| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > strfv | Structured version Visualization version GIF version | ||
| Description: Extract a structure component 𝐶 (such as the base set) from a structure 𝑆 (such as a member of Poset, df-poset 18221) with a component extractor 𝐸 (such as the base set extractor df-base 17123). By virtue of ndxid 17110, this can be done without having to refer to the hard-coded numeric index of 𝐸. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| Ref | Expression |
|---|---|
| strfv.s | ⊢ 𝑆 Struct 𝑋 |
| strfv.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| strfv.n | ⊢ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆 |
| Ref | Expression |
|---|---|
| strfv | ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strfv.s | . . 3 ⊢ 𝑆 Struct 𝑋 | |
| 2 | structex 17063 | . . 3 ⊢ (𝑆 Struct 𝑋 → 𝑆 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ 𝑆 ∈ V |
| 4 | 1 | structfun 17068 | . 2 ⊢ Fun ◡◡𝑆 |
| 5 | strfv.e | . 2 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 6 | strfv.n | . . 3 ⊢ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆 | |
| 7 | opex 5407 | . . . 4 ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ V | |
| 8 | 7 | snss 4736 | . . 3 ⊢ (〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 ↔ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆) |
| 9 | 6, 8 | mpbir 231 | . 2 ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 |
| 10 | 3, 4, 5, 9 | strfv2 17115 | 1 ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 {csn 4575 〈cop 4581 class class class wbr 5093 ‘cfv 6486 Struct cstr 17059 Slot cslot 17094 ndxcnx 17106 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-struct 17060 df-slot 17095 |
| This theorem is referenced by: strfv3 17117 1strbas 17137 2strbas 17141 2strop 17142 rngbase 17205 rngplusg 17206 rngmulr 17207 srngbase 17216 srngplusg 17217 srngmulr 17218 srnginvl 17219 lmodbase 17232 lmodplusg 17233 lmodsca 17234 lmodvsca 17235 ipsbase 17243 ipsaddg 17244 ipsmulr 17245 ipssca 17246 ipsvsca 17247 ipsip 17248 phlbase 17253 phlplusg 17254 phlsca 17255 phlvsca 17256 phlip 17257 topgrpbas 17268 topgrpplusg 17269 topgrptset 17270 otpsbas 17283 otpstset 17284 otpsle 17285 odrngbas 17310 odrngplusg 17311 odrngmulr 17312 odrngtset 17313 odrngle 17314 odrngds 17315 imassca 17425 imastset 17428 fuccofval 17871 setcbas 17987 catchomfval 18011 catccofval 18013 estrcbas 18033 ipobas 18439 ipolerval 18440 ipotset 18441 cnfldbas 21297 mpocnfldadd 21298 mpocnfldmul 21300 cnfldcj 21302 cnfldtset 21303 cnfldle 21304 cnfldds 21305 cnfldunif 21306 cnfldbasOLD 21312 cnfldaddOLD 21313 cnfldmulOLD 21314 cnfldcjOLD 21315 cnfldtsetOLD 21316 cnfldleOLD 21317 cnflddsOLD 21318 cnfldunifOLD 21319 psrbas 21872 psrplusg 21875 psrmulr 21881 psrsca 21886 psrvscafval 21887 trkgbas 28424 trkgdist 28425 trkgitv 28426 idlsrgbas 33476 idlsrgplusg 33477 idlsrgmulr 33479 idlsrgtset 33480 algbase 43291 algaddg 43292 algmulr 43293 algsca 43294 algvsca 43295 rngchomfvalALTV 48391 rngccofvalALTV 48394 ringchomfvalALTV 48425 ringccofvalALTV 48428 catbas 49351 cathomfval 49352 catcofval 49353 mndtcbasval 49705 |
| Copyright terms: Public domain | W3C validator |