MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basprssdmsets Structured version   Visualization version   GIF version

Theorem basprssdmsets 17164
Description: The pair of the base index and another index is a subset of the domain of the structure obtained by replacing/adding a slot at the other index in a structure having a base slot. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.)
Hypotheses
Ref Expression
basprssdmsets.s (𝜑𝑆 Struct 𝑋)
basprssdmsets.i (𝜑𝐼𝑈)
basprssdmsets.w (𝜑𝐸𝑊)
basprssdmsets.b (𝜑 → (Base‘ndx) ∈ dom 𝑆)
Assertion
Ref Expression
basprssdmsets (𝜑 → {(Base‘ndx), 𝐼} ⊆ dom (𝑆 sSet ⟨𝐼, 𝐸⟩))

Proof of Theorem basprssdmsets
StepHypRef Expression
1 basprssdmsets.b . . . . 5 (𝜑 → (Base‘ndx) ∈ dom 𝑆)
21orcd 870 . . . 4 (𝜑 → ((Base‘ndx) ∈ dom 𝑆 ∨ (Base‘ndx) ∈ {𝐼}))
3 elun 4148 . . . 4 ((Base‘ndx) ∈ (dom 𝑆 ∪ {𝐼}) ↔ ((Base‘ndx) ∈ dom 𝑆 ∨ (Base‘ndx) ∈ {𝐼}))
42, 3sylibr 233 . . 3 (𝜑 → (Base‘ndx) ∈ (dom 𝑆 ∪ {𝐼}))
5 basprssdmsets.i . . . . . 6 (𝜑𝐼𝑈)
6 snidg 4662 . . . . . 6 (𝐼𝑈𝐼 ∈ {𝐼})
75, 6syl 17 . . . . 5 (𝜑𝐼 ∈ {𝐼})
87olcd 871 . . . 4 (𝜑 → (𝐼 ∈ dom 𝑆𝐼 ∈ {𝐼}))
9 elun 4148 . . . 4 (𝐼 ∈ (dom 𝑆 ∪ {𝐼}) ↔ (𝐼 ∈ dom 𝑆𝐼 ∈ {𝐼}))
108, 9sylibr 233 . . 3 (𝜑𝐼 ∈ (dom 𝑆 ∪ {𝐼}))
114, 10prssd 4825 . 2 (𝜑 → {(Base‘ndx), 𝐼} ⊆ (dom 𝑆 ∪ {𝐼}))
12 basprssdmsets.s . . . 4 (𝜑𝑆 Struct 𝑋)
13 structex 17090 . . . 4 (𝑆 Struct 𝑋𝑆 ∈ V)
1412, 13syl 17 . . 3 (𝜑𝑆 ∈ V)
15 basprssdmsets.w . . 3 (𝜑𝐸𝑊)
16 setsdm 17110 . . 3 ((𝑆 ∈ V ∧ 𝐸𝑊) → dom (𝑆 sSet ⟨𝐼, 𝐸⟩) = (dom 𝑆 ∪ {𝐼}))
1714, 15, 16syl2anc 583 . 2 (𝜑 → dom (𝑆 sSet ⟨𝐼, 𝐸⟩) = (dom 𝑆 ∪ {𝐼}))
1811, 17sseqtrrd 4023 1 (𝜑 → {(Base‘ndx), 𝐼} ⊆ dom (𝑆 sSet ⟨𝐼, 𝐸⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 844   = wceq 1540  wcel 2105  Vcvv 3473  cun 3946  wss 3948  {csn 4628  {cpr 4630  cop 4634   class class class wbr 5148  dom cdm 5676  cfv 6543  (class class class)co 7412   Struct cstr 17086   sSet csts 17103  ndxcnx 17133  Basecbs 17151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-res 5688  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-struct 17087  df-sets 17104
This theorem is referenced by:  setsvtx  28727  setsiedg  28728
  Copyright terms: Public domain W3C validator