Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofoaf Structured version   Visualization version   GIF version

Theorem ofoaf 43447
Description: Addition operator for functions from sets into power of omega results in a function from the intersection of sets to that power of omega. (Contributed by RP, 5-Jan-2025.)
Assertion
Ref Expression
ofoaf (((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷))) → ( ∘f +o ↾ ((𝐸m 𝐴) × (𝐸m 𝐵))):((𝐸m 𝐴) × (𝐸m 𝐵))⟶(𝐸m 𝐶))

Proof of Theorem ofoaf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → 𝐸 = (ω ↑o 𝐷))
2 omelon 9536 . . . . 5 ω ∈ On
3 simpl 482 . . . . 5 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → 𝐷 ∈ On)
4 oecl 8452 . . . . 5 ((ω ∈ On ∧ 𝐷 ∈ On) → (ω ↑o 𝐷) ∈ On)
52, 3, 4sylancr 587 . . . 4 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → (ω ↑o 𝐷) ∈ On)
61, 5eqeltrd 2831 . . 3 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → 𝐸 ∈ On)
73, 2jctil 519 . . . . . . . 8 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → (ω ∈ On ∧ 𝐷 ∈ On))
8 peano1 7819 . . . . . . . 8 ∅ ∈ ω
9 oen0 8501 . . . . . . . 8 (((ω ∈ On ∧ 𝐷 ∈ On) ∧ ∅ ∈ ω) → ∅ ∈ (ω ↑o 𝐷))
107, 8, 9sylancl 586 . . . . . . 7 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → ∅ ∈ (ω ↑o 𝐷))
1110, 1eleqtrrd 2834 . . . . . 6 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → ∅ ∈ 𝐸)
12 oveq1 7353 . . . . . . . 8 (𝑥 = ∅ → (𝑥 +o 𝐸) = (∅ +o 𝐸))
1312sseq2d 3962 . . . . . . 7 (𝑥 = ∅ → (𝐸 ⊆ (𝑥 +o 𝐸) ↔ 𝐸 ⊆ (∅ +o 𝐸)))
1413adantl 481 . . . . . 6 (((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) ∧ 𝑥 = ∅) → (𝐸 ⊆ (𝑥 +o 𝐸) ↔ 𝐸 ⊆ (∅ +o 𝐸)))
15 oa0r 8453 . . . . . . . 8 (𝐸 ∈ On → (∅ +o 𝐸) = 𝐸)
166, 15syl 17 . . . . . . 7 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → (∅ +o 𝐸) = 𝐸)
17 ssid 3952 . . . . . . 7 (∅ +o 𝐸) ⊆ (∅ +o 𝐸)
1816, 17eqsstrrdi 3975 . . . . . 6 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → 𝐸 ⊆ (∅ +o 𝐸))
1911, 14, 18rspcedvd 3574 . . . . 5 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → ∃𝑥𝐸 𝐸 ⊆ (𝑥 +o 𝐸))
20 ssiun 4993 . . . . 5 (∃𝑥𝐸 𝐸 ⊆ (𝑥 +o 𝐸) → 𝐸 𝑥𝐸 (𝑥 +o 𝐸))
2119, 20syl 17 . . . 4 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → 𝐸 𝑥𝐸 (𝑥 +o 𝐸))
221eleq2d 2817 . . . . . . . 8 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → (𝑥𝐸𝑥 ∈ (ω ↑o 𝐷)))
2322biimpa 476 . . . . . . 7 (((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) ∧ 𝑥𝐸) → 𝑥 ∈ (ω ↑o 𝐷))
246adantr 480 . . . . . . 7 (((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) ∧ 𝑥𝐸) → 𝐸 ∈ On)
251adantr 480 . . . . . . . 8 (((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) ∧ 𝑥𝐸) → 𝐸 = (ω ↑o 𝐷))
26 ssid 3952 . . . . . . . 8 𝐸𝐸
2725, 26eqsstrrdi 3975 . . . . . . 7 (((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) ∧ 𝑥𝐸) → (ω ↑o 𝐷) ⊆ 𝐸)
28 oaabs2 8564 . . . . . . 7 (((𝑥 ∈ (ω ↑o 𝐷) ∧ 𝐸 ∈ On) ∧ (ω ↑o 𝐷) ⊆ 𝐸) → (𝑥 +o 𝐸) = 𝐸)
2923, 24, 27, 28syl21anc 837 . . . . . 6 (((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) ∧ 𝑥𝐸) → (𝑥 +o 𝐸) = 𝐸)
3029, 26eqsstrdi 3974 . . . . 5 (((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) ∧ 𝑥𝐸) → (𝑥 +o 𝐸) ⊆ 𝐸)
3130iunssd 4997 . . . 4 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → 𝑥𝐸 (𝑥 +o 𝐸) ⊆ 𝐸)
3221, 31eqssd 3947 . . 3 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → 𝐸 = 𝑥𝐸 (𝑥 +o 𝐸))
336, 6, 323jca 1128 . 2 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → (𝐸 ∈ On ∧ 𝐸 ∈ On ∧ 𝐸 = 𝑥𝐸 (𝑥 +o 𝐸)))
34 ofoafg 43446 . 2 (((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐸 ∈ On ∧ 𝐸 ∈ On ∧ 𝐸 = 𝑥𝐸 (𝑥 +o 𝐸))) → ( ∘f +o ↾ ((𝐸m 𝐴) × (𝐸m 𝐵))):((𝐸m 𝐴) × (𝐸m 𝐵))⟶(𝐸m 𝐶))
3533, 34sylan2 593 1 (((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷))) → ( ∘f +o ↾ ((𝐸m 𝐴) × (𝐸m 𝐵))):((𝐸m 𝐴) × (𝐸m 𝐵))⟶(𝐸m 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wrex 3056  cin 3896  wss 3897  c0 4280   ciun 4939   × cxp 5612  cres 5616  Oncon0 6306  wf 6477  (class class class)co 7346  f cof 7608  ωcom 7796   +o coa 8382  o coe 8384  m cmap 8750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-oexp 8391  df-map 8752
This theorem is referenced by:  ofoafo  43448  ofoacl  43449
  Copyright terms: Public domain W3C validator