![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > strfv | Structured version Visualization version GIF version |
Description: Extract a structure component πΆ (such as the base set) from a structure π (such as a member of Poset, df-poset 18270) with a component extractor πΈ (such as the base set extractor df-base 17149). By virtue of ndxid 17134, this can be done without having to refer to the hard-coded numeric index of πΈ. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
Ref | Expression |
---|---|
strfv.s | β’ π Struct π |
strfv.e | β’ πΈ = Slot (πΈβndx) |
strfv.n | β’ {β¨(πΈβndx), πΆβ©} β π |
Ref | Expression |
---|---|
strfv | β’ (πΆ β π β πΆ = (πΈβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strfv.s | . . 3 β’ π Struct π | |
2 | structex 17087 | . . 3 β’ (π Struct π β π β V) | |
3 | 1, 2 | ax-mp 5 | . 2 β’ π β V |
4 | 1 | structfun 17092 | . 2 β’ Fun β‘β‘π |
5 | strfv.e | . 2 β’ πΈ = Slot (πΈβndx) | |
6 | strfv.n | . . 3 β’ {β¨(πΈβndx), πΆβ©} β π | |
7 | opex 5464 | . . . 4 β’ β¨(πΈβndx), πΆβ© β V | |
8 | 7 | snss 4789 | . . 3 β’ (β¨(πΈβndx), πΆβ© β π β {β¨(πΈβndx), πΆβ©} β π) |
9 | 6, 8 | mpbir 230 | . 2 β’ β¨(πΈβndx), πΆβ© β π |
10 | 3, 4, 5, 9 | strfv2 17140 | 1 β’ (πΆ β π β πΆ = (πΈβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 Vcvv 3474 β wss 3948 {csn 4628 β¨cop 4634 class class class wbr 5148 βcfv 6543 Struct cstr 17083 Slot cslot 17118 ndxcnx 17130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13489 df-struct 17084 df-slot 17119 |
This theorem is referenced by: strfv3 17142 1strbas 17165 1strbasOLD 17166 2strbas 17171 2strop 17172 2strbas1 17175 2strop1 17176 rngbase 17248 rngplusg 17249 rngmulr 17250 srngbase 17259 srngplusg 17260 srngmulr 17261 srnginvl 17262 lmodbase 17275 lmodplusg 17276 lmodsca 17277 lmodvsca 17278 ipsbase 17286 ipsaddg 17287 ipsmulr 17288 ipssca 17289 ipsvsca 17290 ipsip 17291 phlbase 17296 phlplusg 17297 phlsca 17298 phlvsca 17299 phlip 17300 topgrpbas 17311 topgrpplusg 17312 topgrptset 17313 otpsbas 17326 otpstset 17327 otpsle 17328 odrngbas 17353 odrngplusg 17354 odrngmulr 17355 odrngtset 17356 odrngle 17357 odrngds 17358 imassca 17469 imastset 17472 fuccofval 17915 setcbas 18032 catchomfval 18056 catccofval 18058 estrcbas 18080 ipobas 18488 ipolerval 18489 ipotset 18490 cnfldbas 21148 cnfldadd 21149 cnfldmul 21150 cnfldcj 21151 cnfldtset 21152 cnfldle 21153 cnfldds 21154 cnfldunif 21155 psrbas 21716 psrplusg 21719 psrmulr 21722 psrsca 21727 psrvscafval 21728 trkgbas 27951 trkgdist 27952 trkgitv 27953 idlsrgbas 32880 idlsrgplusg 32881 idlsrgmulr 32883 idlsrgtset 32884 gg-cnfldbas 35475 mpocnfldadd 35476 mpocnfldmul 35477 gg-cnfldcj 35478 gg-cnfldtset 35479 gg-cnfldle 35480 gg-cnfldds 35481 gg-cnfldunif 35482 algbase 42222 algaddg 42223 algmulr 42224 algsca 42225 algvsca 42226 rngchomfvalALTV 46971 rngccofvalALTV 46974 ringchomfvalALTV 47034 ringccofvalALTV 47037 mndtcbasval 47794 |
Copyright terms: Public domain | W3C validator |