| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > basprssdmsets | Structured version Visualization version GIF version | ||
| Description: The pair of the base index and another index is a subset of the domain of the structure obtained by replacing/adding a slot at the other index in a structure having a base slot. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.) |
| Ref | Expression |
|---|---|
| basprssdmsets.s | ⊢ (𝜑 → 𝑆 Struct 𝑋) |
| basprssdmsets.i | ⊢ (𝜑 → 𝐼 ∈ 𝑈) |
| basprssdmsets.w | ⊢ (𝜑 → 𝐸 ∈ 𝑊) |
| basprssdmsets.b | ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝑆) |
| Ref | Expression |
|---|---|
| basprssdmsets | ⊢ (𝜑 → {(Base‘ndx), 𝐼} ⊆ dom (𝑆 sSet 〈𝐼, 𝐸〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | basprssdmsets.b | . . . . 5 ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝑆) | |
| 2 | 1 | orcd 873 | . . . 4 ⊢ (𝜑 → ((Base‘ndx) ∈ dom 𝑆 ∨ (Base‘ndx) ∈ {𝐼})) |
| 3 | elun 4102 | . . . 4 ⊢ ((Base‘ndx) ∈ (dom 𝑆 ∪ {𝐼}) ↔ ((Base‘ndx) ∈ dom 𝑆 ∨ (Base‘ndx) ∈ {𝐼})) | |
| 4 | 2, 3 | sylibr 234 | . . 3 ⊢ (𝜑 → (Base‘ndx) ∈ (dom 𝑆 ∪ {𝐼})) |
| 5 | basprssdmsets.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑈) | |
| 6 | snidg 4612 | . . . . . 6 ⊢ (𝐼 ∈ 𝑈 → 𝐼 ∈ {𝐼}) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ {𝐼}) |
| 8 | 7 | olcd 874 | . . . 4 ⊢ (𝜑 → (𝐼 ∈ dom 𝑆 ∨ 𝐼 ∈ {𝐼})) |
| 9 | elun 4102 | . . . 4 ⊢ (𝐼 ∈ (dom 𝑆 ∪ {𝐼}) ↔ (𝐼 ∈ dom 𝑆 ∨ 𝐼 ∈ {𝐼})) | |
| 10 | 8, 9 | sylibr 234 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (dom 𝑆 ∪ {𝐼})) |
| 11 | 4, 10 | prssd 4773 | . 2 ⊢ (𝜑 → {(Base‘ndx), 𝐼} ⊆ (dom 𝑆 ∪ {𝐼})) |
| 12 | basprssdmsets.s | . . . 4 ⊢ (𝜑 → 𝑆 Struct 𝑋) | |
| 13 | structex 17063 | . . . 4 ⊢ (𝑆 Struct 𝑋 → 𝑆 ∈ V) | |
| 14 | 12, 13 | syl 17 | . . 3 ⊢ (𝜑 → 𝑆 ∈ V) |
| 15 | basprssdmsets.w | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝑊) | |
| 16 | setsdm 17083 | . . 3 ⊢ ((𝑆 ∈ V ∧ 𝐸 ∈ 𝑊) → dom (𝑆 sSet 〈𝐼, 𝐸〉) = (dom 𝑆 ∪ {𝐼})) | |
| 17 | 14, 15, 16 | syl2anc 584 | . 2 ⊢ (𝜑 → dom (𝑆 sSet 〈𝐼, 𝐸〉) = (dom 𝑆 ∪ {𝐼})) |
| 18 | 11, 17 | sseqtrrd 3968 | 1 ⊢ (𝜑 → {(Base‘ndx), 𝐼} ⊆ dom (𝑆 sSet 〈𝐼, 𝐸〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∪ cun 3896 ⊆ wss 3898 {csn 4575 {cpr 4577 〈cop 4581 class class class wbr 5093 dom cdm 5619 ‘cfv 6486 (class class class)co 7352 Struct cstr 17059 sSet csts 17076 ndxcnx 17106 Basecbs 17122 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-res 5631 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-struct 17060 df-sets 17077 |
| This theorem is referenced by: setsvtx 29015 setsiedg 29016 |
| Copyright terms: Public domain | W3C validator |