Step | Hyp | Ref
| Expression |
1 | | simpr 486 |
. . . 4
⊢ ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) → 𝐸 = (ω ↑o
𝐷)) |
2 | | omelon 9452 |
. . . . 5
⊢ ω
∈ On |
3 | | simpl 484 |
. . . . 5
⊢ ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) → 𝐷 ∈ On) |
4 | | oecl 8398 |
. . . . 5
⊢ ((ω
∈ On ∧ 𝐷 ∈
On) → (ω ↑o 𝐷) ∈ On) |
5 | 2, 3, 4 | sylancr 588 |
. . . 4
⊢ ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) → (ω
↑o 𝐷)
∈ On) |
6 | 1, 5 | eqeltrd 2837 |
. . 3
⊢ ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) → 𝐸 ∈ On) |
7 | 3, 2 | jctil 521 |
. . . . . . . 8
⊢ ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) → (ω ∈
On ∧ 𝐷 ∈
On)) |
8 | | peano1 7767 |
. . . . . . . 8
⊢ ∅
∈ ω |
9 | | oen0 8448 |
. . . . . . . 8
⊢
(((ω ∈ On ∧ 𝐷 ∈ On) ∧ ∅ ∈ ω)
→ ∅ ∈ (ω ↑o 𝐷)) |
10 | 7, 8, 9 | sylancl 587 |
. . . . . . 7
⊢ ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) → ∅ ∈
(ω ↑o 𝐷)) |
11 | 10, 1 | eleqtrrd 2840 |
. . . . . 6
⊢ ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) → ∅ ∈
𝐸) |
12 | | oveq1 7314 |
. . . . . . . 8
⊢ (𝑥 = ∅ → (𝑥 +o 𝐸) = (∅ +o 𝐸)) |
13 | 12 | sseq2d 3958 |
. . . . . . 7
⊢ (𝑥 = ∅ → (𝐸 ⊆ (𝑥 +o 𝐸) ↔ 𝐸 ⊆ (∅ +o 𝐸))) |
14 | 13 | adantl 483 |
. . . . . 6
⊢ (((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) ∧ 𝑥 = ∅) → (𝐸 ⊆ (𝑥 +o 𝐸) ↔ 𝐸 ⊆ (∅ +o 𝐸))) |
15 | | oa0r 8399 |
. . . . . . . 8
⊢ (𝐸 ∈ On → (∅
+o 𝐸) = 𝐸) |
16 | 6, 15 | syl 17 |
. . . . . . 7
⊢ ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) → (∅
+o 𝐸) = 𝐸) |
17 | | ssid 3948 |
. . . . . . 7
⊢ (∅
+o 𝐸) ⊆
(∅ +o 𝐸) |
18 | 16, 17 | eqsstrrdi 3981 |
. . . . . 6
⊢ ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) → 𝐸 ⊆ (∅ +o
𝐸)) |
19 | 11, 14, 18 | rspcedvd 3568 |
. . . . 5
⊢ ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) → ∃𝑥 ∈ 𝐸 𝐸 ⊆ (𝑥 +o 𝐸)) |
20 | | ssiun 4983 |
. . . . 5
⊢
(∃𝑥 ∈
𝐸 𝐸 ⊆ (𝑥 +o 𝐸) → 𝐸 ⊆ ∪
𝑥 ∈ 𝐸 (𝑥 +o 𝐸)) |
21 | 19, 20 | syl 17 |
. . . 4
⊢ ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) → 𝐸 ⊆ ∪ 𝑥 ∈ 𝐸 (𝑥 +o 𝐸)) |
22 | 1 | eleq2d 2822 |
. . . . . . . 8
⊢ ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) → (𝑥 ∈ 𝐸 ↔ 𝑥 ∈ (ω ↑o 𝐷))) |
23 | 22 | biimpa 478 |
. . . . . . 7
⊢ (((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) ∧ 𝑥 ∈ 𝐸) → 𝑥 ∈ (ω ↑o 𝐷)) |
24 | 6 | adantr 482 |
. . . . . . 7
⊢ (((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) ∧ 𝑥 ∈ 𝐸) → 𝐸 ∈ On) |
25 | 1 | adantr 482 |
. . . . . . . 8
⊢ (((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) ∧ 𝑥 ∈ 𝐸) → 𝐸 = (ω ↑o 𝐷)) |
26 | | ssid 3948 |
. . . . . . . 8
⊢ 𝐸 ⊆ 𝐸 |
27 | 25, 26 | eqsstrrdi 3981 |
. . . . . . 7
⊢ (((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) ∧ 𝑥 ∈ 𝐸) → (ω ↑o 𝐷) ⊆ 𝐸) |
28 | | oaabs2 8510 |
. . . . . . 7
⊢ (((𝑥 ∈ (ω
↑o 𝐷) ∧
𝐸 ∈ On) ∧ (ω
↑o 𝐷)
⊆ 𝐸) → (𝑥 +o 𝐸) = 𝐸) |
29 | 23, 24, 27, 28 | syl21anc 836 |
. . . . . 6
⊢ (((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) ∧ 𝑥 ∈ 𝐸) → (𝑥 +o 𝐸) = 𝐸) |
30 | 29, 26 | eqsstrdi 3980 |
. . . . 5
⊢ (((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) ∧ 𝑥 ∈ 𝐸) → (𝑥 +o 𝐸) ⊆ 𝐸) |
31 | 30 | iunssd 4987 |
. . . 4
⊢ ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) → ∪ 𝑥 ∈ 𝐸 (𝑥 +o 𝐸) ⊆ 𝐸) |
32 | 21, 31 | eqssd 3943 |
. . 3
⊢ ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) → 𝐸 = ∪ 𝑥 ∈ 𝐸 (𝑥 +o 𝐸)) |
33 | 6, 6, 32 | 3jca 1128 |
. 2
⊢ ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) → (𝐸 ∈ On ∧ 𝐸 ∈ On ∧ 𝐸 = ∪ 𝑥 ∈ 𝐸 (𝑥 +o 𝐸))) |
34 | | ofoafg 41245 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐸 ∈ On ∧ 𝐸 ∈ On ∧ 𝐸 = ∪ 𝑥 ∈ 𝐸 (𝑥 +o 𝐸))) → ( ∘f
+o ↾ ((𝐸
↑m 𝐴)
× (𝐸
↑m 𝐵))):((𝐸 ↑m 𝐴) × (𝐸 ↑m 𝐵))⟶(𝐸 ↑m 𝐶)) |
35 | 33, 34 | sylan2 594 |
1
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷))) → ( ∘f
+o ↾ ((𝐸
↑m 𝐴)
× (𝐸
↑m 𝐵))):((𝐸 ↑m 𝐴) × (𝐸 ↑m 𝐵))⟶(𝐸 ↑m 𝐶)) |