MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnaordi Structured version   Visualization version   GIF version

Theorem nnaordi 8585
Description: Ordering property of addition. Proposition 8.4 of [TakeutiZaring] p. 58, limited to natural numbers. (Contributed by NM, 3-Feb-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaordi ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))

Proof of Theorem nnaordi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn 7856 . . . . . 6 ((𝐴𝐵𝐵 ∈ ω) → 𝐴 ∈ ω)
21ancoms 458 . . . . 5 ((𝐵 ∈ ω ∧ 𝐴𝐵) → 𝐴 ∈ ω)
32adantll 714 . . . 4 (((𝐶 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐴 ∈ ω)
4 nnord 7853 . . . . . . . . 9 (𝐵 ∈ ω → Ord 𝐵)
5 ordsucss 7796 . . . . . . . . 9 (Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))
64, 5syl 17 . . . . . . . 8 (𝐵 ∈ ω → (𝐴𝐵 → suc 𝐴𝐵))
76ad2antlr 727 . . . . . . 7 (((𝐶 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ∈ ω) → (𝐴𝐵 → suc 𝐴𝐵))
8 peano2b 7862 . . . . . . . . . 10 (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω)
9 oveq2 7398 . . . . . . . . . . . . . 14 (𝑥 = suc 𝐴 → (𝐶 +o 𝑥) = (𝐶 +o suc 𝐴))
109sseq2d 3982 . . . . . . . . . . . . 13 (𝑥 = suc 𝐴 → ((𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑥) ↔ (𝐶 +o suc 𝐴) ⊆ (𝐶 +o suc 𝐴)))
1110imbi2d 340 . . . . . . . . . . . 12 (𝑥 = suc 𝐴 → ((𝐶 ∈ ω → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑥)) ↔ (𝐶 ∈ ω → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o suc 𝐴))))
12 oveq2 7398 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝐶 +o 𝑥) = (𝐶 +o 𝑦))
1312sseq2d 3982 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑥) ↔ (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑦)))
1413imbi2d 340 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝐶 ∈ ω → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑥)) ↔ (𝐶 ∈ ω → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑦))))
15 oveq2 7398 . . . . . . . . . . . . . 14 (𝑥 = suc 𝑦 → (𝐶 +o 𝑥) = (𝐶 +o suc 𝑦))
1615sseq2d 3982 . . . . . . . . . . . . 13 (𝑥 = suc 𝑦 → ((𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑥) ↔ (𝐶 +o suc 𝐴) ⊆ (𝐶 +o suc 𝑦)))
1716imbi2d 340 . . . . . . . . . . . 12 (𝑥 = suc 𝑦 → ((𝐶 ∈ ω → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑥)) ↔ (𝐶 ∈ ω → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o suc 𝑦))))
18 oveq2 7398 . . . . . . . . . . . . . 14 (𝑥 = 𝐵 → (𝐶 +o 𝑥) = (𝐶 +o 𝐵))
1918sseq2d 3982 . . . . . . . . . . . . 13 (𝑥 = 𝐵 → ((𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑥) ↔ (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝐵)))
2019imbi2d 340 . . . . . . . . . . . 12 (𝑥 = 𝐵 → ((𝐶 ∈ ω → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑥)) ↔ (𝐶 ∈ ω → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝐵))))
21 ssid 3972 . . . . . . . . . . . . 13 (𝐶 +o suc 𝐴) ⊆ (𝐶 +o suc 𝐴)
22212a1i 12 . . . . . . . . . . . 12 (suc 𝐴 ∈ ω → (𝐶 ∈ ω → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o suc 𝐴)))
23 sssucid 6417 . . . . . . . . . . . . . . . . 17 (𝐶 +o 𝑦) ⊆ suc (𝐶 +o 𝑦)
24 sstr2 3956 . . . . . . . . . . . . . . . . 17 ((𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑦) → ((𝐶 +o 𝑦) ⊆ suc (𝐶 +o 𝑦) → (𝐶 +o suc 𝐴) ⊆ suc (𝐶 +o 𝑦)))
2523, 24mpi 20 . . . . . . . . . . . . . . . 16 ((𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑦) → (𝐶 +o suc 𝐴) ⊆ suc (𝐶 +o 𝑦))
26 nnasuc 8573 . . . . . . . . . . . . . . . . . 18 ((𝐶 ∈ ω ∧ 𝑦 ∈ ω) → (𝐶 +o suc 𝑦) = suc (𝐶 +o 𝑦))
2726ancoms 458 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 +o suc 𝑦) = suc (𝐶 +o 𝑦))
