MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsstruct2 Structured version   Visualization version   GIF version

Theorem setsstruct2 17193
Description: An extensible structure with a replaced slot is an extensible structure. (Contributed by AV, 14-Nov-2021.)
Assertion
Ref Expression
setsstruct2 (((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) ∧ 𝑌 = ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩) → (𝐺 sSet ⟨𝐼, 𝐸⟩) Struct 𝑌)

Proof of Theorem setsstruct2
StepHypRef Expression
1 isstruct2 17168 . . . . . . 7 (𝐺 Struct 𝑋 ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (...‘𝑋)))
2 elin 3942 . . . . . . . . 9 (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ↔ (𝑋 ∈ ≤ ∧ 𝑋 ∈ (ℕ × ℕ)))
3 elxp6 8022 . . . . . . . . . . 11 (𝑋 ∈ (ℕ × ℕ) ↔ (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ)))
4 eleq1 2822 . . . . . . . . . . . . 13 (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ → (𝑋 ∈ ≤ ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ))
54adantr 480 . . . . . . . . . . . 12 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ)) → (𝑋 ∈ ≤ ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ))
6 simp3 1138 . . . . . . . . . . . . . . . . . . 19 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → 𝐼 ∈ ℕ)
7 simp1l 1198 . . . . . . . . . . . . . . . . . . 19 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → (1st𝑋) ∈ ℕ)
86, 7ifcld 4547 . . . . . . . . . . . . . . . . . 18 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)) ∈ ℕ)
98nnred 12255 . . . . . . . . . . . . . . . . 17 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)) ∈ ℝ)
106nnred 12255 . . . . . . . . . . . . . . . . 17 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → 𝐼 ∈ ℝ)
11 simp1r 1199 . . . . . . . . . . . . . . . . . . 19 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → (2nd𝑋) ∈ ℕ)
1211, 6ifcld 4547 . . . . . . . . . . . . . . . . . 18 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼) ∈ ℕ)
1312nnred 12255 . . . . . . . . . . . . . . . . 17 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼) ∈ ℝ)
14 nnre 12247 . . . . . . . . . . . . . . . . . . . . . 22 ((1st𝑋) ∈ ℕ → (1st𝑋) ∈ ℝ)
1514adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) → (1st𝑋) ∈ ℝ)
16 nnre 12247 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ ℕ → 𝐼 ∈ ℝ)
1715, 16anim12i 613 . . . . . . . . . . . . . . . . . . . 20 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ 𝐼 ∈ ℕ) → ((1st𝑋) ∈ ℝ ∧ 𝐼 ∈ ℝ))
18173adant2 1131 . . . . . . . . . . . . . . . . . . 19 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → ((1st𝑋) ∈ ℝ ∧ 𝐼 ∈ ℝ))
1918ancomd 461 . . . . . . . . . . . . . . . . . 18 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → (𝐼 ∈ ℝ ∧ (1st𝑋) ∈ ℝ))
20 min1 13205 . . . . . . . . . . . . . . . . . 18 ((𝐼 ∈ ℝ ∧ (1st𝑋) ∈ ℝ) → if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)) ≤ 𝐼)
2119, 20syl 17 . . . . . . . . . . . . . . . . 17 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)) ≤ 𝐼)
22 nnre 12247 . . . . . . . . . . . . . . . . . . . . . 22 ((2nd𝑋) ∈ ℕ → (2nd𝑋) ∈ ℝ)
2322adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) → (2nd𝑋) ∈ ℝ)
2423, 16anim12i 613 . . . . . . . . . . . . . . . . . . . 20 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ 𝐼 ∈ ℕ) → ((2nd𝑋) ∈ ℝ ∧ 𝐼 ∈ ℝ))
25243adant2 1131 . . . . . . . . . . . . . . . . . . 19 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → ((2nd𝑋) ∈ ℝ ∧ 𝐼 ∈ ℝ))
2625ancomd 461 . . . . . . . . . . . . . . . . . 18 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → (𝐼 ∈ ℝ ∧ (2nd𝑋) ∈ ℝ))
27 max1 13201 . . . . . . . . . . . . . . . . . 18 ((𝐼 ∈ ℝ ∧ (2nd𝑋) ∈ ℝ) → 𝐼 ≤ if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼))
2826, 27syl 17 . . . . . . . . . . . . . . . . 17 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → 𝐼 ≤ if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼))
299, 10, 13, 21, 28letrd 11392 . . . . . . . . . . . . . . . 16 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)) ≤ if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼))
30 df-br 5120 . . . . . . . . . . . . . . . 16 (if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)) ≤ if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼) ↔ ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ≤ )
3129, 30sylib 218 . . . . . . . . . . . . . . 15 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ≤ )
328, 12opelxpd 5693 . . . . . . . . . . . . . . 15 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ (ℕ × ℕ))
3331, 32elind 4175 . . . . . . . . . . . . . 14 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ)))
34333exp 1119 . . . . . . . . . . . . 13 (((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) → (⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ → (𝐼 ∈ ℕ → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ)))))
3534adantl 481 . . . . . . . . . . . 12 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ)) → (⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ → (𝐼 ∈ ℕ → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ)))))
365, 35sylbid 240 . . . . . . . . . . 11 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ)) → (𝑋 ∈ ≤ → (𝐼 ∈ ℕ → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ)))))
373, 36sylbi 217 . . . . . . . . . 10 (𝑋 ∈ (ℕ × ℕ) → (𝑋 ∈ ≤ → (𝐼 ∈ ℕ → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ)))))
3837impcom 407 . . . . . . . . 9 ((𝑋 ∈ ≤ ∧ 𝑋 ∈ (ℕ × ℕ)) → (𝐼 ∈ ℕ → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ))))
392, 38sylbi 217 . . . . . . . 8 (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) → (𝐼 ∈ ℕ → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ))))
40393ad2ant1 1133 . . . . . . 7 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (...‘𝑋)) → (𝐼 ∈ ℕ → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ))))
411, 40sylbi 217 . . . . . 6 (𝐺 Struct 𝑋 → (𝐼 ∈ ℕ → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ))))
4241imp 406 . . . . 5 ((𝐺 Struct 𝑋𝐼 ∈ ℕ) → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ)))
43423adant2 1131 . . . 4 ((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ)))
44 structex 17169 . . . . . . 7 (𝐺 Struct 𝑋𝐺 ∈ V)
45 structn0fun 17170 . . . . . . 7 (𝐺 Struct 𝑋 → Fun (𝐺 ∖ {∅}))
4644, 45jca 511 . . . . . 6 (𝐺 Struct 𝑋 → (𝐺 ∈ V ∧ Fun (𝐺 ∖ {∅})))
47463ad2ant1 1133 . . . . 5 ((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) → (𝐺 ∈ V ∧ Fun (𝐺 ∖ {∅})))
48 simp3 1138 . . . . 5 ((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) → 𝐼 ∈ ℕ)
49 simp2 1137 . . . . 5 ((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) → 𝐸𝑉)
50 setsfun0 17191 . . . . 5 (((𝐺 ∈ V ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼 ∈ ℕ ∧ 𝐸𝑉)) → Fun ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}))
5147, 48, 49, 50syl12anc 836 . . . 4 ((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) → Fun ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}))
