![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onsucb | Structured version Visualization version GIF version |
Description: A class is an ordinal number if and only if its successor is an ordinal number. Biconditional form of onsuc 7847. (Contributed by NM, 9-Sep-2003.) |
Ref | Expression |
---|---|
onsucb | ⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsuc 7849 | . . 3 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | |
2 | sucexb 7840 | . . 3 ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) | |
3 | 1, 2 | anbi12i 627 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐴 ∈ V) ↔ (Ord suc 𝐴 ∧ suc 𝐴 ∈ V)) |
4 | elon2 6406 | . 2 ⊢ (𝐴 ∈ On ↔ (Ord 𝐴 ∧ 𝐴 ∈ V)) | |
5 | elon2 6406 | . 2 ⊢ (suc 𝐴 ∈ On ↔ (Ord suc 𝐴 ∧ suc 𝐴 ∈ V)) | |
6 | 3, 4, 5 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 Vcvv 3488 Ord word 6394 Oncon0 6395 suc csuc 6397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 df-suc 6401 |
This theorem is referenced by: onsucmin 7857 tfindsg2 7899 oaordi 8602 oalimcl 8616 omlimcl 8634 omeulem1 8638 oeordsuc 8650 naddcllem 8732 infensuc 9221 cantnflem1b 9755 cantnflem1 9758 r1ordg 9847 alephnbtwn 10140 cfsuc 10326 alephsuc3 10649 alephreg 10651 bdayimaon 27756 nosupbnd1lem1 27771 nosupbnd1 27777 nosupbnd2lem1 27778 nosupbnd2 27779 noinfno 27781 noinfres 27785 noinfbnd1lem1 27786 noinfbnd1 27792 noinfbnd2lem1 27793 noinfbnd2 27794 noeta2 27847 etasslt2 27877 |
Copyright terms: Public domain | W3C validator |