Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > basprssdmsets | Structured version Visualization version GIF version |
Description: The pair of the base index and another index is a subset of the domain of the structure obtained by replacing/adding a slot at the other index in a structure having a base slot. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.) |
Ref | Expression |
---|---|
basprssdmsets.s | ⊢ (𝜑 → 𝑆 Struct 𝑋) |
basprssdmsets.i | ⊢ (𝜑 → 𝐼 ∈ 𝑈) |
basprssdmsets.w | ⊢ (𝜑 → 𝐸 ∈ 𝑊) |
basprssdmsets.b | ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝑆) |
Ref | Expression |
---|---|
basprssdmsets | ⊢ (𝜑 → {(Base‘ndx), 𝐼} ⊆ dom (𝑆 sSet 〈𝐼, 𝐸〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | basprssdmsets.b | . . . . 5 ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝑆) | |
2 | 1 | orcd 870 | . . . 4 ⊢ (𝜑 → ((Base‘ndx) ∈ dom 𝑆 ∨ (Base‘ndx) ∈ {𝐼})) |
3 | elun 4083 | . . . 4 ⊢ ((Base‘ndx) ∈ (dom 𝑆 ∪ {𝐼}) ↔ ((Base‘ndx) ∈ dom 𝑆 ∨ (Base‘ndx) ∈ {𝐼})) | |
4 | 2, 3 | sylibr 233 | . . 3 ⊢ (𝜑 → (Base‘ndx) ∈ (dom 𝑆 ∪ {𝐼})) |
5 | basprssdmsets.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑈) | |
6 | snidg 4595 | . . . . . 6 ⊢ (𝐼 ∈ 𝑈 → 𝐼 ∈ {𝐼}) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ {𝐼}) |
8 | 7 | olcd 871 | . . . 4 ⊢ (𝜑 → (𝐼 ∈ dom 𝑆 ∨ 𝐼 ∈ {𝐼})) |
9 | elun 4083 | . . . 4 ⊢ (𝐼 ∈ (dom 𝑆 ∪ {𝐼}) ↔ (𝐼 ∈ dom 𝑆 ∨ 𝐼 ∈ {𝐼})) | |
10 | 8, 9 | sylibr 233 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (dom 𝑆 ∪ {𝐼})) |
11 | 4, 10 | prssd 4755 | . 2 ⊢ (𝜑 → {(Base‘ndx), 𝐼} ⊆ (dom 𝑆 ∪ {𝐼})) |
12 | basprssdmsets.s | . . . 4 ⊢ (𝜑 → 𝑆 Struct 𝑋) | |
13 | structex 16851 | . . . 4 ⊢ (𝑆 Struct 𝑋 → 𝑆 ∈ V) | |
14 | 12, 13 | syl 17 | . . 3 ⊢ (𝜑 → 𝑆 ∈ V) |
15 | basprssdmsets.w | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝑊) | |
16 | setsdm 16871 | . . 3 ⊢ ((𝑆 ∈ V ∧ 𝐸 ∈ 𝑊) → dom (𝑆 sSet 〈𝐼, 𝐸〉) = (dom 𝑆 ∪ {𝐼})) | |
17 | 14, 15, 16 | syl2anc 584 | . 2 ⊢ (𝜑 → dom (𝑆 sSet 〈𝐼, 𝐸〉) = (dom 𝑆 ∪ {𝐼})) |
18 | 11, 17 | sseqtrrd 3962 | 1 ⊢ (𝜑 → {(Base‘ndx), 𝐼} ⊆ dom (𝑆 sSet 〈𝐼, 𝐸〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 844 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∪ cun 3885 ⊆ wss 3887 {csn 4561 {cpr 4563 〈cop 4567 class class class wbr 5074 dom cdm 5589 ‘cfv 6433 (class class class)co 7275 Struct cstr 16847 sSet csts 16864 ndxcnx 16894 Basecbs 16912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-res 5601 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-struct 16848 df-sets 16865 |
This theorem is referenced by: setsvtx 27405 setsiedg 27406 |
Copyright terms: Public domain | W3C validator |