MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucssel Structured version   Visualization version   GIF version

Theorem sucssel 6411
Description: A set whose successor is a subset of another class is a member of that class. (Contributed by NM, 16-Sep-1995.)
Assertion
Ref Expression
sucssel (𝐴𝑉 → (suc 𝐴𝐵𝐴𝐵))

Proof of Theorem sucssel
StepHypRef Expression
1 sucidg 6397 . 2 (𝐴𝑉𝐴 ∈ suc 𝐴)
2 ssel 3924 . 2 (suc 𝐴𝐵 → (𝐴 ∈ suc 𝐴𝐴𝐵))
31, 2syl5com 31 1 (𝐴𝑉 → (suc 𝐴𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  wss 3898  suc csuc 6316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-un 3903  df-ss 3915  df-sn 4578  df-suc 6320
This theorem is referenced by:  suc11  6423  ordelsuc  7759  ordsucelsuc  7761  oaordi  8470  nnaordi  8542  unbnn2  9192  ackbij1b  10140  ackbij2  10144  cflm  10152  isf32lem2  10256  indpi  10809  dfon2lem3  35899
  Copyright terms: Public domain W3C validator