Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofoaf Structured version   Visualization version   GIF version

Theorem ofoaf 42153
Description: Addition operator for functions from sets into power of omega results in a function from the intersection of sets to that power of omega. (Contributed by RP, 5-Jan-2025.)
Assertion
Ref Expression
ofoaf (((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷))) → ( ∘f +o ↾ ((𝐸m 𝐴) × (𝐸m 𝐵))):((𝐸m 𝐴) × (𝐸m 𝐵))⟶(𝐸m 𝐶))

Proof of Theorem ofoaf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 486 . . . 4 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → 𝐸 = (ω ↑o 𝐷))
2 omelon 9641 . . . . 5 ω ∈ On
3 simpl 484 . . . . 5 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → 𝐷 ∈ On)
4 oecl 8537 . . . . 5 ((ω ∈ On ∧ 𝐷 ∈ On) → (ω ↑o 𝐷) ∈ On)
52, 3, 4sylancr 588 . . . 4 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → (ω ↑o 𝐷) ∈ On)
61, 5eqeltrd 2834 . . 3 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → 𝐸 ∈ On)
73, 2jctil 521 . . . . . . . 8 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → (ω ∈ On ∧ 𝐷 ∈ On))
8 peano1 7879 . . . . . . . 8 ∅ ∈ ω
9 oen0 8586 . . . . . . . 8 (((ω ∈ On ∧ 𝐷 ∈ On) ∧ ∅ ∈ ω) → ∅ ∈ (ω ↑o 𝐷))
107, 8, 9sylancl 587 . . . . . . 7 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → ∅ ∈ (ω ↑o 𝐷))
1110, 1eleqtrrd 2837 . . . . . 6 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → ∅ ∈ 𝐸)
12 oveq1 7416 . . . . . . . 8 (𝑥 = ∅ → (𝑥 +o 𝐸) = (∅ +o 𝐸))
1312sseq2d 4015 . . . . . . 7 (𝑥 = ∅ → (𝐸 ⊆ (𝑥 +o 𝐸) ↔ 𝐸 ⊆ (∅ +o 𝐸)))
1413adantl 483 . . . . . 6 (((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) ∧ 𝑥 = ∅) → (𝐸 ⊆ (𝑥 +o 𝐸) ↔ 𝐸 ⊆ (∅ +o 𝐸)))
15 oa0r 8538 . . . . . . . 8 (𝐸 ∈ On → (∅ +o 𝐸) = 𝐸)
166, 15syl 17 . . . . . . 7 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → (∅ +o 𝐸) = 𝐸)
17 ssid 4005 . . . . . . 7 (∅ +o 𝐸) ⊆ (∅ +o 𝐸)
1816, 17eqsstrrdi 4038 . . . . . 6 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → 𝐸 ⊆ (∅ +o 𝐸))
1911, 14, 18rspcedvd 3615 . . . . 5 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → ∃𝑥𝐸 𝐸 ⊆ (𝑥 +o 𝐸))
20 ssiun 5050 . . . . 5 (∃𝑥𝐸 𝐸 ⊆ (𝑥 +o 𝐸) → 𝐸 𝑥𝐸 (𝑥 +o 𝐸))
2119, 20syl 17 . . . 4 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → 𝐸 𝑥𝐸 (𝑥 +o 𝐸))
221eleq2d 2820 . . . . . . . 8 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → (𝑥𝐸𝑥 ∈ (ω ↑o 𝐷)))
2322biimpa 478 . . . . . . 7 (((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) ∧ 𝑥𝐸) → 𝑥 ∈ (ω ↑o 𝐷))
246adantr 482 . . . . . . 7 (((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) ∧ 𝑥𝐸) → 𝐸 ∈ On)
251adantr 482 . . . . . . . 8 (((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) ∧ 𝑥𝐸) → 𝐸 = (ω ↑o 𝐷))
26 ssid 4005 . . . . . . . 8 𝐸𝐸
2725, 26eqsstrrdi 4038 . . . . . . 7 (((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) ∧ 𝑥𝐸) → (ω ↑o 𝐷) ⊆ 𝐸)
28 oaabs2 8648 . . . . . . 7 (((𝑥 ∈ (ω ↑o 𝐷) ∧ 𝐸 ∈ On) ∧ (ω ↑o 𝐷) ⊆ 𝐸) → (𝑥 +o 𝐸) = 𝐸)
2923, 24, 27, 28syl21anc 837 . . . . . 6 (((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) ∧ 𝑥𝐸) → (𝑥 +o 𝐸) = 𝐸)
3029, 26eqsstrdi 4037 . . . . 5 (((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) ∧ 𝑥𝐸) → (𝑥 +o 𝐸) ⊆ 𝐸)
3130iunssd 5054 . . . 4 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → 𝑥𝐸 (𝑥 +o 𝐸) ⊆ 𝐸)
3221, 31eqssd 4000 . . 3 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → 𝐸 = 𝑥𝐸 (𝑥 +o 𝐸))
336, 6, 323jca 1129 . 2 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → (𝐸 ∈ On ∧ 𝐸 ∈ On ∧ 𝐸 = 𝑥𝐸 (𝑥 +o 𝐸)))
34 ofoafg 42152 . 2 (((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐸 ∈ On ∧ 𝐸 ∈ On ∧ 𝐸 = 𝑥𝐸 (𝑥 +o 𝐸))) → ( ∘f +o ↾ ((𝐸m 𝐴) × (𝐸m 𝐵))):((𝐸m 𝐴) × (𝐸m 𝐵))⟶(𝐸m 𝐶))
3533, 34sylan2 594 1 (((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷))) → ( ∘f +o ↾ ((𝐸m 𝐴) × (𝐸m 𝐵))):((𝐸m 𝐴) × (𝐸m 𝐵))⟶(𝐸m 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wrex 3071  cin 3948  wss 3949  c0 4323   ciun 4998   × cxp 5675  cres 5679  Oncon0 6365  wf 6540  (class class class)co 7409  f cof 7668  ωcom 7855   +o coa 8463  o coe 8465  m cmap 8820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-of 7670  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-oadd 8470  df-omul 8471  df-oexp 8472  df-map 8822
This theorem is referenced by:  ofoafo  42154  ofoacl  42155
  Copyright terms: Public domain W3C validator