![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > strfv | Structured version Visualization version GIF version |
Description: Extract a structure component 𝐶 (such as the base set) from a structure 𝑆 (such as a member of Poset, df-poset 17153) with a component extractor 𝐸 (such as the base set extractor df-base 16069). By virtue of ndxid 16089, this can be done without having to refer to the hard-coded numeric index of 𝐸. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
Ref | Expression |
---|---|
strfv.s | ⊢ 𝑆 Struct 𝑋 |
strfv.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
strfv.n | ⊢ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆 |
Ref | Expression |
---|---|
strfv | ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strfv.s | . . 3 ⊢ 𝑆 Struct 𝑋 | |
2 | structex 16074 | . . 3 ⊢ (𝑆 Struct 𝑋 → 𝑆 ∈ V) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ 𝑆 ∈ V |
4 | 1 | structfun 16079 | . 2 ⊢ Fun ◡◡𝑆 |
5 | strfv.e | . 2 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
6 | strfv.n | . . 3 ⊢ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆 | |
7 | opex 5061 | . . . 4 ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ V | |
8 | 7 | snss 4452 | . . 3 ⊢ (〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 ↔ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆) |
9 | 6, 8 | mpbir 221 | . 2 ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 |
10 | 3, 4, 5, 9 | strfv2 16112 | 1 ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 Vcvv 3351 ⊆ wss 3723 {csn 4317 〈cop 4323 class class class wbr 4787 ‘cfv 6030 Struct cstr 16059 ndxcnx 16060 Slot cslot 16062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7099 ax-cnex 10197 ax-resscn 10198 ax-1cn 10199 ax-icn 10200 ax-addcl 10201 ax-addrcl 10202 ax-mulcl 10203 ax-mulrcl 10204 ax-mulcom 10205 ax-addass 10206 ax-mulass 10207 ax-distr 10208 ax-i2m1 10209 ax-1ne0 10210 ax-1rid 10211 ax-rnegex 10212 ax-rrecex 10213 ax-cnre 10214 ax-pre-lttri 10215 ax-pre-lttrn 10216 ax-pre-ltadd 10217 ax-pre-mulgt0 10218 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6756 df-ov 6798 df-oprab 6799 df-mpt2 6800 df-om 7216 df-1st 7318 df-2nd 7319 df-wrecs 7562 df-recs 7624 df-rdg 7662 df-1o 7716 df-oadd 7720 df-er 7899 df-en 8113 df-dom 8114 df-sdom 8115 df-fin 8116 df-pnf 10281 df-mnf 10282 df-xr 10283 df-ltxr 10284 df-le 10285 df-sub 10473 df-neg 10474 df-nn 11226 df-n0 11499 df-z 11584 df-uz 11893 df-fz 12533 df-struct 16065 df-slot 16067 |
This theorem is referenced by: strfv3 16114 1strbas 16187 2strbas 16191 2strop 16192 2strbas1 16194 2strop1 16195 rngbase 16208 rngplusg 16209 rngmulr 16210 srngbase 16216 srngplusg 16217 srngmulr 16218 srnginvl 16219 lmodbase 16225 lmodplusg 16226 lmodsca 16227 lmodvsca 16228 ipsbase 16232 ipsaddg 16233 ipsmulr 16234 ipssca 16235 ipsvsca 16236 ipsip 16237 phlbase 16242 phlplusg 16243 phlsca 16244 phlvsca 16245 phlip 16246 topgrpbas 16250 topgrpplusg 16251 topgrptset 16252 otpsbas 16259 otpstset 16260 otpsle 16261 otpsbasOLD 16263 otpstsetOLD 16264 otpsleOLD 16265 odrngbas 16274 odrngplusg 16275 odrngmulr 16276 odrngtset 16277 odrngle 16278 odrngds 16279 imassca 16386 imastset 16389 fuccofval 16825 setcbas 16934 catchomfval 16954 catccofval 16956 estrcbas 16971 ipobas 17362 ipolerval 17363 ipotset 17364 psrbas 19592 psrplusg 19595 psrmulr 19598 psrsca 19603 psrvscafval 19604 cnfldbas 19964 cnfldadd 19965 cnfldmul 19966 cnfldcj 19967 cnfldtset 19968 cnfldle 19969 cnfldds 19970 cnfldunif 19971 trkgbas 25564 trkgdist 25565 trkgitv 25566 algbase 38274 algaddg 38275 algmulr 38276 algsca 38277 algvsca 38278 rngchomfvalALTV 42509 rngccofvalALTV 42512 ringchomfvalALTV 42572 ringccofvalALTV 42575 |
Copyright terms: Public domain | W3C validator |