MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsstruct2 Structured version   Visualization version   GIF version

Theorem setsstruct2 17144
Description: An extensible structure with a replaced slot is an extensible structure. (Contributed by AV, 14-Nov-2021.)
Assertion
Ref Expression
setsstruct2 (((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) ∧ 𝑌 = ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩) → (𝐺 sSet ⟨𝐼, 𝐸⟩) Struct 𝑌)

Proof of Theorem setsstruct2
StepHypRef Expression
1 isstruct2 17119 . . . . . . 7 (𝐺 Struct 𝑋 ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (...‘𝑋)))
2 elin 3930 . . . . . . . . 9 (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ↔ (𝑋 ∈ ≤ ∧ 𝑋 ∈ (ℕ × ℕ)))
3 elxp6 8002 . . . . . . . . . . 11 (𝑋 ∈ (ℕ × ℕ) ↔ (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ)))
4 eleq1 2816 . . . . . . . . . . . . 13 (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ → (𝑋 ∈ ≤ ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ))
54adantr 480 . . . . . . . . . . . 12 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ)) → (𝑋 ∈ ≤ ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ))
6 simp3 1138 . . . . . . . . . . . . . . . . . . 19 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → 𝐼 ∈ ℕ)
7 simp1l 1198 . . . . . . . . . . . . . . . . . . 19 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → (1st𝑋) ∈ ℕ)
86, 7ifcld 4535 . . . . . . . . . . . . . . . . . 18 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)) ∈ ℕ)
98nnred 12201 . . . . . . . . . . . . . . . . 17 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)) ∈ ℝ)
106nnred 12201 . . . . . . . . . . . . . . . . 17 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → 𝐼 ∈ ℝ)
11 simp1r 1199 . . . . . . . . . . . . . . . . . . 19 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → (2nd𝑋) ∈ ℕ)
1211, 6ifcld 4535 . . . . . . . . . . . . . . . . . 18 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼) ∈ ℕ)
1312nnred 12201 . . . . . . . . . . . . . . . . 17 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼) ∈ ℝ)
14 nnre 12193 . . . . . . . . . . . . . . . . . . . . . 22 ((1st𝑋) ∈ ℕ → (1st𝑋) ∈ ℝ)
1514adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) → (1st𝑋) ∈ ℝ)
16 nnre 12193 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ ℕ → 𝐼 ∈ ℝ)
1715, 16anim12i 613 . . . . . . . . . . . . . . . . . . . 20 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ 𝐼 ∈ ℕ) → ((1st𝑋) ∈ ℝ ∧ 𝐼 ∈ ℝ))
18173adant2 1131 . . . . . . . . . . . . . . . . . . 19 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → ((1st𝑋) ∈ ℝ ∧ 𝐼 ∈ ℝ))
1918ancomd 461 . . . . . . . . . . . . . . . . . 18 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → (𝐼 ∈ ℝ ∧ (1st𝑋) ∈ ℝ))
20 min1 13149 . . . . . . . . . . . . . . . . . 18 ((𝐼 ∈ ℝ ∧ (1st𝑋) ∈ ℝ) → if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)) ≤ 𝐼)
2119, 20syl 17 . . . . . . . . . . . . . . . . 17 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)) ≤ 𝐼)
22 nnre 12193 . . . . . . . . . . . . . . . . . . . . . 22 ((2nd𝑋) ∈ ℕ → (2nd𝑋) ∈ ℝ)
2322adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) → (2nd𝑋) ∈ ℝ)
2423, 16anim12i 613 . . . . . . . . . . . . . . . . . . . 20 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ 𝐼 ∈ ℕ) → ((2nd𝑋) ∈ ℝ ∧ 𝐼 ∈ ℝ))
25243adant2 1131 . . . . . . . . . . . . . . . . . . 19 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → ((2nd𝑋) ∈ ℝ ∧ 𝐼 ∈ ℝ))
2625ancomd 461 . . . . . . . . . . . . . . . . . 18 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → (𝐼 ∈ ℝ ∧ (2nd𝑋) ∈ ℝ))
27 max1 13145 . . . . . . . . . . . . . . . . . 18 ((𝐼 ∈ ℝ ∧ (2nd𝑋) ∈ ℝ) → 𝐼 ≤ if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼))
2826, 27syl 17 . . . . . . . . . . . . . . . . 17 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → 𝐼 ≤ if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼))
299, 10, 13, 21, 28letrd 11331 . . . . . . . . . . . . . . . 16 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)) ≤ if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼))
30 df-br 5108 . . . . . . . . . . . . . . . 16 (if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)) ≤ if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼) ↔ ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ≤ )
3129, 30sylib 218 . . . . . . . . . . . . . . 15 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ≤ )
328, 12opelxpd 5677 . . . . . . . . . . . . . . 15 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ (ℕ × ℕ))
3331, 32elind 4163 . . . . . . . . . . . . . 14 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ)))
