Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > strfv | Structured version Visualization version GIF version |
Description: Extract a structure component 𝐶 (such as the base set) from a structure 𝑆 (such as a member of Poset, df-poset 18029) with a component extractor 𝐸 (such as the base set extractor df-base 16911). By virtue of ndxid 16896, this can be done without having to refer to the hard-coded numeric index of 𝐸. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
Ref | Expression |
---|---|
strfv.s | ⊢ 𝑆 Struct 𝑋 |
strfv.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
strfv.n | ⊢ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆 |
Ref | Expression |
---|---|
strfv | ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strfv.s | . . 3 ⊢ 𝑆 Struct 𝑋 | |
2 | structex 16849 | . . 3 ⊢ (𝑆 Struct 𝑋 → 𝑆 ∈ V) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ 𝑆 ∈ V |
4 | 1 | structfun 16854 | . 2 ⊢ Fun ◡◡𝑆 |
5 | strfv.e | . 2 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
6 | strfv.n | . . 3 ⊢ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆 | |
7 | opex 5383 | . . . 4 ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ V | |
8 | 7 | snss 4725 | . . 3 ⊢ (〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 ↔ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆) |
9 | 6, 8 | mpbir 230 | . 2 ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 |
10 | 3, 4, 5, 9 | strfv2 16902 | 1 ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 Vcvv 3431 ⊆ wss 3892 {csn 4567 〈cop 4573 class class class wbr 5079 ‘cfv 6432 Struct cstr 16845 Slot cslot 16880 ndxcnx 16892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12582 df-fz 13239 df-struct 16846 df-slot 16881 |
This theorem is referenced by: strfv3 16904 1strbas 16927 1strbasOLD 16928 2strbas 16933 2strop 16934 2strbas1 16937 2strop1 16938 rngbase 17007 rngplusg 17008 rngmulr 17009 srngbase 17018 srngplusg 17019 srngmulr 17020 srnginvl 17021 lmodbase 17034 lmodplusg 17035 lmodsca 17036 lmodvsca 17037 ipsbase 17045 ipsaddg 17046 ipsmulr 17047 ipssca 17048 ipsvsca 17049 ipsip 17050 phlbase 17055 phlplusg 17056 phlsca 17057 phlvsca 17058 phlip 17059 topgrpbas 17070 topgrpplusg 17071 topgrptset 17072 otpsbas 17085 otpstset 17086 otpsle 17087 odrngbas 17112 odrngplusg 17113 odrngmulr 17114 odrngtset 17115 odrngle 17116 odrngds 17117 imassca 17228 imastset 17231 fuccofval 17674 setcbas 17791 catchomfval 17815 catccofval 17817 estrcbas 17839 ipobas 18247 ipolerval 18248 ipotset 18249 cnfldbas 20599 cnfldadd 20600 cnfldmul 20601 cnfldcj 20602 cnfldtset 20603 cnfldle 20604 cnfldds 20605 cnfldunif 20606 psrbas 21145 psrplusg 21148 psrmulr 21151 psrsca 21156 psrvscafval 21157 trkgbas 26804 trkgdist 26805 trkgitv 26806 idlsrgbas 31645 idlsrgplusg 31646 idlsrgmulr 31648 idlsrgtset 31649 algbase 41000 algaddg 41001 algmulr 41002 algsca 41003 algvsca 41004 rngchomfvalALTV 45511 rngccofvalALTV 45514 ringchomfvalALTV 45574 ringccofvalALTV 45577 mndtcbasval 46336 |
Copyright terms: Public domain | W3C validator |