MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsn0fun Structured version   Visualization version   GIF version

Theorem setsn0fun 17220
Description: The value of the structure replacement function (without the empty set) is a function if the structure (without the empty set) is a function. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.)
Hypotheses
Ref Expression
setsn0fun.s (𝜑𝑆 Struct 𝑋)
setsn0fun.i (𝜑𝐼𝑈)
setsn0fun.e (𝜑𝐸𝑊)
Assertion
Ref Expression
setsn0fun (𝜑 → Fun ((𝑆 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}))

Proof of Theorem setsn0fun
StepHypRef Expression
1 setsn0fun.s . 2 (𝜑𝑆 Struct 𝑋)
2 structn0fun 17198 . . 3 (𝑆 Struct 𝑋 → Fun (𝑆 ∖ {∅}))
3 setsn0fun.i . . . . 5 (𝜑𝐼𝑈)
4 setsn0fun.e . . . . 5 (𝜑𝐸𝑊)
5 structex 17197 . . . . . . 7 (𝑆 Struct 𝑋𝑆 ∈ V)
6 setsfun0 17219 . . . . . . 7 (((𝑆 ∈ V ∧ Fun (𝑆 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → Fun ((𝑆 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}))
75, 6sylanl1 679 . . . . . 6 (((𝑆 Struct 𝑋 ∧ Fun (𝑆 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → Fun ((𝑆 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}))
87expcom 413 . . . . 5 ((𝐼𝑈𝐸𝑊) → ((𝑆 Struct 𝑋 ∧ Fun (𝑆 ∖ {∅})) → Fun ((𝑆 sSet ⟨𝐼, 𝐸⟩) ∖ {∅})))
93, 4, 8syl2anc 583 . . . 4 (𝜑 → ((𝑆 Struct 𝑋 ∧ Fun (𝑆 ∖ {∅})) → Fun ((𝑆 sSet ⟨𝐼, 𝐸⟩) ∖ {∅})))
109com12 32 . . 3 ((𝑆 Struct 𝑋 ∧ Fun (𝑆 ∖ {∅})) → (𝜑 → Fun ((𝑆 sSet ⟨𝐼, 𝐸⟩) ∖ {∅})))
112, 10mpdan 686 . 2 (𝑆 Struct 𝑋 → (𝜑 → Fun ((𝑆 sSet ⟨𝐼, 𝐸⟩) ∖ {∅})))
121, 11mpcom 38 1 (𝜑 → Fun ((𝑆 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  Vcvv 3488  cdif 3973  c0 4352  {csn 4648  cop 4654   class class class wbr 5166  Fun wfun 6567  (class class class)co 7448   Struct cstr 17193   sSet csts 17210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211
This theorem is referenced by:  setsvtx  29070  setsiedg  29071
  Copyright terms: Public domain W3C validator