![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onsucb | Structured version Visualization version GIF version |
Description: A class is an ordinal number if and only if its successor is an ordinal number. Biconditional form of onsuc 7803. (Contributed by NM, 9-Sep-2003.) |
Ref | Expression |
---|---|
onsucb | ⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsuc 7805 | . . 3 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | |
2 | sucexb 7796 | . . 3 ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) | |
3 | 1, 2 | anbi12i 626 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐴 ∈ V) ↔ (Ord suc 𝐴 ∧ suc 𝐴 ∈ V)) |
4 | elon2 6375 | . 2 ⊢ (𝐴 ∈ On ↔ (Ord 𝐴 ∧ 𝐴 ∈ V)) | |
5 | elon2 6375 | . 2 ⊢ (suc 𝐴 ∈ On ↔ (Ord suc 𝐴 ∧ suc 𝐴 ∈ V)) | |
6 | 3, 4, 5 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2105 Vcvv 3473 Ord word 6363 Oncon0 6364 suc csuc 6366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-ord 6367 df-on 6368 df-suc 6370 |
This theorem is referenced by: onsucmin 7813 tfindsg2 7855 oaordi 8552 oalimcl 8566 omlimcl 8584 omeulem1 8588 oeordsuc 8600 naddcllem 8681 infensuc 9161 cantnflem1b 9687 cantnflem1 9690 r1ordg 9779 alephnbtwn 10072 cfsuc 10258 alephsuc3 10581 alephreg 10583 bdayimaon 27539 nosupbnd1lem1 27554 nosupbnd1 27560 nosupbnd2lem1 27561 nosupbnd2 27562 noinfno 27564 noinfres 27568 noinfbnd1lem1 27569 noinfbnd1 27575 noinfbnd2lem1 27576 noinfbnd2 27577 noeta2 27630 etasslt2 27660 |
Copyright terms: Public domain | W3C validator |