| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > strfv | Structured version Visualization version GIF version | ||
| Description: Extract a structure component 𝐶 (such as the base set) from a structure 𝑆 (such as a member of Poset, df-poset 18274) with a component extractor 𝐸 (such as the base set extractor df-base 17180). By virtue of ndxid 17167, this can be done without having to refer to the hard-coded numeric index of 𝐸. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| Ref | Expression |
|---|---|
| strfv.s | ⊢ 𝑆 Struct 𝑋 |
| strfv.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| strfv.n | ⊢ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆 |
| Ref | Expression |
|---|---|
| strfv | ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strfv.s | . . 3 ⊢ 𝑆 Struct 𝑋 | |
| 2 | structex 17120 | . . 3 ⊢ (𝑆 Struct 𝑋 → 𝑆 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ 𝑆 ∈ V |
| 4 | 1 | structfun 17125 | . 2 ⊢ Fun ◡◡𝑆 |
| 5 | strfv.e | . 2 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 6 | strfv.n | . . 3 ⊢ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆 | |
| 7 | opex 5424 | . . . 4 ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ V | |
| 8 | 7 | snss 4749 | . . 3 ⊢ (〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 ↔ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆) |
| 9 | 6, 8 | mpbir 231 | . 2 ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 |
| 10 | 3, 4, 5, 9 | strfv2 17172 | 1 ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 {csn 4589 〈cop 4595 class class class wbr 5107 ‘cfv 6511 Struct cstr 17116 Slot cslot 17151 ndxcnx 17163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-struct 17117 df-slot 17152 |
| This theorem is referenced by: strfv3 17174 1strbas 17194 2strbas 17198 2strop 17199 rngbase 17262 rngplusg 17263 rngmulr 17264 srngbase 17273 srngplusg 17274 srngmulr 17275 srnginvl 17276 lmodbase 17289 lmodplusg 17290 lmodsca 17291 lmodvsca 17292 ipsbase 17300 ipsaddg 17301 ipsmulr 17302 ipssca 17303 ipsvsca 17304 ipsip 17305 phlbase 17310 phlplusg 17311 phlsca 17312 phlvsca 17313 phlip 17314 topgrpbas 17325 topgrpplusg 17326 topgrptset 17327 otpsbas 17340 otpstset 17341 otpsle 17342 odrngbas 17367 odrngplusg 17368 odrngmulr 17369 odrngtset 17370 odrngle 17371 odrngds 17372 imassca 17482 imastset 17485 fuccofval 17924 setcbas 18040 catchomfval 18064 catccofval 18066 estrcbas 18086 ipobas 18490 ipolerval 18491 ipotset 18492 cnfldbas 21268 mpocnfldadd 21269 mpocnfldmul 21271 cnfldcj 21273 cnfldtset 21274 cnfldle 21275 cnfldds 21276 cnfldunif 21277 cnfldbasOLD 21283 cnfldaddOLD 21284 cnfldmulOLD 21285 cnfldcjOLD 21286 cnfldtsetOLD 21287 cnfldleOLD 21288 cnflddsOLD 21289 cnfldunifOLD 21290 psrbas 21842 psrplusg 21845 psrmulr 21851 psrsca 21856 psrvscafval 21857 trkgbas 28372 trkgdist 28373 trkgitv 28374 idlsrgbas 33475 idlsrgplusg 33476 idlsrgmulr 33478 idlsrgtset 33479 algbase 43163 algaddg 43164 algmulr 43165 algsca 43166 algvsca 43167 rngchomfvalALTV 48255 rngccofvalALTV 48258 ringchomfvalALTV 48289 ringccofvalALTV 48292 catbas 49215 cathomfval 49216 catcofval 49217 mndtcbasval 49569 |
| Copyright terms: Public domain | W3C validator |