| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > strfv | Structured version Visualization version GIF version | ||
| Description: Extract a structure component 𝐶 (such as the base set) from a structure 𝑆 (such as a member of Poset, df-poset 18330) with a component extractor 𝐸 (such as the base set extractor df-base 17234). By virtue of ndxid 17221, this can be done without having to refer to the hard-coded numeric index of 𝐸. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| Ref | Expression |
|---|---|
| strfv.s | ⊢ 𝑆 Struct 𝑋 |
| strfv.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| strfv.n | ⊢ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆 |
| Ref | Expression |
|---|---|
| strfv | ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strfv.s | . . 3 ⊢ 𝑆 Struct 𝑋 | |
| 2 | structex 17174 | . . 3 ⊢ (𝑆 Struct 𝑋 → 𝑆 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ 𝑆 ∈ V |
| 4 | 1 | structfun 17179 | . 2 ⊢ Fun ◡◡𝑆 |
| 5 | strfv.e | . 2 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 6 | strfv.n | . . 3 ⊢ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆 | |
| 7 | opex 5444 | . . . 4 ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ V | |
| 8 | 7 | snss 4766 | . . 3 ⊢ (〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 ↔ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆) |
| 9 | 6, 8 | mpbir 231 | . 2 ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 |
| 10 | 3, 4, 5, 9 | strfv2 17226 | 1 ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ⊆ wss 3931 {csn 4606 〈cop 4612 class class class wbr 5124 ‘cfv 6536 Struct cstr 17170 Slot cslot 17205 ndxcnx 17217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-struct 17171 df-slot 17206 |
| This theorem is referenced by: strfv3 17228 1strbas 17249 1strbasOLD 17250 2strbas 17254 2strop 17255 rngbase 17318 rngplusg 17319 rngmulr 17320 srngbase 17329 srngplusg 17330 srngmulr 17331 srnginvl 17332 lmodbase 17345 lmodplusg 17346 lmodsca 17347 lmodvsca 17348 ipsbase 17356 ipsaddg 17357 ipsmulr 17358 ipssca 17359 ipsvsca 17360 ipsip 17361 phlbase 17366 phlplusg 17367 phlsca 17368 phlvsca 17369 phlip 17370 topgrpbas 17381 topgrpplusg 17382 topgrptset 17383 otpsbas 17396 otpstset 17397 otpsle 17398 odrngbas 17423 odrngplusg 17424 odrngmulr 17425 odrngtset 17426 odrngle 17427 odrngds 17428 imassca 17538 imastset 17541 fuccofval 17980 setcbas 18096 catchomfval 18120 catccofval 18122 estrcbas 18142 ipobas 18546 ipolerval 18547 ipotset 18548 cnfldbas 21324 mpocnfldadd 21325 mpocnfldmul 21327 cnfldcj 21329 cnfldtset 21330 cnfldle 21331 cnfldds 21332 cnfldunif 21333 cnfldbasOLD 21339 cnfldaddOLD 21340 cnfldmulOLD 21341 cnfldcjOLD 21342 cnfldtsetOLD 21343 cnfldleOLD 21344 cnflddsOLD 21345 cnfldunifOLD 21346 psrbas 21898 psrplusg 21901 psrmulr 21907 psrsca 21912 psrvscafval 21913 trkgbas 28429 trkgdist 28430 trkgitv 28431 idlsrgbas 33524 idlsrgplusg 33525 idlsrgmulr 33527 idlsrgtset 33528 algbase 43165 algaddg 43166 algmulr 43167 algsca 43168 algvsca 43169 rngchomfvalALTV 48209 rngccofvalALTV 48212 ringchomfvalALTV 48243 ringccofvalALTV 48246 catbas 49113 cathomfval 49114 catcofval 49115 mndtcbasval 49424 |
| Copyright terms: Public domain | W3C validator |