34333exp 1119 . . . . . . . . . . . . 13 (((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) → (⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ → (𝐼 ∈ ℕ → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ)))))
3534adantl 481 . . . . . . . . . . . 12 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ)) → (⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ → (𝐼 ∈ ℕ → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ)))))
365, 35sylbid 240 . . . . . . . . . . 11 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ)) → (𝑋 ∈ ≤ → (𝐼 ∈ ℕ → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ)))))
373, 36sylbi 217 . . . . . . . . . 10 (𝑋 ∈ (ℕ × ℕ) → (𝑋 ∈ ≤ → (𝐼 ∈ ℕ → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ)))))
3837impcom 407 . . . . . . . . 9 ((𝑋 ∈ ≤ ∧ 𝑋 ∈ (ℕ × ℕ)) → (𝐼 ∈ ℕ → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ))))
392, 38sylbi 217 . . . . . . . 8 (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) → (𝐼 ∈ ℕ → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ))))
40393ad2ant1 1133 . . . . . . 7 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (...‘𝑋)) → (𝐼 ∈ ℕ → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ))))
411, 40sylbi 217 . . . . . 6 (𝐺 Struct 𝑋 → (𝐼 ∈ ℕ → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ))))
4241imp 406 . . . . 5 ((𝐺 Struct 𝑋𝐼 ∈ ℕ) → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ)))
43423adant2 1131 . . . 4 ((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ)))
44 structex 17120 . . . . . . 7 (𝐺 Struct 𝑋𝐺 ∈ V)
45 structn0fun 17121 . . . . . . 7 (𝐺 Struct 𝑋 → Fun (𝐺 ∖ {∅}))
4644, 45jca 511 . . . . . 6 (𝐺 Struct 𝑋 → (𝐺 ∈ V ∧ Fun (𝐺 ∖ {∅})))
47463ad2ant1 1133 . . . . 5 ((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) → (𝐺 ∈ V ∧ Fun (𝐺 ∖ {∅})))
48 simp3 1138 . . . . 5 ((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) → 𝐼 ∈ ℕ)
49 simp2 1137 . . . . 5 ((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) → 𝐸𝑉)
50 setsfun0 17142 . . . . 5 (((𝐺 ∈ V ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼 ∈ ℕ ∧ 𝐸𝑉)) → Fun ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}))
5147, 48, 49, 50syl12anc 836 . . . 4 ((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) → Fun ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}))
52443ad2ant1 1133 . . . . . 6 ((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) → 𝐺 ∈ V)
53 setsdm 17140 . . . . . 6 ((𝐺 ∈ V ∧ 𝐸𝑉) → dom (𝐺 sSet ⟨𝐼, 𝐸⟩) = (dom 𝐺 ∪ {𝐼}))
5452, 49, 53syl2anc 584 . . . . 5 ((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) → dom (𝐺 sSet ⟨𝐼, 𝐸⟩) = (dom 𝐺 ∪ {𝐼}))
55 fveq2 6858 . . . . . . . . . . . . . . . . 17 (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ → (...‘𝑋) = (...‘⟨(1st𝑋), (2nd𝑋)⟩))
56 df-ov 7390 . . . . . . . . . . . . . . . . 17 ((1st𝑋)...(2nd𝑋)) = (...‘⟨(1st𝑋), (2nd𝑋)⟩)
5755, 56eqtr4di 2782 . . . . . . . . . . . . . . . 16 (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ → (...‘𝑋) = ((1st𝑋)...(2nd𝑋)))
5857sseq2d 3979 . . . . . . . . . . . . . . 15 (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ → (dom 𝐺 ⊆ (...‘𝑋) ↔ dom 𝐺 ⊆ ((1st𝑋)...(2nd𝑋))))
5958adantr 480 . . . . . . . . . . . . . 14 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ)) → (dom 𝐺 ⊆ (...‘𝑋) ↔ dom 𝐺 ⊆ ((1st𝑋)...(2nd𝑋))))
60 df-3an 1088 . . . . . . . . . . . . . . . . . 18 (((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ ∧ 𝐼 ∈ ℕ) ↔ (((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ 𝐼 ∈ ℕ))
61 nnz 12550 . . . . . . . . . . . . . . . . . . . . 21 ((1st𝑋) ∈ ℕ → (1st𝑋) ∈ ℤ)
62 nnz 12550 . . . . . . . . . . . . . . . . . . . . 21 ((2nd𝑋) ∈ ℕ → (2nd𝑋) ∈ ℤ)
63 nnz 12550 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ ℕ → 𝐼 ∈ ℤ)
6461, 62, 633anim123i 1151 . . . . . . . . . . . . . . . . . . . 20 (((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ ∧ 𝐼 ∈ ℕ) → ((1st𝑋) ∈ ℤ ∧ (2nd𝑋) ∈ ℤ ∧ 𝐼 ∈ ℤ))
65 ssfzunsnext 13530 . . . . . . . . . . . . . . . . . . . . 21 ((dom 𝐺 ⊆ ((1st𝑋)...(2nd𝑋)) ∧ ((1st𝑋) ∈ ℤ ∧ (2nd𝑋) ∈ ℤ ∧ 𝐼 ∈ ℤ)) → (dom 𝐺 ∪ {𝐼}) ⊆ (if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋))...if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)))
66 df-ov 7390 . . . . . . . . . . . . . . . . . . . . 21 (if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋))...if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)) = (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩)
6765, 66sseqtrdi 3987 . . . . . . . . . . . . . . . . . . . 20 ((dom 𝐺 ⊆ ((1st𝑋)...(2nd𝑋)) ∧ ((1st𝑋) ∈ ℤ ∧ (2nd𝑋) ∈ ℤ ∧ 𝐼 ∈ ℤ)) → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))
