![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > basprssdmsets | Structured version Visualization version GIF version |
Description: The pair of the base index and another index is a subset of the domain of the structure obtained by replacing/adding a slot at the other index in a structure having a base slot. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.) |
Ref | Expression |
---|---|
basprssdmsets.s | ⊢ (𝜑 → 𝑆 Struct 𝑋) |
basprssdmsets.i | ⊢ (𝜑 → 𝐼 ∈ 𝑈) |
basprssdmsets.w | ⊢ (𝜑 → 𝐸 ∈ 𝑊) |
basprssdmsets.b | ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝑆) |
Ref | Expression |
---|---|
basprssdmsets | ⊢ (𝜑 → {(Base‘ndx), 𝐼} ⊆ dom (𝑆 sSet 〈𝐼, 𝐸〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | basprssdmsets.b | . . . . 5 ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝑆) | |
2 | 1 | orcd 900 | . . . 4 ⊢ (𝜑 → ((Base‘ndx) ∈ dom 𝑆 ∨ (Base‘ndx) ∈ {𝐼})) |
3 | elun 3951 | . . . 4 ⊢ ((Base‘ndx) ∈ (dom 𝑆 ∪ {𝐼}) ↔ ((Base‘ndx) ∈ dom 𝑆 ∨ (Base‘ndx) ∈ {𝐼})) | |
4 | 2, 3 | sylibr 226 | . . 3 ⊢ (𝜑 → (Base‘ndx) ∈ (dom 𝑆 ∪ {𝐼})) |
5 | basprssdmsets.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑈) | |
6 | snidg 4398 | . . . . . 6 ⊢ (𝐼 ∈ 𝑈 → 𝐼 ∈ {𝐼}) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ {𝐼}) |
8 | 7 | olcd 901 | . . . 4 ⊢ (𝜑 → (𝐼 ∈ dom 𝑆 ∨ 𝐼 ∈ {𝐼})) |
9 | elun 3951 | . . . 4 ⊢ (𝐼 ∈ (dom 𝑆 ∪ {𝐼}) ↔ (𝐼 ∈ dom 𝑆 ∨ 𝐼 ∈ {𝐼})) | |
10 | 8, 9 | sylibr 226 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (dom 𝑆 ∪ {𝐼})) |
11 | 4, 10 | prssd 4541 | . 2 ⊢ (𝜑 → {(Base‘ndx), 𝐼} ⊆ (dom 𝑆 ∪ {𝐼})) |
12 | basprssdmsets.s | . . . 4 ⊢ (𝜑 → 𝑆 Struct 𝑋) | |
13 | structex 16195 | . . . 4 ⊢ (𝑆 Struct 𝑋 → 𝑆 ∈ V) | |
14 | 12, 13 | syl 17 | . . 3 ⊢ (𝜑 → 𝑆 ∈ V) |
15 | basprssdmsets.w | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝑊) | |
16 | setsdm 16218 | . . 3 ⊢ ((𝑆 ∈ V ∧ 𝐸 ∈ 𝑊) → dom (𝑆 sSet 〈𝐼, 𝐸〉) = (dom 𝑆 ∪ {𝐼})) | |
17 | 14, 15, 16 | syl2anc 580 | . 2 ⊢ (𝜑 → dom (𝑆 sSet 〈𝐼, 𝐸〉) = (dom 𝑆 ∪ {𝐼})) |
18 | 11, 17 | sseqtr4d 3838 | 1 ⊢ (𝜑 → {(Base‘ndx), 𝐼} ⊆ dom (𝑆 sSet 〈𝐼, 𝐸〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 874 = wceq 1653 ∈ wcel 2157 Vcvv 3385 ∪ cun 3767 ⊆ wss 3769 {csn 4368 {cpr 4370 〈cop 4374 class class class wbr 4843 dom cdm 5312 ‘cfv 6101 (class class class)co 6878 Struct cstr 16180 ndxcnx 16181 sSet csts 16182 Basecbs 16184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-res 5324 df-iota 6064 df-fun 6103 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-struct 16186 df-sets 16191 |
This theorem is referenced by: setsvtx 26270 setsiedg 26271 |
Copyright terms: Public domain | W3C validator |