| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > strfv | Structured version Visualization version GIF version | ||
| Description: Extract a structure component 𝐶 (such as the base set) from a structure 𝑆 (such as a member of Poset, df-poset 18216) with a component extractor 𝐸 (such as the base set extractor df-base 17118). By virtue of ndxid 17105, this can be done without having to refer to the hard-coded numeric index of 𝐸. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| Ref | Expression |
|---|---|
| strfv.s | ⊢ 𝑆 Struct 𝑋 |
| strfv.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| strfv.n | ⊢ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆 |
| Ref | Expression |
|---|---|
| strfv | ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strfv.s | . . 3 ⊢ 𝑆 Struct 𝑋 | |
| 2 | structex 17058 | . . 3 ⊢ (𝑆 Struct 𝑋 → 𝑆 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ 𝑆 ∈ V |
| 4 | 1 | structfun 17063 | . 2 ⊢ Fun ◡◡𝑆 |
| 5 | strfv.e | . 2 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 6 | strfv.n | . . 3 ⊢ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆 | |
| 7 | opex 5404 | . . . 4 ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ V | |
| 8 | 7 | snss 4737 | . . 3 ⊢ (〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 ↔ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆) |
| 9 | 6, 8 | mpbir 231 | . 2 ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 |
| 10 | 3, 4, 5, 9 | strfv2 17110 | 1 ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3902 {csn 4576 〈cop 4582 class class class wbr 5091 ‘cfv 6481 Struct cstr 17054 Slot cslot 17089 ndxcnx 17101 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-n0 12379 df-z 12466 df-uz 12730 df-fz 13405 df-struct 17055 df-slot 17090 |
| This theorem is referenced by: strfv3 17112 1strbas 17132 2strbas 17136 2strop 17137 rngbase 17200 rngplusg 17201 rngmulr 17202 srngbase 17211 srngplusg 17212 srngmulr 17213 srnginvl 17214 lmodbase 17227 lmodplusg 17228 lmodsca 17229 lmodvsca 17230 ipsbase 17238 ipsaddg 17239 ipsmulr 17240 ipssca 17241 ipsvsca 17242 ipsip 17243 phlbase 17248 phlplusg 17249 phlsca 17250 phlvsca 17251 phlip 17252 topgrpbas 17263 topgrpplusg 17264 topgrptset 17265 otpsbas 17278 otpstset 17279 otpsle 17280 odrngbas 17305 odrngplusg 17306 odrngmulr 17307 odrngtset 17308 odrngle 17309 odrngds 17310 imassca 17420 imastset 17423 fuccofval 17866 setcbas 17982 catchomfval 18006 catccofval 18008 estrcbas 18028 ipobas 18434 ipolerval 18435 ipotset 18436 cnfldbas 21293 mpocnfldadd 21294 mpocnfldmul 21296 cnfldcj 21298 cnfldtset 21299 cnfldle 21300 cnfldds 21301 cnfldunif 21302 cnfldbasOLD 21308 cnfldaddOLD 21309 cnfldmulOLD 21310 cnfldcjOLD 21311 cnfldtsetOLD 21312 cnfldleOLD 21313 cnflddsOLD 21314 cnfldunifOLD 21315 psrbas 21868 psrplusg 21871 psrmulr 21877 psrsca 21882 psrvscafval 21883 trkgbas 28421 trkgdist 28422 trkgitv 28423 idlsrgbas 33464 idlsrgplusg 33465 idlsrgmulr 33467 idlsrgtset 33468 algbase 43206 algaddg 43207 algmulr 43208 algsca 43209 algvsca 43210 rngchomfvalALTV 48297 rngccofvalALTV 48300 ringchomfvalALTV 48331 ringccofvalALTV 48334 catbas 49257 cathomfval 49258 catcofval 49259 mndtcbasval 49611 |
| Copyright terms: Public domain | W3C validator |