![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > strfv | Structured version Visualization version GIF version |
Description: Extract a structure component πΆ (such as the base set) from a structure π (such as a member of Poset, df-poset 18265) with a component extractor πΈ (such as the base set extractor df-base 17144). By virtue of ndxid 17129, this can be done without having to refer to the hard-coded numeric index of πΈ. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
Ref | Expression |
---|---|
strfv.s | β’ π Struct π |
strfv.e | β’ πΈ = Slot (πΈβndx) |
strfv.n | β’ {β¨(πΈβndx), πΆβ©} β π |
Ref | Expression |
---|---|
strfv | β’ (πΆ β π β πΆ = (πΈβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strfv.s | . . 3 β’ π Struct π | |
2 | structex 17082 | . . 3 β’ (π Struct π β π β V) | |
3 | 1, 2 | ax-mp 5 | . 2 β’ π β V |
4 | 1 | structfun 17087 | . 2 β’ Fun β‘β‘π |
5 | strfv.e | . 2 β’ πΈ = Slot (πΈβndx) | |
6 | strfv.n | . . 3 β’ {β¨(πΈβndx), πΆβ©} β π | |
7 | opex 5464 | . . . 4 β’ β¨(πΈβndx), πΆβ© β V | |
8 | 7 | snss 4789 | . . 3 β’ (β¨(πΈβndx), πΆβ© β π β {β¨(πΈβndx), πΆβ©} β π) |
9 | 6, 8 | mpbir 230 | . 2 β’ β¨(πΈβndx), πΆβ© β π |
10 | 3, 4, 5, 9 | strfv2 17135 | 1 β’ (πΆ β π β πΆ = (πΈβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 Vcvv 3474 β wss 3948 {csn 4628 β¨cop 4634 class class class wbr 5148 βcfv 6543 Struct cstr 17078 Slot cslot 17113 ndxcnx 17125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13484 df-struct 17079 df-slot 17114 |
This theorem is referenced by: strfv3 17137 1strbas 17160 1strbasOLD 17161 2strbas 17166 2strop 17167 2strbas1 17170 2strop1 17171 rngbase 17243 rngplusg 17244 rngmulr 17245 srngbase 17254 srngplusg 17255 srngmulr 17256 srnginvl 17257 lmodbase 17270 lmodplusg 17271 lmodsca 17272 lmodvsca 17273 ipsbase 17281 ipsaddg 17282 ipsmulr 17283 ipssca 17284 ipsvsca 17285 ipsip 17286 phlbase 17291 phlplusg 17292 phlsca 17293 phlvsca 17294 phlip 17295 topgrpbas 17306 topgrpplusg 17307 topgrptset 17308 otpsbas 17321 otpstset 17322 otpsle 17323 odrngbas 17348 odrngplusg 17349 odrngmulr 17350 odrngtset 17351 odrngle 17352 odrngds 17353 imassca 17464 imastset 17467 fuccofval 17910 setcbas 18027 catchomfval 18051 catccofval 18053 estrcbas 18075 ipobas 18483 ipolerval 18484 ipotset 18485 cnfldbas 20947 cnfldadd 20948 cnfldmul 20949 cnfldcj 20950 cnfldtset 20951 cnfldle 20952 cnfldds 20953 cnfldunif 20954 psrbas 21496 psrplusg 21499 psrmulr 21502 psrsca 21507 psrvscafval 21508 trkgbas 27693 trkgdist 27694 trkgitv 27695 idlsrgbas 32613 idlsrgplusg 32614 idlsrgmulr 32616 idlsrgtset 32617 algbase 41910 algaddg 41911 algmulr 41912 algsca 41913 algvsca 41914 rngchomfvalALTV 46872 rngccofvalALTV 46875 ringchomfvalALTV 46935 ringccofvalALTV 46938 mndtcbasval 47696 |
Copyright terms: Public domain | W3C validator |