Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unbnn2 | Structured version Visualization version GIF version |
Description: Version of unbnn 9031 that does not require a strict upper bound. (Contributed by NM, 24-Apr-2004.) |
Ref | Expression |
---|---|
unbnn2 | ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) → 𝐴 ≈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2 7724 | . . . 4 ⊢ (𝑧 ∈ ω → suc 𝑧 ∈ ω) | |
2 | sseq1 3950 | . . . . . . 7 ⊢ (𝑥 = suc 𝑧 → (𝑥 ⊆ 𝑦 ↔ suc 𝑧 ⊆ 𝑦)) | |
3 | 2 | rexbidv 3227 | . . . . . 6 ⊢ (𝑥 = suc 𝑧 → (∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ↔ ∃𝑦 ∈ 𝐴 suc 𝑧 ⊆ 𝑦)) |
4 | 3 | rspcv 3555 | . . . . 5 ⊢ (suc 𝑧 ∈ ω → (∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 → ∃𝑦 ∈ 𝐴 suc 𝑧 ⊆ 𝑦)) |
5 | sucssel 6355 | . . . . . . 7 ⊢ (𝑧 ∈ V → (suc 𝑧 ⊆ 𝑦 → 𝑧 ∈ 𝑦)) | |
6 | 5 | elv 3436 | . . . . . 6 ⊢ (suc 𝑧 ⊆ 𝑦 → 𝑧 ∈ 𝑦) |
7 | 6 | reximi 3176 | . . . . 5 ⊢ (∃𝑦 ∈ 𝐴 suc 𝑧 ⊆ 𝑦 → ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦) |
8 | 4, 7 | syl6com 37 | . . . 4 ⊢ (∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 → (suc 𝑧 ∈ ω → ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦)) |
9 | 1, 8 | syl5 34 | . . 3 ⊢ (∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 → (𝑧 ∈ ω → ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦)) |
10 | 9 | ralrimiv 3108 | . 2 ⊢ (∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 → ∀𝑧 ∈ ω ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦) |
11 | unbnn 9031 | . 2 ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑧 ∈ ω ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦) → 𝐴 ≈ ω) | |
12 | 10, 11 | syl3an3 1163 | 1 ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) → 𝐴 ≈ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ∀wral 3065 ∃wrex 3066 Vcvv 3430 ⊆ wss 3891 class class class wbr 5078 suc csuc 6265 ωcom 7700 ≈ cen 8704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-en 8708 df-dom 8709 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |