Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofoaf Structured version   Visualization version   GIF version

Theorem ofoaf 42090
Description: Addition operator for functions from sets into power of omega results in a function from the intersection of sets to that power of omega. (Contributed by RP, 5-Jan-2025.)
Assertion
Ref Expression
ofoaf (((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷))) → ( ∘f +o ↾ ((𝐸m 𝐴) × (𝐸m 𝐵))):((𝐸m 𝐴) × (𝐸m 𝐵))⟶(𝐸m 𝐶))

Proof of Theorem ofoaf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . 4 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → 𝐸 = (ω ↑o 𝐷))
2 omelon 9637 . . . . 5 ω ∈ On
3 simpl 483 . . . . 5 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → 𝐷 ∈ On)
4 oecl 8533 . . . . 5 ((ω ∈ On ∧ 𝐷 ∈ On) → (ω ↑o 𝐷) ∈ On)
52, 3, 4sylancr 587 . . . 4 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → (ω ↑o 𝐷) ∈ On)
61, 5eqeltrd 2833 . . 3 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → 𝐸 ∈ On)
73, 2jctil 520 . . . . . . . 8 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → (ω ∈ On ∧ 𝐷 ∈ On))
8 peano1 7875 . . . . . . . 8 ∅ ∈ ω
9 oen0 8582 . . . . . . . 8 (((ω ∈ On ∧ 𝐷 ∈ On) ∧ ∅ ∈ ω) → ∅ ∈ (ω ↑o 𝐷))
107, 8, 9sylancl 586 . . . . . . 7 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → ∅ ∈ (ω ↑o 𝐷))
1110, 1eleqtrrd 2836 . . . . . 6 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → ∅ ∈ 𝐸)
12 oveq1 7412 . . . . . . . 8 (𝑥 = ∅ → (𝑥 +o 𝐸) = (∅ +o 𝐸))
1312sseq2d 4013 . . . . . . 7 (𝑥 = ∅ → (𝐸 ⊆ (𝑥 +o 𝐸) ↔ 𝐸 ⊆ (∅ +o 𝐸)))
1413adantl 482 . . . . . 6 (((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) ∧ 𝑥 = ∅) → (𝐸 ⊆ (𝑥 +o 𝐸) ↔ 𝐸 ⊆ (∅ +o 𝐸)))
15 oa0r 8534 . . . . . . . 8 (𝐸 ∈ On → (∅ +o 𝐸) = 𝐸)
166, 15syl 17 . . . . . . 7 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → (∅ +o 𝐸) = 𝐸)
17 ssid 4003 . . . . . . 7 (∅ +o 𝐸) ⊆ (∅ +o 𝐸)
1816, 17eqsstrrdi 4036 . . . . . 6 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → 𝐸 ⊆ (∅ +o 𝐸))
1911, 14, 18rspcedvd 3614 . . . . 5 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → ∃𝑥𝐸 𝐸 ⊆ (𝑥 +o 𝐸))
20 ssiun 5048 . . . . 5 (∃𝑥𝐸 𝐸 ⊆ (𝑥 +o 𝐸) → 𝐸 𝑥𝐸 (𝑥 +o 𝐸))
2119, 20syl 17 . . . 4 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → 𝐸 𝑥𝐸 (𝑥 +o 𝐸))
221eleq2d 2819 . . . . . . . 8 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → (𝑥𝐸𝑥 ∈ (ω ↑o 𝐷)))
2322biimpa 477 . . . . . . 7 (((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) ∧ 𝑥𝐸) → 𝑥 ∈ (ω ↑o 𝐷))
246adantr 481 . . . . . . 7 (((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) ∧ 𝑥𝐸) → 𝐸 ∈ On)
251adantr 481 . . . . . . . 8 (((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) ∧ 𝑥𝐸) → 𝐸 = (ω ↑o 𝐷))
26 ssid 4003 . . . . . . . 8 𝐸𝐸
2725, 26eqsstrrdi 4036 . . . . . . 7 (((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) ∧ 𝑥𝐸) → (ω ↑o 𝐷) ⊆ 𝐸)
28 oaabs2 8644 . . . . . . 7 (((𝑥 ∈ (ω ↑o 𝐷) ∧ 𝐸 ∈ On) ∧ (ω ↑o 𝐷) ⊆ 𝐸) → (𝑥 +o 𝐸) = 𝐸)
2923, 24, 27, 28syl21anc 836 . . . . . 6 (((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) ∧ 𝑥𝐸) → (𝑥 +o 𝐸) = 𝐸)
3029, 26eqsstrdi 4035 . . . . 5 (((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) ∧ 𝑥𝐸) → (𝑥 +o 𝐸) ⊆ 𝐸)
3130iunssd 5052 . . . 4 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → 𝑥𝐸 (𝑥 +o 𝐸) ⊆ 𝐸)
3221, 31eqssd 3998 . . 3 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → 𝐸 = 𝑥𝐸 (𝑥 +o 𝐸))
336, 6, 323jca 1128 . 2 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → (𝐸 ∈ On ∧ 𝐸 ∈ On ∧ 𝐸 = 𝑥𝐸 (𝑥 +o 𝐸)))
34 ofoafg 42089 . 2 (((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐸 ∈ On ∧ 𝐸 ∈ On ∧ 𝐸 = 𝑥𝐸 (𝑥 +o 𝐸))) → ( ∘f +o ↾ ((𝐸m 𝐴) × (𝐸m 𝐵))):((𝐸m 𝐴) × (𝐸m 𝐵))⟶(𝐸m 𝐶))
3533, 34sylan2 593 1 (((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷))) → ( ∘f +o ↾ ((𝐸m 𝐴) × (𝐸m 𝐵))):((𝐸m 𝐴) × (𝐸m 𝐵))⟶(𝐸m 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3070  cin 3946  wss 3947  c0 4321   ciun 4996   × cxp 5673  cres 5677  Oncon0 6361  wf 6536  (class class class)co 7405  f cof 7664  ωcom 7851   +o coa 8459  o coe 8461  m cmap 8816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-omul 8467  df-oexp 8468  df-map 8818
This theorem is referenced by:  ofoafo  42091  ofoacl  42092
  Copyright terms: Public domain W3C validator