MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfuzi Structured version   Visualization version   GIF version

Theorem dfuzi 12683
Description: An expression for the upper integers that start at 𝑁 that is analogous to dfnn2 12255 for positive integers. (Contributed by NM, 6-Jul-2005.) (Proof shortened by Mario Carneiro, 3-May-2014.)
Hypothesis
Ref Expression
dfuzi.1 𝑁 ∈ ℤ
Assertion
Ref Expression
dfuzi {𝑧 ∈ ℤ ∣ 𝑁𝑧} = {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
Distinct variable group:   𝑥,𝑦,𝑧,𝑁

Proof of Theorem dfuzi
StepHypRef Expression
1 ssintab 4968 . . 3 ({𝑧 ∈ ℤ ∣ 𝑁𝑧} ⊆ {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑥((𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) → {𝑧 ∈ ℤ ∣ 𝑁𝑧} ⊆ 𝑥))
2 dfuzi.1 . . . 4 𝑁 ∈ ℤ
32peano5uzi 12681 . . 3 ((𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) → {𝑧 ∈ ℤ ∣ 𝑁𝑧} ⊆ 𝑥)
41, 3mpgbir 1794 . 2 {𝑧 ∈ ℤ ∣ 𝑁𝑧} ⊆ {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
52zrei 12594 . . . . . 6 𝑁 ∈ ℝ
65leidi 11778 . . . . 5 𝑁𝑁
7 breq2 5152 . . . . . 6 (𝑧 = 𝑁 → (𝑁𝑧𝑁𝑁))
87elrab 3682 . . . . 5 (𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧} ↔ (𝑁 ∈ ℤ ∧ 𝑁𝑁))
92, 6, 8mpbir2an 710 . . . 4 𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}
10 peano2uz2 12680 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}) → (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧})
112, 10mpan 689 . . . . 5 (𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧} → (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧})
1211rgen 3060 . . . 4 𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧} (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}
13 zex 12597 . . . . . 6 ℤ ∈ V
1413rabex 5334 . . . . 5 {𝑧 ∈ ℤ ∣ 𝑁𝑧} ∈ V
15 eleq2 2818 . . . . . 6 (𝑥 = {𝑧 ∈ ℤ ∣ 𝑁𝑧} → (𝑁𝑥𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}))
16 eleq2 2818 . . . . . . 7 (𝑥 = {𝑧 ∈ ℤ ∣ 𝑁𝑧} → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}))
1716raleqbi1dv 3330 . . . . . 6 (𝑥 = {𝑧 ∈ ℤ ∣ 𝑁𝑧} → (∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧} (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}))
1815, 17anbi12d 631 . . . . 5 (𝑥 = {𝑧 ∈ ℤ ∣ 𝑁𝑧} → ((𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧} (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧})))
1914, 18elab 3667 . . . 4 ({𝑧 ∈ ℤ ∣ 𝑁𝑧} ∈ {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ (𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧} (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}))
209, 12, 19mpbir2an 710 . . 3 {𝑧 ∈ ℤ ∣ 𝑁𝑧} ∈ {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
21 intss1 4966 . . 3 ({𝑧 ∈ ℤ ∣ 𝑁𝑧} ∈ {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} → {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ⊆ {𝑧 ∈ ℤ ∣ 𝑁𝑧})
2220, 21ax-mp 5 . 2 {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ⊆ {𝑧 ∈ ℤ ∣ 𝑁𝑧}
234, 22eqssi 3996 1 {𝑧 ∈ ℤ ∣ 𝑁𝑧} = {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  {cab 2705  wral 3058  {crab 3429  wss 3947   cint 4949   class class class wbr 5148  (class class class)co 7420  1c1 11139   + caddc 11141  cle 11279  cz 12588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-er 8724  df-en 8964  df-dom 8965  df-sdom 8966  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-n0 12503  df-z 12589
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator