![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > strfv | Structured version Visualization version GIF version |
Description: Extract a structure component 𝐶 (such as the base set) from a structure 𝑆 (such as a member of Poset, df-poset 18371) with a component extractor 𝐸 (such as the base set extractor df-base 17246). By virtue of ndxid 17231, this can be done without having to refer to the hard-coded numeric index of 𝐸. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
Ref | Expression |
---|---|
strfv.s | ⊢ 𝑆 Struct 𝑋 |
strfv.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
strfv.n | ⊢ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆 |
Ref | Expression |
---|---|
strfv | ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strfv.s | . . 3 ⊢ 𝑆 Struct 𝑋 | |
2 | structex 17184 | . . 3 ⊢ (𝑆 Struct 𝑋 → 𝑆 ∈ V) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ 𝑆 ∈ V |
4 | 1 | structfun 17189 | . 2 ⊢ Fun ◡◡𝑆 |
5 | strfv.e | . 2 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
6 | strfv.n | . . 3 ⊢ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆 | |
7 | opex 5475 | . . . 4 ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ V | |
8 | 7 | snss 4790 | . . 3 ⊢ (〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 ↔ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆) |
9 | 6, 8 | mpbir 231 | . 2 ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 |
10 | 3, 4, 5, 9 | strfv2 17237 | 1 ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ⊆ wss 3963 {csn 4631 〈cop 4637 class class class wbr 5148 ‘cfv 6563 Struct cstr 17180 Slot cslot 17215 ndxcnx 17227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-struct 17181 df-slot 17216 |
This theorem is referenced by: strfv3 17239 1strbas 17262 1strbasOLD 17263 2strbas 17268 2strop 17269 2strbas1 17272 2strop1 17273 rngbase 17345 rngplusg 17346 rngmulr 17347 srngbase 17356 srngplusg 17357 srngmulr 17358 srnginvl 17359 lmodbase 17372 lmodplusg 17373 lmodsca 17374 lmodvsca 17375 ipsbase 17383 ipsaddg 17384 ipsmulr 17385 ipssca 17386 ipsvsca 17387 ipsip 17388 phlbase 17393 phlplusg 17394 phlsca 17395 phlvsca 17396 phlip 17397 topgrpbas 17408 topgrpplusg 17409 topgrptset 17410 otpsbas 17423 otpstset 17424 otpsle 17425 odrngbas 17450 odrngplusg 17451 odrngmulr 17452 odrngtset 17453 odrngle 17454 odrngds 17455 imassca 17566 imastset 17569 fuccofval 18015 setcbas 18132 catchomfval 18156 catccofval 18158 estrcbas 18180 ipobas 18589 ipolerval 18590 ipotset 18591 cnfldbas 21386 mpocnfldadd 21387 mpocnfldmul 21389 cnfldcj 21391 cnfldtset 21392 cnfldle 21393 cnfldds 21394 cnfldunif 21395 cnfldbasOLD 21401 cnfldaddOLD 21402 cnfldmulOLD 21403 cnfldcjOLD 21404 cnfldtsetOLD 21405 cnfldleOLD 21406 cnflddsOLD 21407 cnfldunifOLD 21408 psrbas 21971 psrplusg 21974 psrmulr 21980 psrsca 21985 psrvscafval 21986 trkgbas 28468 trkgdist 28469 trkgitv 28470 idlsrgbas 33512 idlsrgplusg 33513 idlsrgmulr 33515 idlsrgtset 33516 algbase 43163 algaddg 43164 algmulr 43165 algsca 43166 algvsca 43167 rngchomfvalALTV 48111 rngccofvalALTV 48114 ringchomfvalALTV 48145 ringccofvalALTV 48148 mndtcbasval 48889 |
Copyright terms: Public domain | W3C validator |