MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsstruct2 Structured version   Visualization version   GIF version

Theorem setsstruct2 16513
Description: An extensible structure with a replaced slot is an extensible structure. (Contributed by AV, 14-Nov-2021.)
Assertion
Ref Expression
setsstruct2 (((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) ∧ 𝑌 = ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩) → (𝐺 sSet ⟨𝐼, 𝐸⟩) Struct 𝑌)

Proof of Theorem setsstruct2
StepHypRef Expression
1 isstruct2 16485 . . . . . . 7 (𝐺 Struct 𝑋 ↔ (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (...‘𝑋)))
2 elin 4172 . . . . . . . . 9 (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ↔ (𝑋 ∈ ≤ ∧ 𝑋 ∈ (ℕ × ℕ)))
3 elxp6 7717 . . . . . . . . . . 11 (𝑋 ∈ (ℕ × ℕ) ↔ (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ)))
4 eleq1 2904 . . . . . . . . . . . . 13 (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ → (𝑋 ∈ ≤ ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ))
54adantr 481 . . . . . . . . . . . 12 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ)) → (𝑋 ∈ ≤ ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ))
6 simp3 1132 . . . . . . . . . . . . . . . . . . 19 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → 𝐼 ∈ ℕ)
7 simp1l 1191 . . . . . . . . . . . . . . . . . . 19 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → (1st𝑋) ∈ ℕ)
86, 7ifcld 4514 . . . . . . . . . . . . . . . . . 18 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)) ∈ ℕ)
98nnred 11645 . . . . . . . . . . . . . . . . 17 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)) ∈ ℝ)
106nnred 11645 . . . . . . . . . . . . . . . . 17 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → 𝐼 ∈ ℝ)
11 simp1r 1192 . . . . . . . . . . . . . . . . . . 19 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → (2nd𝑋) ∈ ℕ)
1211, 6ifcld 4514 . . . . . . . . . . . . . . . . . 18 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼) ∈ ℕ)
1312nnred 11645 . . . . . . . . . . . . . . . . 17 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼) ∈ ℝ)
14 nnre 11637 . . . . . . . . . . . . . . . . . . . . . 22 ((1st𝑋) ∈ ℕ → (1st𝑋) ∈ ℝ)
1514adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) → (1st𝑋) ∈ ℝ)
16 nnre 11637 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ ℕ → 𝐼 ∈ ℝ)
1715, 16anim12i 612 . . . . . . . . . . . . . . . . . . . 20 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ 𝐼 ∈ ℕ) → ((1st𝑋) ∈ ℝ ∧ 𝐼 ∈ ℝ))
18173adant2 1125 . . . . . . . . . . . . . . . . . . 19 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → ((1st𝑋) ∈ ℝ ∧ 𝐼 ∈ ℝ))
1918ancomd 462 . . . . . . . . . . . . . . . . . 18 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → (𝐼 ∈ ℝ ∧ (1st𝑋) ∈ ℝ))
20 min1 12575 . . . . . . . . . . . . . . . . . 18 ((𝐼 ∈ ℝ ∧ (1st𝑋) ∈ ℝ) → if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)) ≤ 𝐼)
2119, 20syl 17 . . . . . . . . . . . . . . . . 17 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)) ≤ 𝐼)
22 nnre 11637 . . . . . . . . . . . . . . . . . . . . . 22 ((2nd𝑋) ∈ ℕ → (2nd𝑋) ∈ ℝ)
2322adantl 482 . . . . . . . . . . . . . . . . . . . . 21 (((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) → (2nd𝑋) ∈ ℝ)
2423, 16anim12i 612 . . . . . . . . . . . . . . . . . . . 20 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ 𝐼 ∈ ℕ) → ((2nd𝑋) ∈ ℝ ∧ 𝐼 ∈ ℝ))
25243adant2 1125 . . . . . . . . . . . . . . . . . . 19 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → ((2nd𝑋) ∈ ℝ ∧ 𝐼 ∈ ℝ))
