| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onsucb | Structured version Visualization version GIF version | ||
| Description: A class is an ordinal number if and only if its successor is an ordinal number. Biconditional form of onsuc 7790. (Contributed by NM, 9-Sep-2003.) |
| Ref | Expression |
|---|---|
| onsucb | ⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordsuc 7791 | . . 3 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | |
| 2 | sucexb 7783 | . . 3 ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) | |
| 3 | 1, 2 | anbi12i 628 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐴 ∈ V) ↔ (Ord suc 𝐴 ∧ suc 𝐴 ∈ V)) |
| 4 | elon2 6346 | . 2 ⊢ (𝐴 ∈ On ↔ (Ord 𝐴 ∧ 𝐴 ∈ V)) | |
| 5 | elon2 6346 | . 2 ⊢ (suc 𝐴 ∈ On ↔ (Ord suc 𝐴 ∧ suc 𝐴 ∈ V)) | |
| 6 | 3, 4, 5 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3450 Ord word 6334 Oncon0 6335 suc csuc 6337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 df-on 6339 df-suc 6341 |
| This theorem is referenced by: onsucmin 7799 tfindsg2 7841 oaordi 8513 oalimcl 8527 omlimcl 8545 omeulem1 8549 oeordsuc 8561 naddcllem 8643 infensuc 9125 cantnflem1b 9646 cantnflem1 9649 r1ordg 9738 alephnbtwn 10031 cfsuc 10217 alephsuc3 10540 alephreg 10542 bdayimaon 27612 nosupbnd1lem1 27627 nosupbnd1 27633 nosupbnd2lem1 27634 nosupbnd2 27635 noinfno 27637 noinfres 27641 noinfbnd1lem1 27642 noinfbnd1 27648 noinfbnd2lem1 27649 noinfbnd2 27650 noeta2 27703 etasslt2 27733 |
| Copyright terms: Public domain | W3C validator |