| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > basprssdmsets | Structured version Visualization version GIF version | ||
| Description: The pair of the base index and another index is a subset of the domain of the structure obtained by replacing/adding a slot at the other index in a structure having a base slot. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.) |
| Ref | Expression |
|---|---|
| basprssdmsets.s | ⊢ (𝜑 → 𝑆 Struct 𝑋) |
| basprssdmsets.i | ⊢ (𝜑 → 𝐼 ∈ 𝑈) |
| basprssdmsets.w | ⊢ (𝜑 → 𝐸 ∈ 𝑊) |
| basprssdmsets.b | ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝑆) |
| Ref | Expression |
|---|---|
| basprssdmsets | ⊢ (𝜑 → {(Base‘ndx), 𝐼} ⊆ dom (𝑆 sSet 〈𝐼, 𝐸〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | basprssdmsets.b | . . . . 5 ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝑆) | |
| 2 | 1 | orcd 873 | . . . 4 ⊢ (𝜑 → ((Base‘ndx) ∈ dom 𝑆 ∨ (Base‘ndx) ∈ {𝐼})) |
| 3 | elun 4128 | . . . 4 ⊢ ((Base‘ndx) ∈ (dom 𝑆 ∪ {𝐼}) ↔ ((Base‘ndx) ∈ dom 𝑆 ∨ (Base‘ndx) ∈ {𝐼})) | |
| 4 | 2, 3 | sylibr 234 | . . 3 ⊢ (𝜑 → (Base‘ndx) ∈ (dom 𝑆 ∪ {𝐼})) |
| 5 | basprssdmsets.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑈) | |
| 6 | snidg 4636 | . . . . . 6 ⊢ (𝐼 ∈ 𝑈 → 𝐼 ∈ {𝐼}) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ {𝐼}) |
| 8 | 7 | olcd 874 | . . . 4 ⊢ (𝜑 → (𝐼 ∈ dom 𝑆 ∨ 𝐼 ∈ {𝐼})) |
| 9 | elun 4128 | . . . 4 ⊢ (𝐼 ∈ (dom 𝑆 ∪ {𝐼}) ↔ (𝐼 ∈ dom 𝑆 ∨ 𝐼 ∈ {𝐼})) | |
| 10 | 8, 9 | sylibr 234 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (dom 𝑆 ∪ {𝐼})) |
| 11 | 4, 10 | prssd 4798 | . 2 ⊢ (𝜑 → {(Base‘ndx), 𝐼} ⊆ (dom 𝑆 ∪ {𝐼})) |
| 12 | basprssdmsets.s | . . . 4 ⊢ (𝜑 → 𝑆 Struct 𝑋) | |
| 13 | structex 17169 | . . . 4 ⊢ (𝑆 Struct 𝑋 → 𝑆 ∈ V) | |
| 14 | 12, 13 | syl 17 | . . 3 ⊢ (𝜑 → 𝑆 ∈ V) |
| 15 | basprssdmsets.w | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝑊) | |
| 16 | setsdm 17189 | . . 3 ⊢ ((𝑆 ∈ V ∧ 𝐸 ∈ 𝑊) → dom (𝑆 sSet 〈𝐼, 𝐸〉) = (dom 𝑆 ∪ {𝐼})) | |
| 17 | 14, 15, 16 | syl2anc 584 | . 2 ⊢ (𝜑 → dom (𝑆 sSet 〈𝐼, 𝐸〉) = (dom 𝑆 ∪ {𝐼})) |
| 18 | 11, 17 | sseqtrrd 3996 | 1 ⊢ (𝜑 → {(Base‘ndx), 𝐼} ⊆ dom (𝑆 sSet 〈𝐼, 𝐸〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∪ cun 3924 ⊆ wss 3926 {csn 4601 {cpr 4603 〈cop 4607 class class class wbr 5119 dom cdm 5654 ‘cfv 6531 (class class class)co 7405 Struct cstr 17165 sSet csts 17182 ndxcnx 17212 Basecbs 17228 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-res 5666 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-struct 17166 df-sets 17183 |
| This theorem is referenced by: setsvtx 29014 setsiedg 29015 |
| Copyright terms: Public domain | W3C validator |