2625ancomd 462 . . . . . . . . . . . . . . . . . 18 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → (𝐼 ∈ ℝ ∧ (2nd𝑋) ∈ ℝ))
27 max1 12571 . . . . . . . . . . . . . . . . . 18 ((𝐼 ∈ ℝ ∧ (2nd𝑋) ∈ ℝ) → 𝐼 ≤ if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼))
2826, 27syl 17 . . . . . . . . . . . . . . . . 17 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → 𝐼 ≤ if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼))
299, 10, 13, 21, 28letrd 10789 . . . . . . . . . . . . . . . 16 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)) ≤ if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼))
30 df-br 5063 . . . . . . . . . . . . . . . 16 (if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)) ≤ if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼) ↔ ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ≤ )
3129, 30sylib 219 . . . . . . . . . . . . . . 15 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ≤ )
328, 12opelxpd 5591 . . . . . . . . . . . . . . 15 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ (ℕ × ℕ))
3331, 32elind 4174 . . . . . . . . . . . . . 14 ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ ∧ 𝐼 ∈ ℕ) → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ)))
34333exp 1113 . . . . . . . . . . . . 13 (((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) → (⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ → (𝐼 ∈ ℕ → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ)))))
3534adantl 482 . . . . . . . . . . . 12 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ)) → (⟨(1st𝑋), (2nd𝑋)⟩ ∈ ≤ → (𝐼 ∈ ℕ → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ)))))
365, 35sylbid 241 . . . . . . . . . . 11 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ)) → (𝑋 ∈ ≤ → (𝐼 ∈ ℕ → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ)))))
373, 36sylbi 218 . . . . . . . . . 10 (𝑋 ∈ (ℕ × ℕ) → (𝑋 ∈ ≤ → (𝐼 ∈ ℕ → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ)))))
3837impcom 408 . . . . . . . . 9 ((𝑋 ∈ ≤ ∧ 𝑋 ∈ (ℕ × ℕ)) → (𝐼 ∈ ℕ → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ))))
392, 38sylbi 218 . . . . . . . 8 (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) → (𝐼 ∈ ℕ → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ))))
40393ad2ant1 1127 . . . . . . 7 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (...‘𝑋)) → (𝐼 ∈ ℕ → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ))))
411, 40sylbi 218 . . . . . 6 (𝐺 Struct 𝑋 → (𝐼 ∈ ℕ → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ))))
4241imp 407 . . . . 5 ((𝐺 Struct 𝑋𝐼 ∈ ℕ) → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ)))
43423adant2 1125 . . . 4 ((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) → ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ)))
44 structex 16486 . . . . . . 7 (𝐺 Struct 𝑋𝐺 ∈ V)
45 structn0fun 16487 . . . . . . 7 (𝐺 Struct 𝑋 → Fun (𝐺 ∖ {∅}))
4644, 45jca 512 . . . . . 6 (𝐺 Struct 𝑋 → (𝐺 ∈ V ∧ Fun (𝐺 ∖ {∅})))
47463ad2ant1 1127 . . . . 5 ((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) → (𝐺 ∈ V ∧ Fun (𝐺 ∖ {∅})))
48 simp3 1132 . . . . 5 ((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) → 𝐼 ∈ ℕ)
49 simp2 1131 . . . . 5 ((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) → 𝐸𝑉)
50 setsfun0 16511 . . . . 5 (((𝐺 ∈ V ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼 ∈ ℕ ∧ 𝐸𝑉)) → Fun ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}))
5147, 48, 49, 50syl12anc 834 . . . 4 ((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) → Fun ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}))
