MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basprssdmsets Structured version   Visualization version   GIF version

Theorem basprssdmsets 17258
Description: The pair of the base index and another index is a subset of the domain of the structure obtained by replacing/adding a slot at the other index in a structure having a base slot. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.)
Hypotheses
Ref Expression
basprssdmsets.s (𝜑𝑆 Struct 𝑋)
basprssdmsets.i (𝜑𝐼𝑈)
basprssdmsets.w (𝜑𝐸𝑊)
basprssdmsets.b (𝜑 → (Base‘ndx) ∈ dom 𝑆)
Assertion
Ref Expression
basprssdmsets (𝜑 → {(Base‘ndx), 𝐼} ⊆ dom (𝑆 sSet ⟨𝐼, 𝐸⟩))

Proof of Theorem basprssdmsets
StepHypRef Expression
1 basprssdmsets.b . . . . 5 (𝜑 → (Base‘ndx) ∈ dom 𝑆)
21orcd 873 . . . 4 (𝜑 → ((Base‘ndx) ∈ dom 𝑆 ∨ (Base‘ndx) ∈ {𝐼}))
3 elun 4163 . . . 4 ((Base‘ndx) ∈ (dom 𝑆 ∪ {𝐼}) ↔ ((Base‘ndx) ∈ dom 𝑆 ∨ (Base‘ndx) ∈ {𝐼}))
42, 3sylibr 234 . . 3 (𝜑 → (Base‘ndx) ∈ (dom 𝑆 ∪ {𝐼}))
5 basprssdmsets.i . . . . . 6 (𝜑𝐼𝑈)
6 snidg 4665 . . . . . 6 (𝐼𝑈𝐼 ∈ {𝐼})
75, 6syl 17 . . . . 5 (𝜑𝐼 ∈ {𝐼})
87olcd 874 . . . 4 (𝜑 → (𝐼 ∈ dom 𝑆𝐼 ∈ {𝐼}))
9 elun 4163 . . . 4 (𝐼 ∈ (dom 𝑆 ∪ {𝐼}) ↔ (𝐼 ∈ dom 𝑆𝐼 ∈ {𝐼}))
108, 9sylibr 234 . . 3 (𝜑𝐼 ∈ (dom 𝑆 ∪ {𝐼}))
114, 10prssd 4827 . 2 (𝜑 → {(Base‘ndx), 𝐼} ⊆ (dom 𝑆 ∪ {𝐼}))
12 basprssdmsets.s . . . 4 (𝜑𝑆 Struct 𝑋)
13 structex 17184 . . . 4 (𝑆 Struct 𝑋𝑆 ∈ V)
1412, 13syl 17 . . 3 (𝜑𝑆 ∈ V)
15 basprssdmsets.w . . 3 (𝜑𝐸𝑊)
16 setsdm 17204 . . 3 ((𝑆 ∈ V ∧ 𝐸𝑊) → dom (𝑆 sSet ⟨𝐼, 𝐸⟩) = (dom 𝑆 ∪ {𝐼}))
1714, 15, 16syl2anc 584 . 2 (𝜑 → dom (𝑆 sSet ⟨𝐼, 𝐸⟩) = (dom 𝑆 ∪ {𝐼}))
1811, 17sseqtrrd 4037 1 (𝜑 → {(Base‘ndx), 𝐼} ⊆ dom (𝑆 sSet ⟨𝐼, 𝐸⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1537  wcel 2106  Vcvv 3478  cun 3961  wss 3963  {csn 4631  {cpr 4633  cop 4637   class class class wbr 5148  dom cdm 5689  cfv 6563  (class class class)co 7431   Struct cstr 17180   sSet csts 17197  ndxcnx 17227  Basecbs 17245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-res 5701  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-struct 17181  df-sets 17198
This theorem is referenced by:  setsvtx  29067  setsiedg  29068
  Copyright terms: Public domain W3C validator