MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsiedg Structured version   Visualization version   GIF version

Theorem setsiedg 29014
Description: The (indexed) edges of a structure with a base set and an inserted resp. replaced slot for the edge function. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.)
Hypotheses
Ref Expression
setsvtx.i 𝐼 = (.ef‘ndx)
setsvtx.s (𝜑𝐺 Struct 𝑋)
setsvtx.b (𝜑 → (Base‘ndx) ∈ dom 𝐺)
setsvtx.e (𝜑𝐸𝑊)
Assertion
Ref Expression
setsiedg (𝜑 → (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = 𝐸)

Proof of Theorem setsiedg
StepHypRef Expression
1 setsvtx.s . . . 4 (𝜑𝐺 Struct 𝑋)
2 fvexd 6837 . . . 4 (𝜑 → (.ef‘ndx) ∈ V)
3 setsvtx.e . . . 4 (𝜑𝐸𝑊)
41, 2, 3setsn0fun 17084 . . 3 (𝜑 → Fun ((𝐺 sSet ⟨(.ef‘ndx), 𝐸⟩) ∖ {∅}))
5 setsvtx.b . . . 4 (𝜑 → (Base‘ndx) ∈ dom 𝐺)
61, 2, 3, 5basprssdmsets 17132 . . 3 (𝜑 → {(Base‘ndx), (.ef‘ndx)} ⊆ dom (𝐺 sSet ⟨(.ef‘ndx), 𝐸⟩))
7 funiedgval 28997 . . 3 ((Fun ((𝐺 sSet ⟨(.ef‘ndx), 𝐸⟩) ∖ {∅}) ∧ {(Base‘ndx), (.ef‘ndx)} ⊆ dom (𝐺 sSet ⟨(.ef‘ndx), 𝐸⟩)) → (iEdg‘(𝐺 sSet ⟨(.ef‘ndx), 𝐸⟩)) = (.ef‘(𝐺 sSet ⟨(.ef‘ndx), 𝐸⟩)))
84, 6, 7syl2anc 584 . 2 (𝜑 → (iEdg‘(𝐺 sSet ⟨(.ef‘ndx), 𝐸⟩)) = (.ef‘(𝐺 sSet ⟨(.ef‘ndx), 𝐸⟩)))
9 setsvtx.i . . . . . 6 𝐼 = (.ef‘ndx)
109opeq1i 4825 . . . . 5 𝐼, 𝐸⟩ = ⟨(.ef‘ndx), 𝐸
1110oveq2i 7357 . . . 4 (𝐺 sSet ⟨𝐼, 𝐸⟩) = (𝐺 sSet ⟨(.ef‘ndx), 𝐸⟩)
1211fveq2i 6825 . . 3 (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = (iEdg‘(𝐺 sSet ⟨(.ef‘ndx), 𝐸⟩))
1312a1i 11 . 2 (𝜑 → (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = (iEdg‘(𝐺 sSet ⟨(.ef‘ndx), 𝐸⟩)))
14 structex 17061 . . . 4 (𝐺 Struct 𝑋𝐺 ∈ V)
151, 14syl 17 . . 3 (𝜑𝐺 ∈ V)
16 edgfid 28968 . . . 4 .ef = Slot (.ef‘ndx)
1716setsid 17118 . . 3 ((𝐺 ∈ V ∧ 𝐸𝑊) → 𝐸 = (.ef‘(𝐺 sSet ⟨(.ef‘ndx), 𝐸⟩)))
1815, 3, 17syl2anc 584 . 2 (𝜑𝐸 = (.ef‘(𝐺 sSet ⟨(.ef‘ndx), 𝐸⟩)))
198, 13, 183eqtr4d 2776 1 (𝜑 → (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  cdif 3894  wss 3897  c0 4280  {csn 4573  {cpr 4575  cop 4579   class class class wbr 5089  dom cdm 5614  Fun wfun 6475  cfv 6481  (class class class)co 7346   Struct cstr 17057   sSet csts 17074  ndxcnx 17104  Basecbs 17120  .efcedgf 28966  iEdgciedg 28975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-xnn0 12455  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-edgf 28967  df-iedg 28977
This theorem is referenced by:  uhgrstrrepe  29056  usgrstrrepe  29213  structtocusgr  29424
  Copyright terms: Public domain W3C validator