52443ad2ant1 1127 . . . . . 6 ((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) → 𝐺 ∈ V)
53 setsdm 16509 . . . . . 6 ((𝐺 ∈ V ∧ 𝐸𝑉) → dom (𝐺 sSet ⟨𝐼, 𝐸⟩) = (dom 𝐺 ∪ {𝐼}))
5452, 49, 53syl2anc 584 . . . . 5 ((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) → dom (𝐺 sSet ⟨𝐼, 𝐸⟩) = (dom 𝐺 ∪ {𝐼}))
55 fveq2 6666 . . . . . . . . . . . . . . . . 17 (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ → (...‘𝑋) = (...‘⟨(1st𝑋), (2nd𝑋)⟩))
56 df-ov 7154 . . . . . . . . . . . . . . . . 17 ((1st𝑋)...(2nd𝑋)) = (...‘⟨(1st𝑋), (2nd𝑋)⟩)
5755, 56syl6eqr 2878 . . . . . . . . . . . . . . . 16 (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ → (...‘𝑋) = ((1st𝑋)...(2nd𝑋)))
5857sseq2d 4002 . . . . . . . . . . . . . . 15 (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ → (dom 𝐺 ⊆ (...‘𝑋) ↔ dom 𝐺 ⊆ ((1st𝑋)...(2nd𝑋))))
5958adantr 481 . . . . . . . . . . . . . 14 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ)) → (dom 𝐺 ⊆ (...‘𝑋) ↔ dom 𝐺 ⊆ ((1st𝑋)...(2nd𝑋))))
60 df-3an 1083 . . . . . . . . . . . . . . . . . 18 (((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ ∧ 𝐼 ∈ ℕ) ↔ (((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ 𝐼 ∈ ℕ))
61 nnz 11996 . . . . . . . . . . . . . . . . . . . . 21 ((1st𝑋) ∈ ℕ → (1st𝑋) ∈ ℤ)
62 nnz 11996 . . . . . . . . . . . . . . . . . . . . 21 ((2nd𝑋) ∈ ℕ → (2nd𝑋) ∈ ℤ)
63 nnz 11996 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ ℕ → 𝐼 ∈ ℤ)
6461, 62, 633anim123i 1145 . . . . . . . . . . . . . . . . . . . 20 (((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ ∧ 𝐼 ∈ ℕ) → ((1st𝑋) ∈ ℤ ∧ (2nd𝑋) ∈ ℤ ∧ 𝐼 ∈ ℤ))
65 ssfzunsnext 12945 . . . . . . . . . . . . . . . . . . . . 21 ((dom 𝐺 ⊆ ((1st𝑋)...(2nd𝑋)) ∧ ((1st𝑋) ∈ ℤ ∧ (2nd𝑋) ∈ ℤ ∧ 𝐼 ∈ ℤ)) → (dom 𝐺 ∪ {𝐼}) ⊆ (if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋))...if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)))
66 df-ov 7154 . . . . . . . . . . . . . . . . . . . . 21 (if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋))...if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)) = (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩)
6765, 66syl6sseq 4020 . . . . . . . . . . . . . . . . . . . 20 ((dom 𝐺 ⊆ ((1st𝑋)...(2nd𝑋)) ∧ ((1st𝑋) ∈ ℤ ∧ (2nd𝑋) ∈ ℤ ∧ 𝐼 ∈ ℤ)) → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))
6864, 67sylan2 592 . . . . . . . . . . . . . . . . . . 19 ((dom 𝐺 ⊆ ((1st𝑋)...(2nd𝑋)) ∧ ((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ ∧ 𝐼 ∈ ℕ)) → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))
6968ex 413 . . . . . . . . . . . . . . . . . 18 (dom 𝐺 ⊆ ((1st𝑋)...(2nd𝑋)) → (((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ ∧ 𝐼 ∈ ℕ) → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩)))
7060, 69syl5bir 244 . . . . . . . . . . . . . . . . 17 (dom 𝐺 ⊆ ((1st𝑋)...(2nd𝑋)) → ((((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) ∧ 𝐼 ∈ ℕ) → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩)))
7170expd 416 . . . . . . . . . . . . . . . 16 (dom 𝐺 ⊆ ((1st𝑋)...(2nd𝑋)) → (((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) → (𝐼 ∈ ℕ → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))))
7271com12 32 . . . . . . . . . . . . . . 15 (((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ) → (dom 𝐺 ⊆ ((1st𝑋)...(2nd𝑋)) → (𝐼 ∈ ℕ → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))))
7372adantl 482 . . . . . . . . . . . . . 14 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ)) → (dom 𝐺 ⊆ ((1st𝑋)...(2nd𝑋)) → (𝐼 ∈ ℕ → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))))
7459, 73sylbid 241 . . . . . . . . . . . . 13 ((𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ ∧ ((1st𝑋) ∈ ℕ ∧ (2nd𝑋) ∈ ℕ)) → (dom 𝐺 ⊆ (...‘𝑋) → (𝐼 ∈ ℕ → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))))
753, 74sylbi 218 . . . . . . . . . . . 12 (𝑋 ∈ (ℕ × ℕ) → (dom 𝐺 ⊆ (...‘𝑋) → (𝐼 ∈ ℕ → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))))
7675adantl 482 . . . . . . . . . . 11 ((𝑋 ∈ ≤ ∧ 𝑋 ∈ (ℕ × ℕ)) → (dom 𝐺 ⊆ (...‘𝑋) → (𝐼 ∈ ℕ → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))))
772, 76sylbi 218 . . . . . . . . . 10 (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) → (dom 𝐺 ⊆ (...‘𝑋) → (𝐼 ∈ ℕ → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))))
7877imp 407 . . . . . . . . 9 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ dom 𝐺 ⊆ (...‘𝑋)) → (𝐼 ∈ ℕ → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩)))
79783adant2 1125 . . . . . . . 8 ((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (...‘𝑋)) → (𝐼 ∈ ℕ → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩)))
801, 79sylbi 218 . . . . . . 7 (𝐺 Struct 𝑋 → (𝐼 ∈ ℕ → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩)))
8180imp 407 . . . . . 6 ((𝐺 Struct 𝑋𝐼 ∈ ℕ) → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))
82813adant2 1125 . . . . 5 ((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) → (dom 𝐺 ∪ {𝐼}) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))
8354, 82eqsstrd 4008 . . . 4 ((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) → dom (𝐺 sSet ⟨𝐼, 𝐸⟩) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))
84 isstruct2 16485 . . . 4 ((𝐺 sSet ⟨𝐼, 𝐸⟩) Struct ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ↔ (⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}) ∧ dom (𝐺 sSet ⟨𝐼, 𝐸⟩) ⊆ (...‘⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩)))
8543, 51, 83, 84syl3anbrc 1337 . . 3 ((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) → (𝐺 sSet ⟨𝐼, 𝐸⟩) Struct ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩)
8685adantr 481 . 2 (((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) ∧ 𝑌 = ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩) → (𝐺 sSet ⟨𝐼, 𝐸⟩) Struct ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩)
87 breq2 5066 . . 3 (𝑌 = ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩ → ((𝐺 sSet ⟨𝐼, 𝐸⟩) Struct 𝑌 ↔ (𝐺 sSet ⟨𝐼, 𝐸⟩) Struct ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))
8887adantl 482 . 2 (((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) ∧ 𝑌 = ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩) → ((𝐺 sSet ⟨𝐼, 𝐸⟩) Struct 𝑌 ↔ (𝐺 sSet ⟨𝐼, 𝐸⟩) Struct ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩))
8986, 88mpbird 258 1 (((𝐺 Struct 𝑋𝐸𝑉𝐼 ∈ ℕ) ∧ 𝑌 = ⟨if(𝐼 ≤ (1st𝑋), 𝐼, (1st𝑋)), if(𝐼 ≤ (2nd𝑋), (2nd𝑋), 𝐼)⟩) → (𝐺 sSet ⟨𝐼, 𝐸⟩) Struct 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  Vcvv 3499  cdif 3936  cun 3937  cin 3938  wss 3939  c0 4294  ifcif 4469  {csn 4563  cop 4569   class class class wbr 5062   × cxp 5551  dom cdm 5553  Fun wfun 6345  cfv 6351  (class class class)co 7151  1st c1st 7681  2nd c2nd 7682  cr 10528  cle 10668  cn 11630  cz 11973  ...cfz 12885   Struct cstr 16471   sSet csts 16473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12886  df-struct 16477  df-sets 16482
This theorem is referenced by:  setsexstruct2  16514  setsstruct  16515
  Copyright terms: Public domain W3C validator