Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > strfv | Structured version Visualization version GIF version |
Description: Extract a structure component 𝐶 (such as the base set) from a structure 𝑆 (such as a member of Poset, df-poset 17946) with a component extractor 𝐸 (such as the base set extractor df-base 16841). By virtue of ndxid 16826, this can be done without having to refer to the hard-coded numeric index of 𝐸. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
Ref | Expression |
---|---|
strfv.s | ⊢ 𝑆 Struct 𝑋 |
strfv.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
strfv.n | ⊢ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆 |
Ref | Expression |
---|---|
strfv | ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strfv.s | . . 3 ⊢ 𝑆 Struct 𝑋 | |
2 | structex 16779 | . . 3 ⊢ (𝑆 Struct 𝑋 → 𝑆 ∈ V) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ 𝑆 ∈ V |
4 | 1 | structfun 16784 | . 2 ⊢ Fun ◡◡𝑆 |
5 | strfv.e | . 2 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
6 | strfv.n | . . 3 ⊢ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆 | |
7 | opex 5373 | . . . 4 ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ V | |
8 | 7 | snss 4716 | . . 3 ⊢ (〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 ↔ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆) |
9 | 6, 8 | mpbir 230 | . 2 ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 |
10 | 3, 4, 5, 9 | strfv2 16832 | 1 ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 {csn 4558 〈cop 4564 class class class wbr 5070 ‘cfv 6418 Struct cstr 16775 Slot cslot 16810 ndxcnx 16822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-struct 16776 df-slot 16811 |
This theorem is referenced by: strfv3 16834 1strbas 16856 2strbas 16861 2strop 16862 2strbas1 16865 2strop1 16866 rngbase 16935 rngplusg 16936 rngmulr 16937 srngbase 16946 srngplusg 16947 srngmulr 16948 srnginvl 16949 lmodbase 16962 lmodplusg 16963 lmodsca 16964 lmodvsca 16965 ipsbase 16972 ipsaddg 16973 ipsmulr 16974 ipssca 16975 ipsvsca 16976 ipsip 16977 phlbase 16982 phlplusg 16983 phlsca 16984 phlvsca 16985 phlip 16986 topgrpbas 16996 topgrpplusg 16997 topgrptset 16998 otpsbas 17010 otpstset 17011 otpsle 17012 odrngbas 17033 odrngplusg 17034 odrngmulr 17035 odrngtset 17036 odrngle 17037 odrngds 17038 imassca 17147 imastset 17150 fuccofval 17592 setcbas 17709 catchomfval 17733 catccofval 17735 estrcbas 17757 ipobas 18164 ipolerval 18165 ipotset 18166 cnfldbas 20514 cnfldadd 20515 cnfldmul 20516 cnfldcj 20517 cnfldtset 20518 cnfldle 20519 cnfldds 20520 cnfldunif 20521 psrbas 21057 psrplusg 21060 psrmulr 21063 psrsca 21068 psrvscafval 21069 trkgbas 26710 trkgdist 26711 trkgitv 26712 idlsrgbas 31551 idlsrgplusg 31552 idlsrgmulr 31554 idlsrgtset 31555 algbase 40919 algaddg 40920 algmulr 40921 algsca 40922 algvsca 40923 rngchomfvalALTV 45430 rngccofvalALTV 45433 ringchomfvalALTV 45493 ringccofvalALTV 45496 mndtcbasval 46253 |
Copyright terms: Public domain | W3C validator |