6864, 67sylan2 593 . . . . . . . . . . . . . . . . . . 19 ((dom 𝐺 ⊆ ((1st𝑋)...(2nd𝑋)) ∧ ((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ ∧ 𝐼 ∈ ℕ)) → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))
6968ex 412 . . . . . . . . . . . . . . . . . 18 (dom 𝐺 ⊆ ((1st𝑋)...(2nd𝑋)) → (((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ ∧ 𝐼 ∈ ℕ) → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩)))
7060, 69biimtrrid 243 . . . . . . . . . . . . . . . . 17 (dom 𝐺 ⊆ ((1st𝑋)...(2nd𝑋)) → ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ 𝐼 ∈ ℕ) → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩)))
7170expd 415 . . . . . . . . . . . . . . . 16 (dom 𝐺 ⊆ ((1st𝑋)...(2nd𝑋)) → (((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) → (𝐼 ∈ ℕ → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))))
7271com12 32 . . . . . . . . . . . . . . 15 (((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) → (dom 𝐺 ⊆ ((1st𝑋)...(2nd𝑋)) → (𝐼 ∈ ℕ → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))))
7372adantl 481 . . . . . . . . . . . . . 14 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ)) → (dom 𝐺 ⊆ ((1st𝑋)...(2nd𝑋)) → (𝐼 ∈ ℕ → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))))
7459, 73sylbid 240 . . . . . . . . . . . . 13 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ)) → (dom 𝐺 ⊆ (...‘𝑋) → (𝐼 ∈ ℕ → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))))
753, 74sylbi 217 . . . . . . . . . . . 12 (𝑋 ∈ (ℕ × ℕ) → (dom 𝐺 ⊆ (...‘𝑋) → (𝐼 ∈ ℕ → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))))
7675adantl 481 . . . . . . . . . . 11 ((𝑋 ∈ ≤ ∧ 𝑋 ∈ (ℕ × ℕ)) → (dom 𝐺 ⊆ (...‘𝑋) → (𝐼 ∈ ℕ → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))))
772, 76sylbi 217 . . . . . . . . . 10 (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) → (dom 𝐺 ⊆ (...‘𝑋) → (𝐼 ∈ ℕ → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))))
7877imp 406 . . . . . . . . 9 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ dom 𝐺 ⊆ (...‘𝑋)) → (𝐼 ∈ ℕ → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩)))
79783adant2 1131 . . . . . . . 8 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (...‘𝑋)) → (𝐼 ∈ ℕ → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩)))
801, 79sylbi 217 . . . . . . 7 (𝐺 Struct 𝑋 → (𝐼 ∈ ℕ → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩)))
8180imp 406 . . . . . 6 ((𝐺 Struct 𝑋𝐼 ∈ ℕ) → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))
82813adant2 1131 . . . . 5 ((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))
8354, 82eqsstrd 3981 . . . 4 ((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) → dom (𝐺 sSet ⟨𝐼, 𝐸⟩) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))
84 isstruct2 17119 . . . 4 ((𝐺 sSet ⟨𝐼, 𝐸⟩) Struct ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ↔ (⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}) ∧ dom (𝐺 sSet ⟨𝐼, 𝐸⟩) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩)))
8543, 51, 83, 84syl3anbrc 1344 . . 3 ((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) → (𝐺 sSet ⟨𝐼, 𝐸⟩) Struct ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩)
8685adantr 480 . 2 (((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) ∧ 𝑌 = ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩) → (𝐺 sSet ⟨𝐼, 𝐸⟩) Struct ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩)
87 breq2 5111 . . 3 (𝑌 = ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ → ((𝐺 sSet ⟨𝐼, 𝐸⟩) Struct 𝑌 ↔ (𝐺 sSet ⟨𝐼, 𝐸⟩) Struct ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))
8887adantl 481 . 2 (((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) ∧ 𝑌 = ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩) → ((𝐺 sSet ⟨𝐼, 𝐸⟩) Struct 𝑌 ↔ (𝐺 sSet ⟨𝐼, 𝐸⟩) Struct ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))
8986, 88mpbird 257 1 (((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) ∧ 𝑌 = ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩) → (𝐺 sSet ⟨𝐼, 𝐸⟩) Struct 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3447  cdif 3911  cun 3912  cin 3913  wss 3914  c0 4296  ifcif 4488  {csn 4589  cop 4595   class class class wbr 5107   × cxp 5636  dom cdm 5638  Fun wfun 6505  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  cr 11067  cle 11209  cn 12186  cz 12529  ...cfz 13468   Struct cstr 17116   sSet csts 17133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134
This theorem is referenced by:  setsexstruct2  17145  setsstruct  17146
  Copyright terms: Public domain W3C validator