MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basprssdmsets Structured version   Visualization version   GIF version

Theorem basprssdmsets 17132
Description: The pair of the base index and another index is a subset of the domain of the structure obtained by replacing/adding a slot at the other index in a structure having a base slot. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.)
Hypotheses
Ref Expression
basprssdmsets.s (𝜑𝑆 Struct 𝑋)
basprssdmsets.i (𝜑𝐼𝑈)
basprssdmsets.w (𝜑𝐸𝑊)
basprssdmsets.b (𝜑 → (Base‘ndx) ∈ dom 𝑆)
Assertion
Ref Expression
basprssdmsets (𝜑 → {(Base‘ndx), 𝐼} ⊆ dom (𝑆 sSet ⟨𝐼, 𝐸⟩))

Proof of Theorem basprssdmsets
StepHypRef Expression
1 basprssdmsets.b . . . . 5 (𝜑 → (Base‘ndx) ∈ dom 𝑆)
21orcd 873 . . . 4 (𝜑 → ((Base‘ndx) ∈ dom 𝑆 ∨ (Base‘ndx) ∈ {𝐼}))
3 elun 4103 . . . 4 ((Base‘ndx) ∈ (dom 𝑆 ∪ {𝐼}) ↔ ((Base‘ndx) ∈ dom 𝑆 ∨ (Base‘ndx) ∈ {𝐼}))
42, 3sylibr 234 . . 3 (𝜑 → (Base‘ndx) ∈ (dom 𝑆 ∪ {𝐼}))
5 basprssdmsets.i . . . . . 6 (𝜑𝐼𝑈)
6 snidg 4613 . . . . . 6 (𝐼𝑈𝐼 ∈ {𝐼})
75, 6syl 17 . . . . 5 (𝜑𝐼 ∈ {𝐼})
87olcd 874 . . . 4 (𝜑 → (𝐼 ∈ dom 𝑆𝐼 ∈ {𝐼}))
9 elun 4103 . . . 4 (𝐼 ∈ (dom 𝑆 ∪ {𝐼}) ↔ (𝐼 ∈ dom 𝑆𝐼 ∈ {𝐼}))
108, 9sylibr 234 . . 3 (𝜑𝐼 ∈ (dom 𝑆 ∪ {𝐼}))
114, 10prssd 4774 . 2 (𝜑 → {(Base‘ndx), 𝐼} ⊆ (dom 𝑆 ∪ {𝐼}))
12 basprssdmsets.s . . . 4 (𝜑𝑆 Struct 𝑋)
13 structex 17061 . . . 4 (𝑆 Struct 𝑋𝑆 ∈ V)
1412, 13syl 17 . . 3 (𝜑𝑆 ∈ V)
15 basprssdmsets.w . . 3 (𝜑𝐸𝑊)
16 setsdm 17081 . . 3 ((𝑆 ∈ V ∧ 𝐸𝑊) → dom (𝑆 sSet ⟨𝐼, 𝐸⟩) = (dom 𝑆 ∪ {𝐼}))
1714, 15, 16syl2anc 584 . 2 (𝜑 → dom (𝑆 sSet ⟨𝐼, 𝐸⟩) = (dom 𝑆 ∪ {𝐼}))
1811, 17sseqtrrd 3972 1 (𝜑 → {(Base‘ndx), 𝐼} ⊆ dom (𝑆 sSet ⟨𝐼, 𝐸⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1541  wcel 2111  Vcvv 3436  cun 3900  wss 3902  {csn 4576  {cpr 4578  cop 4582   class class class wbr 5091  dom cdm 5616  cfv 6481  (class class class)co 7346   Struct cstr 17057   sSet csts 17074  ndxcnx 17104  Basecbs 17120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-res 5628  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-struct 17058  df-sets 17075
This theorem is referenced by:  setsvtx  29014  setsiedg  29015
  Copyright terms: Public domain W3C validator