MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrdmclOLD Structured version   Visualization version   GIF version

Theorem wfrdmclOLD 8373
Description: Obsolete version of wfrdmcl 8387 as of 17-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011.)
Hypothesis
Ref Expression
wfrlem6OLD.1 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
wfrdmclOLD (𝑋 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝐹)

Proof of Theorem wfrdmclOLD
Dummy variables 𝑓 𝑔 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wfrlem6OLD.1 . . . . . . . 8 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
2 dfwrecsOLD 8354 . . . . . . . 8 wrecs(𝑅, 𝐴, 𝐺) = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
31, 2eqtri 2768 . . . . . . 7 𝐹 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
43dmeqi 5929 . . . . . 6 dom 𝐹 = dom {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
5 dmuni 5939 . . . . . 6 dom {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = 𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}dom 𝑔
64, 5eqtri 2768 . . . . 5 dom 𝐹 = 𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}dom 𝑔
76eleq2i 2836 . . . 4 (𝑋 ∈ dom 𝐹𝑋 𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}dom 𝑔)
8 eliun 5019 . . . 4 (𝑋 𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}dom 𝑔 ↔ ∃𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}𝑋 ∈ dom 𝑔)
97, 8bitri 275 . . 3 (𝑋 ∈ dom 𝐹 ↔ ∃𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}𝑋 ∈ dom 𝑔)
10 eqid 2740 . . . . . . . 8 {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
1110wfrlem1OLD 8364 . . . . . . 7 {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = {𝑔 ∣ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))}
1211eqabri 2888 . . . . . 6 (𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} ↔ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))))
13 predeq3 6336 . . . . . . . . . . . . 13 (𝑤 = 𝑋 → Pred(𝑅, 𝐴, 𝑤) = Pred(𝑅, 𝐴, 𝑋))
1413sseq1d 4040 . . . . . . . . . . . 12 (𝑤 = 𝑋 → (Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧 ↔ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝑧))
1514rspccv 3632 . . . . . . . . . . 11 (∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧 → (𝑋𝑧 → Pred(𝑅, 𝐴, 𝑋) ⊆ 𝑧))
1615adantl 481 . . . . . . . . . 10 ((𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) → (𝑋𝑧 → Pred(𝑅, 𝐴, 𝑋) ⊆ 𝑧))
17 fndm 6682 . . . . . . . . . . . . 13 (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧)
1817eleq2d 2830 . . . . . . . . . . . 12 (𝑔 Fn 𝑧 → (𝑋 ∈ dom 𝑔𝑋𝑧))
1917sseq2d 4041 . . . . . . . . . . . 12 (𝑔 Fn 𝑧 → (Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝑔 ↔ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝑧))
2018, 19imbi12d 344 . . . . . . . . . . 11 (𝑔 Fn 𝑧 → ((𝑋 ∈ dom 𝑔 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝑔) ↔ (𝑋𝑧 → Pred(𝑅, 𝐴, 𝑋) ⊆ 𝑧)))
2120adantr 480 . . . . . . . . . 10 ((𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) → ((𝑋 ∈ dom 𝑔 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝑔) ↔ (𝑋𝑧 → Pred(𝑅, 𝐴, 𝑋) ⊆ 𝑧)))
2216, 21mpbird 257 . . . . . . . . 9 ((𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) → (𝑋 ∈ dom 𝑔 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝑔))
2322adantrl 715 . . . . . . . 8 ((𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)) → (𝑋 ∈ dom 𝑔 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝑔))
24233adant3 1132 . . . . . . 7 ((𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))) → (𝑋 ∈ dom 𝑔 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝑔))
2524exlimiv 1929 . . . . . 6 (∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))) → (𝑋 ∈ dom 𝑔 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝑔))
2612, 25sylbi 217 . . . . 5 (𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} → (𝑋 ∈ dom 𝑔 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝑔))
2726reximia 3087 . . . 4 (∃𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}𝑋 ∈ dom 𝑔 → ∃𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝑔)
28 ssiun 5069 . . . 4 (∃𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝑔 → Pred(𝑅, 𝐴, 𝑋) ⊆ 𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}dom 𝑔)
2927, 28syl 17 . . 3 (∃𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}𝑋 ∈ dom 𝑔 → Pred(𝑅, 𝐴, 𝑋) ⊆ 𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}dom 𝑔)
309, 29sylbi 217 . 2 (𝑋 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑋) ⊆ 𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}dom 𝑔)
3130, 6sseqtrrdi 4060 1 (𝑋 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wral 3067  wrex 3076  wss 3976   cuni 4931   ciun 5015  dom cdm 5700  cres 5702  Predcpred 6331   Fn wfn 6568  cfv 6573  wrecscwrecs 8352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581  df-ov 7451  df-2nd 8031  df-frecs 8322  df-wrecs 8353
This theorem is referenced by:  wfrlem10OLD  8374  wfrlem14OLD  8378  wfrlem15OLD  8379
  Copyright terms: Public domain W3C validator