![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sucssel | Structured version Visualization version GIF version |
Description: A set whose successor is a subset of another class is a member of that class. (Contributed by NM, 16-Sep-1995.) |
Ref | Expression |
---|---|
sucssel | ⊢ (𝐴 ∈ 𝑉 → (suc 𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucidg 6467 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) | |
2 | ssel 3989 | . 2 ⊢ (suc 𝐴 ⊆ 𝐵 → (𝐴 ∈ suc 𝐴 → 𝐴 ∈ 𝐵)) | |
3 | 1, 2 | syl5com 31 | 1 ⊢ (𝐴 ∈ 𝑉 → (suc 𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ⊆ wss 3963 suc csuc 6388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-un 3968 df-ss 3980 df-sn 4632 df-suc 6392 |
This theorem is referenced by: suc11 6493 ordelsuc 7840 ordsucelsuc 7842 oaordi 8583 nnaordi 8655 unbnn2 9331 ackbij1b 10276 ackbij2 10280 cflm 10288 isf32lem2 10392 indpi 10945 dfon2lem3 35767 |
Copyright terms: Public domain | W3C validator |