Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sucssel | Structured version Visualization version GIF version |
Description: A set whose successor is a subset of another class is a member of that class. (Contributed by NM, 16-Sep-1995.) |
Ref | Expression |
---|---|
sucssel | ⊢ (𝐴 ∈ 𝑉 → (suc 𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucidg 6344 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) | |
2 | ssel 3914 | . 2 ⊢ (suc 𝐴 ⊆ 𝐵 → (𝐴 ∈ suc 𝐴 → 𝐴 ∈ 𝐵)) | |
3 | 1, 2 | syl5com 31 | 1 ⊢ (𝐴 ∈ 𝑉 → (suc 𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ⊆ wss 3887 suc csuc 6268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-in 3894 df-ss 3904 df-sn 4562 df-suc 6272 |
This theorem is referenced by: suc11 6369 ordelsuc 7667 ordsucelsuc 7669 oaordi 8377 nnaordi 8449 unbnn2 9071 ackbij1b 9995 ackbij2 9999 cflm 10006 isf32lem2 10110 indpi 10663 dfon2lem3 33761 |
Copyright terms: Public domain | W3C validator |