![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unbnn2 | Structured version Visualization version GIF version |
Description: Version of unbnn 9296 that does not require a strict upper bound. (Contributed by NM, 24-Apr-2004.) |
Ref | Expression |
---|---|
unbnn2 | ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) → 𝐴 ≈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2 7878 | . . . 4 ⊢ (𝑧 ∈ ω → suc 𝑧 ∈ ω) | |
2 | sseq1 4007 | . . . . . . 7 ⊢ (𝑥 = suc 𝑧 → (𝑥 ⊆ 𝑦 ↔ suc 𝑧 ⊆ 𝑦)) | |
3 | 2 | rexbidv 3179 | . . . . . 6 ⊢ (𝑥 = suc 𝑧 → (∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ↔ ∃𝑦 ∈ 𝐴 suc 𝑧 ⊆ 𝑦)) |
4 | 3 | rspcv 3609 | . . . . 5 ⊢ (suc 𝑧 ∈ ω → (∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 → ∃𝑦 ∈ 𝐴 suc 𝑧 ⊆ 𝑦)) |
5 | sucssel 6457 | . . . . . . 7 ⊢ (𝑧 ∈ V → (suc 𝑧 ⊆ 𝑦 → 𝑧 ∈ 𝑦)) | |
6 | 5 | elv 3481 | . . . . . 6 ⊢ (suc 𝑧 ⊆ 𝑦 → 𝑧 ∈ 𝑦) |
7 | 6 | reximi 3085 | . . . . 5 ⊢ (∃𝑦 ∈ 𝐴 suc 𝑧 ⊆ 𝑦 → ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦) |
8 | 4, 7 | syl6com 37 | . . . 4 ⊢ (∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 → (suc 𝑧 ∈ ω → ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦)) |
9 | 1, 8 | syl5 34 | . . 3 ⊢ (∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 → (𝑧 ∈ ω → ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦)) |
10 | 9 | ralrimiv 3146 | . 2 ⊢ (∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 → ∀𝑧 ∈ ω ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦) |
11 | unbnn 9296 | . 2 ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑧 ∈ ω ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦) → 𝐴 ≈ ω) | |
12 | 10, 11 | syl3an3 1166 | 1 ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) → 𝐴 ≈ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ∃wrex 3071 Vcvv 3475 ⊆ wss 3948 class class class wbr 5148 suc csuc 6364 ωcom 7852 ≈ cen 8933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7409 df-om 7853 df-2nd 7973 df-frecs 8263 df-wrecs 8294 df-recs 8368 df-rdg 8407 df-en 8937 df-dom 8938 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |