MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unbnn2 Structured version   Visualization version   GIF version

Theorem unbnn2 9306
Description: Version of unbnn 9305 that does not require a strict upper bound. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
unbnn2 ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦𝐴 𝑥𝑦) → 𝐴 ≈ ω)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem unbnn2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 peano2 7885 . . . 4 (𝑧 ∈ ω → suc 𝑧 ∈ ω)
2 sseq1 4007 . . . . . . 7 (𝑥 = suc 𝑧 → (𝑥𝑦 ↔ suc 𝑧𝑦))
32rexbidv 3177 . . . . . 6 (𝑥 = suc 𝑧 → (∃𝑦𝐴 𝑥𝑦 ↔ ∃𝑦𝐴 suc 𝑧𝑦))
43rspcv 3608 . . . . 5 (suc 𝑧 ∈ ω → (∀𝑥 ∈ ω ∃𝑦𝐴 𝑥𝑦 → ∃𝑦𝐴 suc 𝑧𝑦))
5 sucssel 6459 . . . . . . 7 (𝑧 ∈ V → (suc 𝑧𝑦𝑧𝑦))
65elv 3479 . . . . . 6 (suc 𝑧𝑦𝑧𝑦)
76reximi 3083 . . . . 5 (∃𝑦𝐴 suc 𝑧𝑦 → ∃𝑦𝐴 𝑧𝑦)
84, 7syl6com 37 . . . 4 (∀𝑥 ∈ ω ∃𝑦𝐴 𝑥𝑦 → (suc 𝑧 ∈ ω → ∃𝑦𝐴 𝑧𝑦))
91, 8syl5 34 . . 3 (∀𝑥 ∈ ω ∃𝑦𝐴 𝑥𝑦 → (𝑧 ∈ ω → ∃𝑦𝐴 𝑧𝑦))
109ralrimiv 3144 . 2 (∀𝑥 ∈ ω ∃𝑦𝐴 𝑥𝑦 → ∀𝑧 ∈ ω ∃𝑦𝐴 𝑧𝑦)
11 unbnn 9305 . 2 ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑧 ∈ ω ∃𝑦𝐴 𝑧𝑦) → 𝐴 ≈ ω)
1210, 11syl3an3 1164 1 ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦𝐴 𝑥𝑦) → 𝐴 ≈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2105  wral 3060  wrex 3069  Vcvv 3473  wss 3948   class class class wbr 5148  suc csuc 6366  ωcom 7859  cen 8942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-om 7860  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-en 8946  df-dom 8947
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator