| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unbnn2 | Structured version Visualization version GIF version | ||
| Description: Version of unbnn 9243 that does not require a strict upper bound. (Contributed by NM, 24-Apr-2004.) |
| Ref | Expression |
|---|---|
| unbnn2 | ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) → 𝐴 ≈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2 7866 | . . . 4 ⊢ (𝑧 ∈ ω → suc 𝑧 ∈ ω) | |
| 2 | sseq1 3972 | . . . . . . 7 ⊢ (𝑥 = suc 𝑧 → (𝑥 ⊆ 𝑦 ↔ suc 𝑧 ⊆ 𝑦)) | |
| 3 | 2 | rexbidv 3157 | . . . . . 6 ⊢ (𝑥 = suc 𝑧 → (∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ↔ ∃𝑦 ∈ 𝐴 suc 𝑧 ⊆ 𝑦)) |
| 4 | 3 | rspcv 3584 | . . . . 5 ⊢ (suc 𝑧 ∈ ω → (∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 → ∃𝑦 ∈ 𝐴 suc 𝑧 ⊆ 𝑦)) |
| 5 | sucssel 6429 | . . . . . . 7 ⊢ (𝑧 ∈ V → (suc 𝑧 ⊆ 𝑦 → 𝑧 ∈ 𝑦)) | |
| 6 | 5 | elv 3452 | . . . . . 6 ⊢ (suc 𝑧 ⊆ 𝑦 → 𝑧 ∈ 𝑦) |
| 7 | 6 | reximi 3067 | . . . . 5 ⊢ (∃𝑦 ∈ 𝐴 suc 𝑧 ⊆ 𝑦 → ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦) |
| 8 | 4, 7 | syl6com 37 | . . . 4 ⊢ (∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 → (suc 𝑧 ∈ ω → ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦)) |
| 9 | 1, 8 | syl5 34 | . . 3 ⊢ (∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 → (𝑧 ∈ ω → ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦)) |
| 10 | 9 | ralrimiv 3124 | . 2 ⊢ (∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 → ∀𝑧 ∈ ω ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦) |
| 11 | unbnn 9243 | . 2 ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑧 ∈ ω ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦) → 𝐴 ≈ ω) | |
| 12 | 10, 11 | syl3an3 1165 | 1 ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) → 𝐴 ≈ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 Vcvv 3447 ⊆ wss 3914 class class class wbr 5107 suc csuc 6334 ωcom 7842 ≈ cen 8915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-en 8919 df-dom 8920 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |