MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unbnn2 Structured version   Visualization version   GIF version

Theorem unbnn2 8928
Description: Version of unbnn 8927 that does not require a strict upper bound. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
unbnn2 ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦𝐴 𝑥𝑦) → 𝐴 ≈ ω)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem unbnn2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 peano2 7668 . . . 4 (𝑧 ∈ ω → suc 𝑧 ∈ ω)
2 sseq1 3926 . . . . . . 7 (𝑥 = suc 𝑧 → (𝑥𝑦 ↔ suc 𝑧𝑦))
32rexbidv 3216 . . . . . 6 (𝑥 = suc 𝑧 → (∃𝑦𝐴 𝑥𝑦 ↔ ∃𝑦𝐴 suc 𝑧𝑦))
43rspcv 3532 . . . . 5 (suc 𝑧 ∈ ω → (∀𝑥 ∈ ω ∃𝑦𝐴 𝑥𝑦 → ∃𝑦𝐴 suc 𝑧𝑦))
5 sucssel 6305 . . . . . . 7 (𝑧 ∈ V → (suc 𝑧𝑦𝑧𝑦))
65elv 3414 . . . . . 6 (suc 𝑧𝑦𝑧𝑦)
76reximi 3166 . . . . 5 (∃𝑦𝐴 suc 𝑧𝑦 → ∃𝑦𝐴 𝑧𝑦)
84, 7syl6com 37 . . . 4 (∀𝑥 ∈ ω ∃𝑦𝐴 𝑥𝑦 → (suc 𝑧 ∈ ω → ∃𝑦𝐴 𝑧𝑦))
91, 8syl5 34 . . 3 (∀𝑥 ∈ ω ∃𝑦𝐴 𝑥𝑦 → (𝑧 ∈ ω → ∃𝑦𝐴 𝑧𝑦))
109ralrimiv 3104 . 2 (∀𝑥 ∈ ω ∃𝑦𝐴 𝑥𝑦 → ∀𝑧 ∈ ω ∃𝑦𝐴 𝑧𝑦)
11 unbnn 8927 . 2 ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑧 ∈ ω ∃𝑦𝐴 𝑧𝑦) → 𝐴 ≈ ω)
1210, 11syl3an3 1167 1 ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦𝐴 𝑥𝑦) → 𝐴 ≈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1089   = wceq 1543  wcel 2110  wral 3061  wrex 3062  Vcvv 3408  wss 3866   class class class wbr 5053  suc csuc 6215  ωcom 7644  cen 8623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-om 7645  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-en 8627  df-dom 8628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator