| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onsucb | Structured version Visualization version GIF version | ||
| Description: A class is an ordinal number if and only if its successor is an ordinal number. Biconditional form of onsuc 7810. (Contributed by NM, 9-Sep-2003.) |
| Ref | Expression |
|---|---|
| onsucb | ⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordsuc 7812 | . . 3 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | |
| 2 | sucexb 7803 | . . 3 ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) | |
| 3 | 1, 2 | anbi12i 628 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐴 ∈ V) ↔ (Ord suc 𝐴 ∧ suc 𝐴 ∈ V)) |
| 4 | elon2 6368 | . 2 ⊢ (𝐴 ∈ On ↔ (Ord 𝐴 ∧ 𝐴 ∈ V)) | |
| 5 | elon2 6368 | . 2 ⊢ (suc 𝐴 ∈ On ↔ (Ord suc 𝐴 ∧ suc 𝐴 ∈ V)) | |
| 6 | 3, 4, 5 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3464 Ord word 6356 Oncon0 6357 suc csuc 6359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-ord 6360 df-on 6361 df-suc 6363 |
| This theorem is referenced by: onsucmin 7820 tfindsg2 7862 oaordi 8563 oalimcl 8577 omlimcl 8595 omeulem1 8599 oeordsuc 8611 naddcllem 8693 infensuc 9174 cantnflem1b 9705 cantnflem1 9708 r1ordg 9797 alephnbtwn 10090 cfsuc 10276 alephsuc3 10599 alephreg 10601 bdayimaon 27662 nosupbnd1lem1 27677 nosupbnd1 27683 nosupbnd2lem1 27684 nosupbnd2 27685 noinfno 27687 noinfres 27691 noinfbnd1lem1 27692 noinfbnd1 27698 noinfbnd2lem1 27699 noinfbnd2 27700 noeta2 27753 etasslt2 27783 |
| Copyright terms: Public domain | W3C validator |