| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sucssel | Structured version Visualization version GIF version | ||
| Description: A set whose successor is a subset of another class is a member of that class. (Contributed by NM, 16-Sep-1995.) |
| Ref | Expression |
|---|---|
| sucssel | ⊢ (𝐴 ∈ 𝑉 → (suc 𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucidg 6384 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) | |
| 2 | ssel 3923 | . 2 ⊢ (suc 𝐴 ⊆ 𝐵 → (𝐴 ∈ suc 𝐴 → 𝐴 ∈ 𝐵)) | |
| 3 | 1, 2 | syl5com 31 | 1 ⊢ (𝐴 ∈ 𝑉 → (suc 𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ⊆ wss 3897 suc csuc 6303 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 df-ss 3914 df-sn 4572 df-suc 6307 |
| This theorem is referenced by: suc11 6410 ordelsuc 7745 ordsucelsuc 7747 oaordi 8456 nnaordi 8528 unbnn2 9176 ackbij1b 10124 ackbij2 10128 cflm 10136 isf32lem2 10240 indpi 10793 dfon2lem3 35819 |
| Copyright terms: Public domain | W3C validator |