![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onsucb | Structured version Visualization version GIF version |
Description: A class is an ordinal number if and only if its successor is an ordinal number. Biconditional form of onsuc 7820. (Contributed by NM, 9-Sep-2003.) |
Ref | Expression |
---|---|
onsucb | ⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsuc 7822 | . . 3 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | |
2 | sucexb 7813 | . . 3 ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) | |
3 | 1, 2 | anbi12i 626 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐴 ∈ V) ↔ (Ord suc 𝐴 ∧ suc 𝐴 ∈ V)) |
4 | elon2 6387 | . 2 ⊢ (𝐴 ∈ On ↔ (Ord 𝐴 ∧ 𝐴 ∈ V)) | |
5 | elon2 6387 | . 2 ⊢ (suc 𝐴 ∈ On ↔ (Ord suc 𝐴 ∧ suc 𝐴 ∈ V)) | |
6 | 3, 4, 5 | 3bitr4i 302 | 1 ⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∈ wcel 2099 Vcvv 3462 Ord word 6375 Oncon0 6376 suc csuc 6378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-tr 5271 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-ord 6379 df-on 6380 df-suc 6382 |
This theorem is referenced by: onsucmin 7830 tfindsg2 7872 oaordi 8576 oalimcl 8590 omlimcl 8608 omeulem1 8612 oeordsuc 8624 naddcllem 8706 infensuc 9193 cantnflem1b 9729 cantnflem1 9732 r1ordg 9821 alephnbtwn 10114 cfsuc 10300 alephsuc3 10623 alephreg 10625 bdayimaon 27723 nosupbnd1lem1 27738 nosupbnd1 27744 nosupbnd2lem1 27745 nosupbnd2 27746 noinfno 27748 noinfres 27752 noinfbnd1lem1 27753 noinfbnd1 27759 noinfbnd2lem1 27760 noinfbnd2 27761 noeta2 27814 etasslt2 27844 |
Copyright terms: Public domain | W3C validator |