| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > strfv | Structured version Visualization version GIF version | ||
| Description: Extract a structure component 𝐶 (such as the base set) from a structure 𝑆 (such as a member of Poset, df-poset 18281) with a component extractor 𝐸 (such as the base set extractor df-base 17187). By virtue of ndxid 17174, this can be done without having to refer to the hard-coded numeric index of 𝐸. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| Ref | Expression |
|---|---|
| strfv.s | ⊢ 𝑆 Struct 𝑋 |
| strfv.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| strfv.n | ⊢ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆 |
| Ref | Expression |
|---|---|
| strfv | ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strfv.s | . . 3 ⊢ 𝑆 Struct 𝑋 | |
| 2 | structex 17127 | . . 3 ⊢ (𝑆 Struct 𝑋 → 𝑆 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ 𝑆 ∈ V |
| 4 | 1 | structfun 17132 | . 2 ⊢ Fun ◡◡𝑆 |
| 5 | strfv.e | . 2 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 6 | strfv.n | . . 3 ⊢ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆 | |
| 7 | opex 5427 | . . . 4 ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ V | |
| 8 | 7 | snss 4752 | . . 3 ⊢ (〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 ↔ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆) |
| 9 | 6, 8 | mpbir 231 | . 2 ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 |
| 10 | 3, 4, 5, 9 | strfv2 17179 | 1 ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 {csn 4592 〈cop 4598 class class class wbr 5110 ‘cfv 6514 Struct cstr 17123 Slot cslot 17158 ndxcnx 17170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-struct 17124 df-slot 17159 |
| This theorem is referenced by: strfv3 17181 1strbas 17201 2strbas 17205 2strop 17206 rngbase 17269 rngplusg 17270 rngmulr 17271 srngbase 17280 srngplusg 17281 srngmulr 17282 srnginvl 17283 lmodbase 17296 lmodplusg 17297 lmodsca 17298 lmodvsca 17299 ipsbase 17307 ipsaddg 17308 ipsmulr 17309 ipssca 17310 ipsvsca 17311 ipsip 17312 phlbase 17317 phlplusg 17318 phlsca 17319 phlvsca 17320 phlip 17321 topgrpbas 17332 topgrpplusg 17333 topgrptset 17334 otpsbas 17347 otpstset 17348 otpsle 17349 odrngbas 17374 odrngplusg 17375 odrngmulr 17376 odrngtset 17377 odrngle 17378 odrngds 17379 imassca 17489 imastset 17492 fuccofval 17931 setcbas 18047 catchomfval 18071 catccofval 18073 estrcbas 18093 ipobas 18497 ipolerval 18498 ipotset 18499 cnfldbas 21275 mpocnfldadd 21276 mpocnfldmul 21278 cnfldcj 21280 cnfldtset 21281 cnfldle 21282 cnfldds 21283 cnfldunif 21284 cnfldbasOLD 21290 cnfldaddOLD 21291 cnfldmulOLD 21292 cnfldcjOLD 21293 cnfldtsetOLD 21294 cnfldleOLD 21295 cnflddsOLD 21296 cnfldunifOLD 21297 psrbas 21849 psrplusg 21852 psrmulr 21858 psrsca 21863 psrvscafval 21864 trkgbas 28379 trkgdist 28380 trkgitv 28381 idlsrgbas 33482 idlsrgplusg 33483 idlsrgmulr 33485 idlsrgtset 33486 algbase 43170 algaddg 43171 algmulr 43172 algsca 43173 algvsca 43174 rngchomfvalALTV 48259 rngccofvalALTV 48262 ringchomfvalALTV 48293 ringccofvalALTV 48296 catbas 49219 cathomfval 49220 catcofval 49221 mndtcbasval 49573 |
| Copyright terms: Public domain | W3C validator |