MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsiedg Structured version   Visualization version   GIF version

Theorem setsiedg 27404
Description: The (indexed) edges of a structure with a base set and an inserted resp. replaced slot for the edge function. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.)
Hypotheses
Ref Expression
setsvtx.i 𝐼 = (.ef‘ndx)
setsvtx.s (𝜑𝐺 Struct 𝑋)
setsvtx.b (𝜑 → (Base‘ndx) ∈ dom 𝐺)
setsvtx.e (𝜑𝐸𝑊)
Assertion
Ref Expression
setsiedg (𝜑 → (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = 𝐸)

Proof of Theorem setsiedg
StepHypRef Expression
1 setsvtx.s . . . 4 (𝜑𝐺 Struct 𝑋)
2 fvexd 6786 . . . 4 (𝜑 → (.ef‘ndx) ∈ V)
3 setsvtx.e . . . 4 (𝜑𝐸𝑊)
41, 2, 3setsn0fun 16872 . . 3 (𝜑 → Fun ((𝐺 sSet ⟨(.ef‘ndx), 𝐸⟩) ∖ {∅}))
5 setsvtx.b . . . 4 (𝜑 → (Base‘ndx) ∈ dom 𝐺)
61, 2, 3, 5basprssdmsets 16923 . . 3 (𝜑 → {(Base‘ndx), (.ef‘ndx)} ⊆ dom (𝐺 sSet ⟨(.ef‘ndx), 𝐸⟩))
7 funiedgval 27387 . . 3 ((Fun ((𝐺 sSet ⟨(.ef‘ndx), 𝐸⟩) ∖ {∅}) ∧ {(Base‘ndx), (.ef‘ndx)} ⊆ dom (𝐺 sSet ⟨(.ef‘ndx), 𝐸⟩)) → (iEdg‘(𝐺 sSet ⟨(.ef‘ndx), 𝐸⟩)) = (.ef‘(𝐺 sSet ⟨(.ef‘ndx), 𝐸⟩)))
84, 6, 7syl2anc 584 . 2 (𝜑 → (iEdg‘(𝐺 sSet ⟨(.ef‘ndx), 𝐸⟩)) = (.ef‘(𝐺 sSet ⟨(.ef‘ndx), 𝐸⟩)))
9 setsvtx.i . . . . . 6 𝐼 = (.ef‘ndx)
109opeq1i 4813 . . . . 5 𝐼, 𝐸⟩ = ⟨(.ef‘ndx), 𝐸
1110oveq2i 7282 . . . 4 (𝐺 sSet ⟨𝐼, 𝐸⟩) = (𝐺 sSet ⟨(.ef‘ndx), 𝐸⟩)
1211fveq2i 6774 . . 3 (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = (iEdg‘(𝐺 sSet ⟨(.ef‘ndx), 𝐸⟩))
1312a1i 11 . 2 (𝜑 → (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = (iEdg‘(𝐺 sSet ⟨(.ef‘ndx), 𝐸⟩)))
14 structex 16849 . . . 4 (𝐺 Struct 𝑋𝐺 ∈ V)
151, 14syl 17 . . 3 (𝜑𝐺 ∈ V)
16 edgfid 27356 . . . 4 .ef = Slot (.ef‘ndx)
1716setsid 16907 . . 3 ((𝐺 ∈ V ∧ 𝐸𝑊) → 𝐸 = (.ef‘(𝐺 sSet ⟨(.ef‘ndx), 𝐸⟩)))
1815, 3, 17syl2anc 584 . 2 (𝜑𝐸 = (.ef‘(𝐺 sSet ⟨(.ef‘ndx), 𝐸⟩)))
198, 13, 183eqtr4d 2790 1 (𝜑 → (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2110  Vcvv 3431  cdif 3889  wss 3892  c0 4262  {csn 4567  {cpr 4569  cop 4573   class class class wbr 5079  dom cdm 5590  Fun wfun 6426  cfv 6432  (class class class)co 7271   Struct cstr 16845   sSet csts 16862  ndxcnx 16892  Basecbs 16910  .efcedgf 27354  iEdgciedg 27365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-oadd 8292  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-dju 9660  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12437  df-uz 12582  df-fz 13239  df-hash 14043  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-edgf 27355  df-iedg 27367
This theorem is referenced by:  uhgrstrrepe  27446  usgrstrrepe  27600  structtocusgr  27811
  Copyright terms: Public domain W3C validator