MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnaordi Structured version   Visualization version   GIF version

Theorem nnaordi 7853
Description: Ordering property of addition. Proposition 8.4 of [TakeutiZaring] p. 58, limited to natural numbers. (Contributed by NM, 3-Feb-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaordi ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))

Proof of Theorem nnaordi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn 7223 . . . . . 6 ((𝐴𝐵𝐵 ∈ ω) → 𝐴 ∈ ω)
21ancoms 455 . . . . 5 ((𝐵 ∈ ω ∧ 𝐴𝐵) → 𝐴 ∈ ω)
32adantll 687 . . . 4 (((𝐶 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐴 ∈ ω)
4 nnord 7221 . . . . . . . . 9 (𝐵 ∈ ω → Ord 𝐵)
5 ordsucss 7166 . . . . . . . . 9 (Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))
64, 5syl 17 . . . . . . . 8 (𝐵 ∈ ω → (𝐴𝐵 → suc 𝐴𝐵))
76ad2antlr 700 . . . . . . 7 (((𝐶 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ∈ ω) → (𝐴𝐵 → suc 𝐴𝐵))
8 peano2b 7229 . . . . . . . . . 10 (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω)
9 oveq2 6802 . . . . . . . . . . . . . 14 (𝑥 = suc 𝐴 → (𝐶 +𝑜 𝑥) = (𝐶 +𝑜 suc 𝐴))
109sseq2d 3783 . . . . . . . . . . . . 13 (𝑥 = suc 𝐴 → ((𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝑥) ↔ (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 suc 𝐴)))
1110imbi2d 329 . . . . . . . . . . . 12 (𝑥 = suc 𝐴 → ((𝐶 ∈ ω → (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝑥)) ↔ (𝐶 ∈ ω → (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 suc 𝐴))))
12 oveq2 6802 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝐶 +𝑜 𝑥) = (𝐶 +𝑜 𝑦))
1312sseq2d 3783 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝑥) ↔ (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝑦)))
1413imbi2d 329 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝐶 ∈ ω → (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝑥)) ↔ (𝐶 ∈ ω → (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝑦))))
15 oveq2 6802 . . . . . . . . . . . . . 14 (𝑥 = suc 𝑦 → (𝐶 +𝑜 𝑥) = (𝐶 +𝑜 suc 𝑦))
1615sseq2d 3783 . . . . . . . . . . . . 13 (𝑥 = suc 𝑦 → ((𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝑥) ↔ (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 suc 𝑦)))
1716imbi2d 329 . . . . . . . . . . . 12 (𝑥 = suc 𝑦 → ((𝐶 ∈ ω → (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝑥)) ↔ (𝐶 ∈ ω → (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 suc 𝑦))))
18 oveq2 6802 . . . . . . . . . . . . . 14 (𝑥 = 𝐵 → (𝐶 +𝑜 𝑥) = (𝐶 +𝑜 𝐵))
1918sseq2d 3783 . . . . . . . . . . . . 13 (𝑥 = 𝐵 → ((𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝑥) ↔ (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝐵)))
2019imbi2d 329 . . . . . . . . . . . 12 (𝑥 = 𝐵 → ((𝐶 ∈ ω → (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝑥)) ↔ (𝐶 ∈ ω → (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝐵))))
21 ssid 3774 . . . . . . . . . . . . 13 (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 suc 𝐴)
22212a1i 12 . . . . . . . . . . . 12 (suc 𝐴 ∈ ω → (𝐶 ∈ ω → (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 suc 𝐴)))
23 sssucid 5946 . . . . . . . . . . . . . . . . 17 (𝐶 +𝑜 𝑦) ⊆ suc (𝐶 +𝑜 𝑦)
24 sstr2 3760 . . . . . . . . . . . . . . . . 17 ((𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝑦) → ((𝐶 +𝑜 𝑦) ⊆ suc (𝐶 +𝑜 𝑦) → (𝐶 +𝑜 suc 𝐴) ⊆ suc (𝐶 +𝑜 𝑦)))
2523, 24mpi 20 . . . . . . . . . . . . . . . 16 ((𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝑦) → (𝐶 +𝑜 suc 𝐴) ⊆ suc (𝐶 +𝑜 𝑦))
26 nnasuc 7841 . . . . . . . . . . . . . . . . . 18 ((𝐶 ∈ ω ∧ 𝑦 ∈ ω) → (𝐶 +𝑜 suc 𝑦) = suc (𝐶 +𝑜 𝑦))
2726ancoms 455 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 +𝑜 suc 𝑦) = suc (𝐶 +𝑜 𝑦))
2827sseq2d 3783 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 suc 𝑦) ↔ (𝐶 +𝑜 suc 𝐴) ⊆ suc (𝐶 +𝑜 𝑦)))
2925, 28syl5ibr 236 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝑦) → (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 suc 𝑦)))
3029ex 397 . . . . . . . . . . . . . 14 (𝑦 ∈ ω → (𝐶 ∈ ω → ((𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝑦) → (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 suc 𝑦))))
3130ad2antrr 699 . . . . . . . . . . . . 13 (((𝑦 ∈ ω ∧ suc 𝐴 ∈ ω) ∧ suc 𝐴𝑦) → (𝐶 ∈ ω → ((𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝑦) → (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 suc 𝑦))))
3231a2d 29 . . . . . . . . . . . 12 (((𝑦 ∈ ω ∧ suc 𝐴 ∈ ω) ∧ suc 𝐴𝑦) → ((𝐶 ∈ ω → (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝑦)) → (𝐶 ∈ ω → (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 suc 𝑦))))
3311, 14, 17, 20, 22, 32findsg 7241 . . . . . . . . . . 11 (((𝐵 ∈ ω ∧ suc 𝐴 ∈ ω) ∧ suc 𝐴𝐵) → (𝐶 ∈ ω → (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝐵)))
3433exp31 406 . . . . . . . . . 10 (𝐵 ∈ ω → (suc 𝐴 ∈ ω → (suc 𝐴𝐵 → (𝐶 ∈ ω → (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝐵)))))
358, 34syl5bi 232 . . . . . . . . 9 (𝐵 ∈ ω → (𝐴 ∈ ω → (suc 𝐴𝐵 → (𝐶 ∈ ω → (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝐵)))))
3635com4r 94 . . . . . . . 8 (𝐶 ∈ ω → (𝐵 ∈ ω → (𝐴 ∈ ω → (suc 𝐴𝐵 → (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝐵)))))
3736imp31 404 . . . . . . 7 (((𝐶 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ∈ ω) → (suc 𝐴𝐵 → (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝐵)))
38 nnasuc 7841 . . . . . . . . . 10 ((𝐶 ∈ ω ∧ 𝐴 ∈ ω) → (𝐶 +𝑜 suc 𝐴) = suc (𝐶 +𝑜 𝐴))
3938sseq1d 3782 . . . . . . . . 9 ((𝐶 ∈ ω ∧ 𝐴 ∈ ω) → ((𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝐵) ↔ suc (𝐶 +𝑜 𝐴) ⊆ (𝐶 +𝑜 𝐵)))
40 ovex 6824 . . . . . . . . . 10 (𝐶 +𝑜 𝐴) ∈ V
41 sucssel 5963 . . . . . . . . . 10 ((𝐶 +𝑜 𝐴) ∈ V → (suc (𝐶 +𝑜 𝐴) ⊆ (𝐶 +𝑜 𝐵) → (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))
4240, 41ax-mp 5 . . . . . . . . 9 (suc (𝐶 +𝑜 𝐴) ⊆ (𝐶 +𝑜 𝐵) → (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵))
4339, 42syl6bi 243 . . . . . . . 8 ((𝐶 ∈ ω ∧ 𝐴 ∈ ω) → ((𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝐵) → (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))
4443adantlr 688 . . . . . . 7 (((𝐶 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ∈ ω) → ((𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝐵) → (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))
457, 37, 443syld 60 . . . . . 6 (((𝐶 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ∈ ω) → (𝐴𝐵 → (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))
4645imp 393 . . . . 5 ((((𝐶 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ∈ ω) ∧ 𝐴𝐵) → (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵))
4746an32s 625 . . . 4 ((((𝐶 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ 𝐴 ∈ ω) → (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵))
483, 47mpdan 661 . . 3 (((𝐶 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵))
4948ex 397 . 2 ((𝐶 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))
5049ancoms 455 1 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  Vcvv 3351  wss 3724  Ord word 5866  suc csuc 5869  (class class class)co 6794  ωcom 7213   +𝑜 coa 7711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7097
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3589  df-csb 3684  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-pss 3740  df-nul 4065  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5824  df-ord 5870  df-on 5871  df-lim 5872  df-suc 5873  df-iota 5995  df-fun 6034  df-fn 6035  df-f 6036  df-f1 6037  df-fo 6038  df-f1o 6039  df-fv 6040  df-ov 6797  df-oprab 6798  df-mpt2 6799  df-om 7214  df-wrecs 7560  df-recs 7622  df-rdg 7660  df-oadd 7718
This theorem is referenced by:  nnaord  7854  nnmordi  7866  addclpi  9917  addnidpi  9926
  Copyright terms: Public domain W3C validator