Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unbnn2 | Structured version Visualization version GIF version |
Description: Version of unbnn 8927 that does not require a strict upper bound. (Contributed by NM, 24-Apr-2004.) |
Ref | Expression |
---|---|
unbnn2 | ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) → 𝐴 ≈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2 7668 | . . . 4 ⊢ (𝑧 ∈ ω → suc 𝑧 ∈ ω) | |
2 | sseq1 3926 | . . . . . . 7 ⊢ (𝑥 = suc 𝑧 → (𝑥 ⊆ 𝑦 ↔ suc 𝑧 ⊆ 𝑦)) | |
3 | 2 | rexbidv 3216 | . . . . . 6 ⊢ (𝑥 = suc 𝑧 → (∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ↔ ∃𝑦 ∈ 𝐴 suc 𝑧 ⊆ 𝑦)) |
4 | 3 | rspcv 3532 | . . . . 5 ⊢ (suc 𝑧 ∈ ω → (∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 → ∃𝑦 ∈ 𝐴 suc 𝑧 ⊆ 𝑦)) |
5 | sucssel 6305 | . . . . . . 7 ⊢ (𝑧 ∈ V → (suc 𝑧 ⊆ 𝑦 → 𝑧 ∈ 𝑦)) | |
6 | 5 | elv 3414 | . . . . . 6 ⊢ (suc 𝑧 ⊆ 𝑦 → 𝑧 ∈ 𝑦) |
7 | 6 | reximi 3166 | . . . . 5 ⊢ (∃𝑦 ∈ 𝐴 suc 𝑧 ⊆ 𝑦 → ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦) |
8 | 4, 7 | syl6com 37 | . . . 4 ⊢ (∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 → (suc 𝑧 ∈ ω → ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦)) |
9 | 1, 8 | syl5 34 | . . 3 ⊢ (∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 → (𝑧 ∈ ω → ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦)) |
10 | 9 | ralrimiv 3104 | . 2 ⊢ (∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 → ∀𝑧 ∈ ω ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦) |
11 | unbnn 8927 | . 2 ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑧 ∈ ω ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦) → 𝐴 ≈ ω) | |
12 | 10, 11 | syl3an3 1167 | 1 ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) → 𝐴 ≈ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ∀wral 3061 ∃wrex 3062 Vcvv 3408 ⊆ wss 3866 class class class wbr 5053 suc csuc 6215 ωcom 7644 ≈ cen 8623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-om 7645 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-en 8627 df-dom 8628 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |