| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cycsubg | Structured version Visualization version GIF version | ||
| Description: The cyclic group generated by 𝐴 is the smallest subgroup containing 𝐴. (Contributed by Mario Carneiro, 13-Jan-2015.) |
| Ref | Expression |
|---|---|
| cycsubg.x | ⊢ 𝑋 = (Base‘𝐺) |
| cycsubg.t | ⊢ · = (.g‘𝐺) |
| cycsubg.f | ⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) |
| Ref | Expression |
|---|---|
| cycsubg | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ran 𝐹 = ∩ {𝑠 ∈ (SubGrp‘𝐺) ∣ 𝐴 ∈ 𝑠}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssintab 4925 | . . . . 5 ⊢ (ran 𝐹 ⊆ ∩ {𝑠 ∣ (𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑠)} ↔ ∀𝑠((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑠) → ran 𝐹 ⊆ 𝑠)) | |
| 2 | cycsubg.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝐺) | |
| 3 | cycsubg.t | . . . . . 6 ⊢ · = (.g‘𝐺) | |
| 4 | cycsubg.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) | |
| 5 | 2, 3, 4 | cycsubgss 19121 | . . . . 5 ⊢ ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑠) → ran 𝐹 ⊆ 𝑠) |
| 6 | 1, 5 | mpgbir 1799 | . . . 4 ⊢ ran 𝐹 ⊆ ∩ {𝑠 ∣ (𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑠)} |
| 7 | df-rab 3403 | . . . . 5 ⊢ {𝑠 ∈ (SubGrp‘𝐺) ∣ 𝐴 ∈ 𝑠} = {𝑠 ∣ (𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑠)} | |
| 8 | 7 | inteqi 4910 | . . . 4 ⊢ ∩ {𝑠 ∈ (SubGrp‘𝐺) ∣ 𝐴 ∈ 𝑠} = ∩ {𝑠 ∣ (𝑠 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑠)} |
| 9 | 6, 8 | sseqtrri 3993 | . . 3 ⊢ ran 𝐹 ⊆ ∩ {𝑠 ∈ (SubGrp‘𝐺) ∣ 𝐴 ∈ 𝑠} |
| 10 | 9 | a1i 11 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ran 𝐹 ⊆ ∩ {𝑠 ∈ (SubGrp‘𝐺) ∣ 𝐴 ∈ 𝑠}) |
| 11 | 2, 3, 4 | cycsubgcl 19120 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (ran 𝐹 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ran 𝐹)) |
| 12 | eleq2 2817 | . . . . 5 ⊢ (𝑠 = ran 𝐹 → (𝐴 ∈ 𝑠 ↔ 𝐴 ∈ ran 𝐹)) | |
| 13 | 12 | elrab 3656 | . . . 4 ⊢ (ran 𝐹 ∈ {𝑠 ∈ (SubGrp‘𝐺) ∣ 𝐴 ∈ 𝑠} ↔ (ran 𝐹 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ran 𝐹)) |
| 14 | 11, 13 | sylibr 234 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ran 𝐹 ∈ {𝑠 ∈ (SubGrp‘𝐺) ∣ 𝐴 ∈ 𝑠}) |
| 15 | intss1 4923 | . . 3 ⊢ (ran 𝐹 ∈ {𝑠 ∈ (SubGrp‘𝐺) ∣ 𝐴 ∈ 𝑠} → ∩ {𝑠 ∈ (SubGrp‘𝐺) ∣ 𝐴 ∈ 𝑠} ⊆ ran 𝐹) | |
| 16 | 14, 15 | syl 17 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ∩ {𝑠 ∈ (SubGrp‘𝐺) ∣ 𝐴 ∈ 𝑠} ⊆ ran 𝐹) |
| 17 | 10, 16 | eqssd 3961 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ran 𝐹 = ∩ {𝑠 ∈ (SubGrp‘𝐺) ∣ 𝐴 ∈ 𝑠}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 {crab 3402 ⊆ wss 3911 ∩ cint 4906 ↦ cmpt 5183 ran crn 5632 ‘cfv 6499 (class class class)co 7369 ℤcz 12505 Basecbs 17155 Grpcgrp 18847 .gcmg 18981 SubGrpcsubg 19034 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-seq 13943 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-0g 17380 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-grp 18850 df-minusg 18851 df-mulg 18982 df-subg 19037 |
| This theorem is referenced by: cycsubg2 19124 |
| Copyright terms: Public domain | W3C validator |