Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofoaf Structured version   Visualization version   GIF version

Theorem ofoaf 43348
Description: Addition operator for functions from sets into power of omega results in a function from the intersection of sets to that power of omega. (Contributed by RP, 5-Jan-2025.)
Assertion
Ref Expression
ofoaf (((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷))) → ( ∘f +o ↾ ((𝐸m 𝐴) × (𝐸m 𝐵))):((𝐸m 𝐴) × (𝐸m 𝐵))⟶(𝐸m 𝐶))

Proof of Theorem ofoaf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → 𝐸 = (ω ↑o 𝐷))
2 omelon 9542 . . . . 5 ω ∈ On
3 simpl 482 . . . . 5 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → 𝐷 ∈ On)
4 oecl 8455 . . . . 5 ((ω ∈ On ∧ 𝐷 ∈ On) → (ω ↑o 𝐷) ∈ On)
52, 3, 4sylancr 587 . . . 4 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → (ω ↑o 𝐷) ∈ On)
61, 5eqeltrd 2828 . . 3 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → 𝐸 ∈ On)
73, 2jctil 519 . . . . . . . 8 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → (ω ∈ On ∧ 𝐷 ∈ On))
8 peano1 7822 . . . . . . . 8 ∅ ∈ ω
9 oen0 8504 . . . . . . . 8 (((ω ∈ On ∧ 𝐷 ∈ On) ∧ ∅ ∈ ω) → ∅ ∈ (ω ↑o 𝐷))
107, 8, 9sylancl 586 . . . . . . 7 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → ∅ ∈ (ω ↑o 𝐷))
1110, 1eleqtrrd 2831 . . . . . 6 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → ∅ ∈ 𝐸)
12 oveq1 7356 . . . . . . . 8 (𝑥 = ∅ → (𝑥 +o 𝐸) = (∅ +o 𝐸))
1312sseq2d 3968 . . . . . . 7 (𝑥 = ∅ → (𝐸 ⊆ (𝑥 +o 𝐸) ↔ 𝐸 ⊆ (∅ +o 𝐸)))
1413adantl 481 . . . . . 6 (((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) ∧ 𝑥 = ∅) → (𝐸 ⊆ (𝑥 +o 𝐸) ↔ 𝐸 ⊆ (∅ +o 𝐸)))
15 oa0r 8456 . . . . . . . 8 (𝐸 ∈ On → (∅ +o 𝐸) = 𝐸)
166, 15syl 17 . . . . . . 7 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → (∅ +o 𝐸) = 𝐸)
17 ssid 3958 . . . . . . 7 (∅ +o 𝐸) ⊆ (∅ +o 𝐸)
1816, 17eqsstrrdi 3981 . . . . . 6 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → 𝐸 ⊆ (∅ +o 𝐸))
1911, 14, 18rspcedvd 3579 . . . . 5 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → ∃𝑥𝐸 𝐸 ⊆ (𝑥 +o 𝐸))
20 ssiun 4995 . . . . 5 (∃𝑥𝐸 𝐸 ⊆ (𝑥 +o 𝐸) → 𝐸 𝑥𝐸 (𝑥 +o 𝐸))
2119, 20syl 17 . . . 4 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → 𝐸 𝑥𝐸 (𝑥 +o 𝐸))
221eleq2d 2814 . . . . . . . 8 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → (𝑥𝐸𝑥 ∈ (ω ↑o 𝐷)))
2322biimpa 476 . . . . . . 7 (((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) ∧ 𝑥𝐸) → 𝑥 ∈ (ω ↑o 𝐷))
246adantr 480 . . . . . . 7 (((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) ∧ 𝑥𝐸) → 𝐸 ∈ On)
251adantr 480 . . . . . . . 8 (((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) ∧ 𝑥𝐸) → 𝐸 = (ω ↑o 𝐷))
26 ssid 3958 . . . . . . . 8 𝐸𝐸
2725, 26eqsstrrdi 3981 . . . . . . 7 (((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) ∧ 𝑥𝐸) → (ω ↑o 𝐷) ⊆ 𝐸)
28 oaabs2 8567 . . . . . . 7 (((𝑥 ∈ (ω ↑o 𝐷) ∧ 𝐸 ∈ On) ∧ (ω ↑o 𝐷) ⊆ 𝐸) → (𝑥 +o 𝐸) = 𝐸)
2923, 24, 27, 28syl21anc 837 . . . . . 6 (((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) ∧ 𝑥𝐸) → (𝑥 +o 𝐸) = 𝐸)
3029, 26eqsstrdi 3980 . . . . 5 (((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) ∧ 𝑥𝐸) → (𝑥 +o 𝐸) ⊆ 𝐸)
3130iunssd 4999 . . . 4 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → 𝑥𝐸 (𝑥 +o 𝐸) ⊆ 𝐸)
3221, 31eqssd 3953 . . 3 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → 𝐸 = 𝑥𝐸 (𝑥 +o 𝐸))
336, 6, 323jca 1128 . 2 ((𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷)) → (𝐸 ∈ On ∧ 𝐸 ∈ On ∧ 𝐸 = 𝑥𝐸 (𝑥 +o 𝐸)))
34 ofoafg 43347 . 2 (((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐸 ∈ On ∧ 𝐸 ∈ On ∧ 𝐸 = 𝑥𝐸 (𝑥 +o 𝐸))) → ( ∘f +o ↾ ((𝐸m 𝐴) × (𝐸m 𝐵))):((𝐸m 𝐴) × (𝐸m 𝐵))⟶(𝐸m 𝐶))
3533, 34sylan2 593 1 (((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷))) → ( ∘f +o ↾ ((𝐸m 𝐴) × (𝐸m 𝐵))):((𝐸m 𝐴) × (𝐸m 𝐵))⟶(𝐸m 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  cin 3902  wss 3903  c0 4284   ciun 4941   × cxp 5617  cres 5621  Oncon0 6307  wf 6478  (class class class)co 7349  f cof 7611  ωcom 7799   +o coa 8385  o coe 8387  m cmap 8753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-omul 8393  df-oexp 8394  df-map 8755
This theorem is referenced by:  ofoafo  43349  ofoacl  43350
  Copyright terms: Public domain W3C validator