . . . . 5 𝑁𝑁
7 breq2 5090 . . . . . 6 (𝑧 = 𝑁 → (𝑁𝑧𝑁𝑁))
87elrab 3642 . . . . 5 (𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧} ↔ (𝑁 ∈ ℤ ∧ 𝑁𝑁))
92, 6, 8mpbir2an 711 . . . 4 𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}
10 peano2uz2 12556 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}) → (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧})
112, 10mpan 690 . . . . 5 (𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧} → (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧})
1211rgen 3049 . . . 4 𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧} (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}
13 zex 12472 . . . . . 6 ℤ ∈ V
1413rabex 5272 . . . . 5 {𝑧 ∈ ℤ ∣ 𝑁𝑧} ∈ V
15 eleq2 2820 . . . . . 6 (𝑥 = {𝑧 ∈ ℤ ∣ 𝑁𝑧} → (𝑁𝑥𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}))
16 eleq2 2820 . . . . . . 7 (𝑥 = {𝑧 ∈ ℤ ∣ 𝑁𝑧} → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}))
1716raleqbi1dv 3304 . . . . . 6 (𝑥 = {𝑧 ∈ ℤ ∣ 𝑁𝑧} → (∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧} (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}))
1815, 17anbi12d 632 . . . . 5 (𝑥 = {𝑧 ∈ ℤ ∣ 𝑁𝑧} → ((𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧} (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧})))
1914, 18elab 3630 . . . 4 ({𝑧 ∈ ℤ ∣ 𝑁𝑧} ∈ {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ (𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧} (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}))
209, 12, 19mpbir2an 711 . . 3 {𝑧 ∈ ℤ ∣ 𝑁𝑧} ∈ {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
21 intss1 4908 . . 3 ({𝑧 ∈ ℤ ∣ 𝑁𝑧} ∈ {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} → {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ⊆ {𝑧 ∈ ℤ ∣ 𝑁𝑧})
2220, 21ax-mp 5 . 2 {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ⊆ {𝑧 ∈ ℤ ∣ 𝑁𝑧}
234, 22eqssi 3946 1 {𝑧 ∈ ℤ ∣ 𝑁𝑧} = {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {cab 2709  wral 3047  {crab 3395  wss 3897   cint 4892   class class class wbr 5086  (class class class)co 7341  1c1 11002   + caddc 11004  cle 11142  cz 12463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-n0 12377  df-z 12464
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator