| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onsucb | Structured version Visualization version GIF version | ||
| Description: A class is an ordinal number if and only if its successor is an ordinal number. Biconditional form of onsuc 7752. (Contributed by NM, 9-Sep-2003.) |
| Ref | Expression |
|---|---|
| onsucb | ⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordsuc 7753 | . . 3 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | |
| 2 | sucexb 7746 | . . 3 ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) | |
| 3 | 1, 2 | anbi12i 628 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐴 ∈ V) ↔ (Ord suc 𝐴 ∧ suc 𝐴 ∈ V)) |
| 4 | elon2 6325 | . 2 ⊢ (𝐴 ∈ On ↔ (Ord 𝐴 ∧ 𝐴 ∈ V)) | |
| 5 | elon2 6325 | . 2 ⊢ (suc 𝐴 ∈ On ↔ (Ord suc 𝐴 ∧ suc 𝐴 ∈ V)) | |
| 6 | 3, 4, 5 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2113 Vcvv 3437 Ord word 6313 Oncon0 6314 suc csuc 6316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-tr 5203 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-ord 6317 df-on 6318 df-suc 6320 |
| This theorem is referenced by: onsucmin 7760 tfindsg2 7801 oaordi 8470 oalimcl 8484 omlimcl 8502 omeulem1 8506 oeordsuc 8518 naddcllem 8600 infensuc 9079 cantnflem1b 9587 cantnflem1 9590 r1ordg 9682 alephnbtwn 9973 cfsuc 10159 alephsuc3 10482 alephreg 10484 bdayimaon 27652 nosupbnd1lem1 27667 nosupbnd1 27673 nosupbnd2lem1 27674 nosupbnd2 27675 noinfno 27677 noinfres 27681 noinfbnd1lem1 27682 noinfbnd1 27688 noinfbnd2lem1 27689 noinfbnd2 27690 noeta2 27744 etasslt2 27775 |
| Copyright terms: Public domain | W3C validator |