| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onsucb | Structured version Visualization version GIF version | ||
| Description: A class is an ordinal number if and only if its successor is an ordinal number. Biconditional form of onsuc 7787. (Contributed by NM, 9-Sep-2003.) |
| Ref | Expression |
|---|---|
| onsucb | ⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordsuc 7788 | . . 3 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | |
| 2 | sucexb 7780 | . . 3 ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) | |
| 3 | 1, 2 | anbi12i 628 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐴 ∈ V) ↔ (Ord suc 𝐴 ∧ suc 𝐴 ∈ V)) |
| 4 | elon2 6343 | . 2 ⊢ (𝐴 ∈ On ↔ (Ord 𝐴 ∧ 𝐴 ∈ V)) | |
| 5 | elon2 6343 | . 2 ⊢ (suc 𝐴 ∈ On ↔ (Ord suc 𝐴 ∧ suc 𝐴 ∈ V)) | |
| 6 | 3, 4, 5 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3447 Ord word 6331 Oncon0 6332 suc csuc 6334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 df-suc 6338 |
| This theorem is referenced by: onsucmin 7796 tfindsg2 7838 oaordi 8510 oalimcl 8524 omlimcl 8542 omeulem1 8546 oeordsuc 8558 naddcllem 8640 infensuc 9119 cantnflem1b 9639 cantnflem1 9642 r1ordg 9731 alephnbtwn 10024 cfsuc 10210 alephsuc3 10533 alephreg 10535 bdayimaon 27605 nosupbnd1lem1 27620 nosupbnd1 27626 nosupbnd2lem1 27627 nosupbnd2 27628 noinfno 27630 noinfres 27634 noinfbnd1lem1 27635 noinfbnd1 27641 noinfbnd2lem1 27642 noinfbnd2 27643 noeta2 27696 etasslt2 27726 |
| Copyright terms: Public domain | W3C validator |