52443ad2ant1 1133 . . . . . 6 ((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) → 𝐺 ∈ V)
53 setsdm 17189 . . . . . 6 ((𝐺 ∈ V ∧ 𝐸𝑉) → dom (𝐺 sSet ⟨𝐼, 𝐸⟩) = (dom 𝐺 ∪ {𝐼}))
5452, 49, 53syl2anc 584 . . . . 5 ((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) → dom (𝐺 sSet ⟨𝐼, 𝐸⟩) = (dom 𝐺 ∪ {𝐼}))
55 fveq2 6876 . . . . . . . . . . . . . . . . 17 (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ → (...‘𝑋) = (...‘⟨(1st𝑋), (2nd𝑋)⟩))
56 df-ov 7408 . . . . . . . . . . . . . . . . 17 ((1st𝑋)...(2nd𝑋)) = (...‘⟨(1st𝑋), (2nd𝑋)⟩)
5755, 56eqtr4di 2788 . . . . . . . . . . . . . . . 16 (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ → (...‘𝑋) = ((1st𝑋)...(2nd𝑋)))
5857sseq2d 3991 . . . . . . . . . . . . . . 15 (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ → (dom 𝐺 ⊆ (...‘𝑋) ↔ dom 𝐺 ⊆ ((1st𝑋)...(2nd𝑋))))
5958adantr 480 . . . . . . . . . . . . . 14 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ)) → (dom 𝐺 ⊆ (...‘𝑋) ↔ dom 𝐺 ⊆ ((1st𝑋)...(2nd𝑋))))
60 df-3an 1088 . . . . . . . . . . . . . . . . . 18 (((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ ∧ 𝐼 ∈ ℕ) ↔ (((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ 𝐼 ∈ ℕ))
61 nnz 12609 . . . . . . . . . . . . . . . . . . . . 21 ((1st𝑋) ∈ ℕ → (1st𝑋) ∈ ℤ)
62 nnz 12609 . . . . . . . . . . . . . . . . . . . . 21 ((2nd𝑋) ∈ ℕ → (2nd𝑋) ∈ ℤ)
63 nnz 12609 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ ℕ → 𝐼 ∈ ℤ)
6461, 62, 633anim123i 1151 . . . . . . . . . . . . . . . . . . . 20 (((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ ∧ 𝐼 ∈ ℕ) → ((1st𝑋) ∈ ℤ ∧ (2nd𝑋) ∈ ℤ ∧ 𝐼 ∈ ℤ))
65 ssfzunsnext 13586 . . . . . . . . . . . . . . . . . . . . 21 ((dom 𝐺 ⊆ ((1st𝑋)...(2nd𝑋)) ∧ ((1st𝑋) ∈ ℤ ∧ (2nd𝑋) ∈ ℤ ∧ 𝐼 ∈ ℤ)) → (dom 𝐺 ∪ {𝐼}) ⊆ (if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋))...if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)))
66 df-ov 7408 . . . . . . . . . . . . . . . . . . . . 21 (if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋))...if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)) = (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩)
6765, 66sseqtrdi 3999 . . . . . . . . . . . . . . . . . . . 20 ((dom 𝐺 ⊆ ((1st𝑋)...(2nd𝑋)) ∧ ((1st𝑋) ∈ ℤ ∧ (2nd𝑋) ∈ ℤ ∧ 𝐼 ∈ ℤ)) → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))
6864, 67sylan2 593 . . . . . . . . . . . . . . . . . . 19 ((dom 𝐺 ⊆ ((1st𝑋)...(2nd𝑋)) ∧ ((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ ∧ 𝐼 ∈ ℕ)) → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))
6968ex 412 . . . . . . . . . . . . . . . . . 18 (dom 𝐺 ⊆ ((1st𝑋)...(2nd𝑋)) → (((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ ∧ 𝐼 ∈ ℕ) → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩)))
7060, 69biimtrrid 243 . . . . . . . . . . . . . . . . 17 (dom 𝐺 ⊆ ((1st𝑋)...(2nd𝑋)) → ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ 𝐼 ∈ ℕ) → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩)))
7170expd 415 . . . . . . . . . . . . . . . 16 (dom 𝐺 ⊆ ((1st𝑋)...(2nd𝑋)) → (((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) → (𝐼 ∈ ℕ → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))))
7271com12 32 . . . . . . . . . . . . . . 15 (((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) → (dom 𝐺 ⊆ ((1st𝑋)...(2nd𝑋)) → (𝐼 ∈ ℕ → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))))
7372adantl 481 . . . . . . . . . . . . . 14 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ)) → (dom 𝐺 ⊆ ((1st𝑋)...(2nd𝑋)) → (𝐼 ∈ ℕ → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))))
7459, 73sylbid 240 . . . . . . . . . . . . 13 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ)) → (dom 𝐺 ⊆ (...‘𝑋) → (𝐼 ∈ ℕ → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))))
753, 74sylbi 217 . . . . . . . . . . . 12 (𝑋 ∈ (ℕ × ℕ) → (dom 𝐺 ⊆ (...‘𝑋) → (𝐼 ∈ ℕ → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))))
7675adantl 481 . . . . . . . . . . 11 ((𝑋 ∈ ≤ ∧ 𝑋 ∈ (ℕ × ℕ)) → (dom 𝐺 ⊆ (...‘𝑋) → (𝐼 ∈ ℕ → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))))
772, 76sylbi 217 . . . . . . . . . 10 (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) → (dom 𝐺 ⊆ (...‘𝑋) → (𝐼 ∈ ℕ → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))))
7877imp 406 . . . . . . . . 9 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ dom 𝐺 ⊆ (...‘𝑋)) → (𝐼 ∈ ℕ → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩)))
79783adant2 1131 . . . . . . . 8 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (...‘𝑋)) → (𝐼 ∈ ℕ → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩)))
801, 79sylbi 217 . . . . . . 7 (𝐺 Struct 𝑋 → (𝐼 ∈ ℕ → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩)))
8180imp 406 . . . . . 6 ((𝐺 Struct 𝑋𝐼 ∈ ℕ) → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))
82813adant2 1131 . . . . 5 ((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))
8354, 82eqsstrd 3993 . . . 4 ((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) → dom (𝐺 sSet ⟨𝐼, 𝐸⟩) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))
84 isstruct2 17168 . . . 4 ((𝐺 sSet ⟨𝐼, 𝐸⟩) Struct ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ↔ (⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}) ∧ dom (𝐺 sSet ⟨𝐼, 𝐸⟩) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩)))
8543, 51, 83, 84syl3anbrc 1344 . . 3 ((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) → (𝐺 sSet ⟨𝐼, 𝐸⟩) Struct ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩)
8685adantr 480 . 2 (((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) ∧ 𝑌 = ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩) → (𝐺 sSet ⟨𝐼, 𝐸⟩) Struct ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩)
87 breq2 5123 . . 3 (𝑌 = ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ → ((𝐺 sSet ⟨𝐼, 𝐸⟩) Struct 𝑌 ↔ (𝐺 sSet ⟨𝐼, 𝐸⟩) Struct ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))
8887adantl 481 . 2 (((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) ∧ 𝑌 = ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩) → ((𝐺 sSet ⟨𝐼, 𝐸⟩) Struct 𝑌 ↔ (𝐺 sSet ⟨𝐼, 𝐸⟩) Struct ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))
8986, 88mpbird 257 1 (((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) ∧ 𝑌 = ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩) → (𝐺 sSet ⟨𝐼, 𝐸⟩) Struct 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  Vcvv 3459  cdif 3923  cun 3924  cin 3925  wss 3926  c0 4308  ifcif 4500  {csn 4601  cop 4607   class class class wbr 5119   × cxp 5652  dom cdm 5654  Fun wfun 6525  cfv 6531  (class class class)co 7405  1st c1st 7986  2nd c2nd 7987  cr 11128  cle 11270  cn 12240  cz 12588  ...cfz 13524   Struct cstr 17165   sSet csts 17182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-struct 17166  df-sets 17183
This theorem is referenced by:  setsexstruct2  17194  setsstruct  17195
  Copyright terms: Public domain W3C validator