| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . . 4
⊢ ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) → 𝐸 = (ω ↑o
𝐷)) |
| 2 | | omelon 9665 |
. . . . 5
⊢ ω
∈ On |
| 3 | | simpl 482 |
. . . . 5
⊢ ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) → 𝐷 ∈ On) |
| 4 | | oecl 8554 |
. . . . 5
⊢ ((ω
∈ On ∧ 𝐷 ∈
On) → (ω ↑o 𝐷) ∈ On) |
| 5 | 2, 3, 4 | sylancr 587 |
. . . 4
⊢ ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) → (ω
↑o 𝐷)
∈ On) |
| 6 | 1, 5 | eqeltrd 2835 |
. . 3
⊢ ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) → 𝐸 ∈ On) |
| 7 | 3, 2 | jctil 519 |
. . . . . . . 8
⊢ ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) → (ω ∈
On ∧ 𝐷 ∈
On)) |
| 8 | | peano1 7889 |
. . . . . . . 8
⊢ ∅
∈ ω |
| 9 | | oen0 8603 |
. . . . . . . 8
⊢
(((ω ∈ On ∧ 𝐷 ∈ On) ∧ ∅ ∈ ω)
→ ∅ ∈ (ω ↑o 𝐷)) |
| 10 | 7, 8, 9 | sylancl 586 |
. . . . . . 7
⊢ ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) → ∅ ∈
(ω ↑o 𝐷)) |
| 11 | 10, 1 | eleqtrrd 2838 |
. . . . . 6
⊢ ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) → ∅ ∈
𝐸) |
| 12 | | oveq1 7417 |
. . . . . . . 8
⊢ (𝑥 = ∅ → (𝑥 +o 𝐸) = (∅ +o 𝐸)) |
| 13 | 12 | sseq2d 3996 |
. . . . . . 7
⊢ (𝑥 = ∅ → (𝐸 ⊆ (𝑥 +o 𝐸) ↔ 𝐸 ⊆ (∅ +o 𝐸))) |
| 14 | 13 | adantl 481 |
. . . . . 6
⊢ (((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) ∧ 𝑥 = ∅) → (𝐸 ⊆ (𝑥 +o 𝐸) ↔ 𝐸 ⊆ (∅ +o 𝐸))) |
| 15 | | oa0r 8555 |
. . . . . . . 8
⊢ (𝐸 ∈ On → (∅
+o 𝐸) = 𝐸) |
| 16 | 6, 15 | syl 17 |
. . . . . . 7
⊢ ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) → (∅
+o 𝐸) = 𝐸) |
| 17 | | ssid 3986 |
. . . . . . 7
⊢ (∅
+o 𝐸) ⊆
(∅ +o 𝐸) |
| 18 | 16, 17 | eqsstrrdi 4009 |
. . . . . 6
⊢ ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) → 𝐸 ⊆ (∅ +o
𝐸)) |
| 19 | 11, 14, 18 | rspcedvd 3608 |
. . . . 5
⊢ ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) → ∃𝑥 ∈ 𝐸 𝐸 ⊆ (𝑥 +o 𝐸)) |
| 20 | | ssiun 5027 |
. . . . 5
⊢
(∃𝑥 ∈
𝐸 𝐸 ⊆ (𝑥 +o 𝐸) → 𝐸 ⊆ ∪
𝑥 ∈ 𝐸 (𝑥 +o 𝐸)) |
| 21 | 19, 20 | syl 17 |
. . . 4
⊢ ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) → 𝐸 ⊆ ∪ 𝑥 ∈ 𝐸 (𝑥 +o 𝐸)) |
| 22 | 1 | eleq2d 2821 |
. . . . . . . 8
⊢ ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) → (𝑥 ∈ 𝐸 ↔ 𝑥 ∈ (ω ↑o 𝐷))) |
| 23 | 22 | biimpa 476 |
. . . . . . 7
⊢ (((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) ∧ 𝑥 ∈ 𝐸) → 𝑥 ∈ (ω ↑o 𝐷)) |
| 24 | 6 | adantr 480 |
. . . . . . 7
⊢ (((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) ∧ 𝑥 ∈ 𝐸) → 𝐸 ∈ On) |
| 25 | 1 | adantr 480 |
. . . . . . . 8
⊢ (((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) ∧ 𝑥 ∈ 𝐸) → 𝐸 = (ω ↑o 𝐷)) |
| 26 | | ssid 3986 |
. . . . . . . 8
⊢ 𝐸 ⊆ 𝐸 |
| 27 | 25, 26 | eqsstrrdi 4009 |
. . . . . . 7
⊢ (((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) ∧ 𝑥 ∈ 𝐸) → (ω ↑o 𝐷) ⊆ 𝐸) |
| 28 | | oaabs2 8666 |
. . . . . . 7
⊢ (((𝑥 ∈ (ω
↑o 𝐷) ∧
𝐸 ∈ On) ∧ (ω
↑o 𝐷)
⊆ 𝐸) → (𝑥 +o 𝐸) = 𝐸) |
| 29 | 23, 24, 27, 28 | syl21anc 837 |
. . . . . 6
⊢ (((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) ∧ 𝑥 ∈ 𝐸) → (𝑥 +o 𝐸) = 𝐸) |
| 30 | 29, 26 | eqsstrdi 4008 |
. . . . 5
⊢ (((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) ∧ 𝑥 ∈ 𝐸) → (𝑥 +o 𝐸) ⊆ 𝐸) |
| 31 | 30 | iunssd 5031 |
. . . 4
⊢ ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) → ∪ 𝑥 ∈ 𝐸 (𝑥 +o 𝐸) ⊆ 𝐸) |
| 32 | 21, 31 | eqssd 3981 |
. . 3
⊢ ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) → 𝐸 = ∪ 𝑥 ∈ 𝐸 (𝑥 +o 𝐸)) |
| 33 | 6, 6, 32 | 3jca 1128 |
. 2
⊢ ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o
𝐷)) → (𝐸 ∈ On ∧ 𝐸 ∈ On ∧ 𝐸 = ∪ 𝑥 ∈ 𝐸 (𝑥 +o 𝐸))) |
| 34 | | ofoafg 43345 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐸 ∈ On ∧ 𝐸 ∈ On ∧ 𝐸 = ∪ 𝑥 ∈ 𝐸 (𝑥 +o 𝐸))) → ( ∘f
+o ↾ ((𝐸
↑m 𝐴)
× (𝐸
↑m 𝐵))):((𝐸 ↑m 𝐴) × (𝐸 ↑m 𝐵))⟶(𝐸 ↑m 𝐶)) |
| 35 | 33, 34 | sylan2 593 |
1
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷))) → ( ∘f
+o ↾ ((𝐸
↑m 𝐴)
× (𝐸
↑m 𝐵))):((𝐸 ↑m 𝐴) × (𝐸 ↑m 𝐵))⟶(𝐸 ↑m 𝐶)) |