2827sseq2d 3982 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 +o suc 𝐴) ⊆ (𝐶 +o suc 𝑦) ↔ (𝐶 +o suc 𝐴) ⊆ suc (𝐶 +o 𝑦)))
2925, 28imbitrrid 246 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑦) → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o suc 𝑦)))
3029ex 412 . . . . . . . . . . . . . 14 (𝑦 ∈ ω → (𝐶 ∈ ω → ((𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑦) → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o suc 𝑦))))
3130ad2antrr 726 . . . . . . . . . . . . 13 (((𝑦 ∈ ω ∧ suc 𝐴 ∈ ω) ∧ suc 𝐴𝑦) → (𝐶 ∈ ω → ((𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑦) → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o suc 𝑦))))
3231a2d 29 . . . . . . . . . . . 12 (((𝑦 ∈ ω ∧ suc 𝐴 ∈ ω) ∧ suc 𝐴𝑦) → ((𝐶 ∈ ω → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑦)) → (𝐶 ∈ ω → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o suc 𝑦))))
3311, 14, 17, 20, 22, 32findsg 7876 . . . . . . . . . . 11 (((𝐵 ∈ ω ∧ suc 𝐴 ∈ ω) ∧ suc 𝐴𝐵) → (𝐶 ∈ ω → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝐵)))
3433exp31 419 . . . . . . . . . 10 (𝐵 ∈ ω → (suc 𝐴 ∈ ω → (suc 𝐴𝐵 → (𝐶 ∈ ω → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝐵)))))
358, 34biimtrid 242 . . . . . . . . 9 (𝐵 ∈ ω → (𝐴 ∈ ω → (suc 𝐴𝐵 → (𝐶 ∈ ω → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝐵)))))
3635com4r 94 . . . . . . . 8 (𝐶 ∈ ω → (𝐵 ∈ ω → (𝐴 ∈ ω → (suc 𝐴𝐵 → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝐵)))))
3736imp31 417 . . . . . . 7 (((𝐶 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ∈ ω) → (suc 𝐴𝐵 → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝐵)))
38 nnasuc 8573 . . . . . . . . . 10 ((𝐶 ∈ ω ∧ 𝐴 ∈ ω) → (𝐶 +o suc 𝐴) = suc (𝐶 +o 𝐴))
3938sseq1d 3981 . . . . . . . . 9 ((𝐶 ∈ ω ∧ 𝐴 ∈ ω) → ((𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝐵) ↔ suc (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵)))
40 ovex 7423 . . . . . . . . . 10 (𝐶 +o 𝐴) ∈ V
41 sucssel 6432 . . . . . . . . . 10 ((𝐶 +o 𝐴) ∈ V → (suc (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵) → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
4240, 41ax-mp 5 . . . . . . . . 9 (suc (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵) → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))
4339, 42biimtrdi 253 . . . . . . . 8 ((𝐶 ∈ ω ∧ 𝐴 ∈ ω) → ((𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝐵) → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
4443adantlr 715 . . . . . . 7 (((𝐶 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ∈ ω) → ((𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝐵) → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
457, 37, 443syld 60 . . . . . 6 (((𝐶 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ∈ ω) → (𝐴𝐵 → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
4645imp 406 . . . . 5 ((((𝐶 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ∈ ω) ∧ 𝐴𝐵) → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))
4746an32s 652 . . . 4 ((((𝐶 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) ∧ 𝐴 ∈ ω) → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))
483, 47mpdan 687 . . 3 (((𝐶 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))
4948ex 412 . 2 ((𝐶 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
5049ancoms 458 1 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917  Ord word 6334  suc csuc 6337  (class class class)co 7390  ωcom 7845   +o coa 8434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-oadd 8441
This theorem is referenced by:  nnaord  8586  nnmordi  8598  addclpi  10852  addnidpi  10861
  Copyright terms: Public domain W3C validator