MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsucb Structured version   Visualization version   GIF version

Theorem onsucb 7816
Description: A class is an ordinal number if and only if its successor is an ordinal number. Biconditional form of onsuc 7810. (Contributed by NM, 9-Sep-2003.)
Assertion
Ref Expression
onsucb (𝐴 ∈ On ↔ suc 𝐴 ∈ On)

Proof of Theorem onsucb
StepHypRef Expression
1 ordsuc 7812 . . 3 (Ord 𝐴 ↔ Ord suc 𝐴)
2 sucexb 7803 . . 3 (𝐴 ∈ V ↔ suc 𝐴 ∈ V)
31, 2anbi12i 628 . 2 ((Ord 𝐴𝐴 ∈ V) ↔ (Ord suc 𝐴 ∧ suc 𝐴 ∈ V))
4 elon2 6368 . 2 (𝐴 ∈ On ↔ (Ord 𝐴𝐴 ∈ V))
5 elon2 6368 . 2 (suc 𝐴 ∈ On ↔ (Ord suc 𝐴 ∧ suc 𝐴 ∈ V))
63, 4, 53bitr4i 303 1 (𝐴 ∈ On ↔ suc 𝐴 ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  Vcvv 3464  Ord word 6356  Oncon0 6357  suc csuc 6359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-tr 5235  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-ord 6360  df-on 6361  df-suc 6363
This theorem is referenced by:  onsucmin  7820  tfindsg2  7862  oaordi  8563  oalimcl  8577  omlimcl  8595  omeulem1  8599  oeordsuc  8611  naddcllem  8693  infensuc  9174  cantnflem1b  9705  cantnflem1  9708  r1ordg  9797  alephnbtwn  10090  cfsuc  10276  alephsuc3  10599  alephreg  10601  bdayimaon  27662  nosupbnd1lem1  27677  nosupbnd1  27683  nosupbnd2lem1  27684  nosupbnd2  27685  noinfno  27687  noinfres  27691  noinfbnd1lem1  27692  noinfbnd1  27698  noinfbnd2lem1  27699  noinfbnd2  27700  noeta2  27753  etasslt2  27783
  Copyright terms: Public domain W3C validator