| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sucssel | Structured version Visualization version GIF version | ||
| Description: A set whose successor is a subset of another class is a member of that class. (Contributed by NM, 16-Sep-1995.) |
| Ref | Expression |
|---|---|
| sucssel | ⊢ (𝐴 ∈ 𝑉 → (suc 𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucidg 6415 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) | |
| 2 | ssel 3940 | . 2 ⊢ (suc 𝐴 ⊆ 𝐵 → (𝐴 ∈ suc 𝐴 → 𝐴 ∈ 𝐵)) | |
| 3 | 1, 2 | syl5com 31 | 1 ⊢ (𝐴 ∈ 𝑉 → (suc 𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3914 suc csuc 6334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-ss 3931 df-sn 4590 df-suc 6338 |
| This theorem is referenced by: suc11 6441 ordelsuc 7795 ordsucelsuc 7797 oaordi 8510 nnaordi 8582 unbnn2 9244 ackbij1b 10191 ackbij2 10195 cflm 10203 isf32lem2 10307 indpi 10860 dfon2lem3 35773 |
| Copyright terms: Public domain | W3C validator |