![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > basprssdmsets | Structured version Visualization version GIF version |
Description: The pair of the base index and another index is a subset of the domain of the structure obtained by replacing/adding a slot at the other index in a structure having a base slot. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.) |
Ref | Expression |
---|---|
basprssdmsets.s | β’ (π β π Struct π) |
basprssdmsets.i | β’ (π β πΌ β π) |
basprssdmsets.w | β’ (π β πΈ β π) |
basprssdmsets.b | β’ (π β (Baseβndx) β dom π) |
Ref | Expression |
---|---|
basprssdmsets | β’ (π β {(Baseβndx), πΌ} β dom (π sSet β¨πΌ, πΈβ©)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | basprssdmsets.b | . . . . 5 β’ (π β (Baseβndx) β dom π) | |
2 | 1 | orcd 871 | . . . 4 β’ (π β ((Baseβndx) β dom π β¨ (Baseβndx) β {πΌ})) |
3 | elun 4147 | . . . 4 β’ ((Baseβndx) β (dom π βͺ {πΌ}) β ((Baseβndx) β dom π β¨ (Baseβndx) β {πΌ})) | |
4 | 2, 3 | sylibr 233 | . . 3 β’ (π β (Baseβndx) β (dom π βͺ {πΌ})) |
5 | basprssdmsets.i | . . . . . 6 β’ (π β πΌ β π) | |
6 | snidg 4661 | . . . . . 6 β’ (πΌ β π β πΌ β {πΌ}) | |
7 | 5, 6 | syl 17 | . . . . 5 β’ (π β πΌ β {πΌ}) |
8 | 7 | olcd 872 | . . . 4 β’ (π β (πΌ β dom π β¨ πΌ β {πΌ})) |
9 | elun 4147 | . . . 4 β’ (πΌ β (dom π βͺ {πΌ}) β (πΌ β dom π β¨ πΌ β {πΌ})) | |
10 | 8, 9 | sylibr 233 | . . 3 β’ (π β πΌ β (dom π βͺ {πΌ})) |
11 | 4, 10 | prssd 4824 | . 2 β’ (π β {(Baseβndx), πΌ} β (dom π βͺ {πΌ})) |
12 | basprssdmsets.s | . . . 4 β’ (π β π Struct π) | |
13 | structex 17079 | . . . 4 β’ (π Struct π β π β V) | |
14 | 12, 13 | syl 17 | . . 3 β’ (π β π β V) |
15 | basprssdmsets.w | . . 3 β’ (π β πΈ β π) | |
16 | setsdm 17099 | . . 3 β’ ((π β V β§ πΈ β π) β dom (π sSet β¨πΌ, πΈβ©) = (dom π βͺ {πΌ})) | |
17 | 14, 15, 16 | syl2anc 584 | . 2 β’ (π β dom (π sSet β¨πΌ, πΈβ©) = (dom π βͺ {πΌ})) |
18 | 11, 17 | sseqtrrd 4022 | 1 β’ (π β {(Baseβndx), πΌ} β dom (π sSet β¨πΌ, πΈβ©)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β¨ wo 845 = wceq 1541 β wcel 2106 Vcvv 3474 βͺ cun 3945 β wss 3947 {csn 4627 {cpr 4629 β¨cop 4633 class class class wbr 5147 dom cdm 5675 βcfv 6540 (class class class)co 7405 Struct cstr 17075 sSet csts 17092 ndxcnx 17122 Basecbs 17140 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-res 5687 df-iota 6492 df-fun 6542 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-struct 17076 df-sets 17093 |
This theorem is referenced by: setsvtx 28284 setsiedg 28285 |
Copyright terms: Public domain | W3C validator |