| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > strfv | Structured version Visualization version GIF version | ||
| Description: Extract a structure component 𝐶 (such as the base set) from a structure 𝑆 (such as a member of Poset, df-poset 18237) with a component extractor 𝐸 (such as the base set extractor df-base 17139). By virtue of ndxid 17126, this can be done without having to refer to the hard-coded numeric index of 𝐸. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| Ref | Expression |
|---|---|
| strfv.s | ⊢ 𝑆 Struct 𝑋 |
| strfv.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| strfv.n | ⊢ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆 |
| Ref | Expression |
|---|---|
| strfv | ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strfv.s | . . 3 ⊢ 𝑆 Struct 𝑋 | |
| 2 | structex 17079 | . . 3 ⊢ (𝑆 Struct 𝑋 → 𝑆 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ 𝑆 ∈ V |
| 4 | 1 | structfun 17084 | . 2 ⊢ Fun ◡◡𝑆 |
| 5 | strfv.e | . 2 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 6 | strfv.n | . . 3 ⊢ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆 | |
| 7 | opex 5411 | . . . 4 ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ V | |
| 8 | 7 | snss 4739 | . . 3 ⊢ (〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 ↔ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆) |
| 9 | 6, 8 | mpbir 231 | . 2 ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 |
| 10 | 3, 4, 5, 9 | strfv2 17131 | 1 ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 {csn 4579 〈cop 4585 class class class wbr 5095 ‘cfv 6486 Struct cstr 17075 Slot cslot 17110 ndxcnx 17122 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-struct 17076 df-slot 17111 |
| This theorem is referenced by: strfv3 17133 1strbas 17153 2strbas 17157 2strop 17158 rngbase 17221 rngplusg 17222 rngmulr 17223 srngbase 17232 srngplusg 17233 srngmulr 17234 srnginvl 17235 lmodbase 17248 lmodplusg 17249 lmodsca 17250 lmodvsca 17251 ipsbase 17259 ipsaddg 17260 ipsmulr 17261 ipssca 17262 ipsvsca 17263 ipsip 17264 phlbase 17269 phlplusg 17270 phlsca 17271 phlvsca 17272 phlip 17273 topgrpbas 17284 topgrpplusg 17285 topgrptset 17286 otpsbas 17299 otpstset 17300 otpsle 17301 odrngbas 17326 odrngplusg 17327 odrngmulr 17328 odrngtset 17329 odrngle 17330 odrngds 17331 imassca 17441 imastset 17444 fuccofval 17887 setcbas 18003 catchomfval 18027 catccofval 18029 estrcbas 18049 ipobas 18455 ipolerval 18456 ipotset 18457 cnfldbas 21283 mpocnfldadd 21284 mpocnfldmul 21286 cnfldcj 21288 cnfldtset 21289 cnfldle 21290 cnfldds 21291 cnfldunif 21292 cnfldbasOLD 21298 cnfldaddOLD 21299 cnfldmulOLD 21300 cnfldcjOLD 21301 cnfldtsetOLD 21302 cnfldleOLD 21303 cnflddsOLD 21304 cnfldunifOLD 21305 psrbas 21858 psrplusg 21861 psrmulr 21867 psrsca 21872 psrvscafval 21873 trkgbas 28408 trkgdist 28409 trkgitv 28410 idlsrgbas 33451 idlsrgplusg 33452 idlsrgmulr 33454 idlsrgtset 33455 algbase 43147 algaddg 43148 algmulr 43149 algsca 43150 algvsca 43151 rngchomfvalALTV 48252 rngccofvalALTV 48255 ringchomfvalALTV 48286 ringccofvalALTV 48289 catbas 49212 cathomfval 49213 catcofval 49214 mndtcbasval 49566 |
| Copyright terms: Public domain | W3C validator |