![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordelsuc | Structured version Visualization version GIF version |
Description: A set belongs to an ordinal iff its successor is a subset of the ordinal. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 29-Nov-2003.) |
Ref | Expression |
---|---|
ordelsuc | ⊢ ((𝐴 ∈ 𝐶 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsucss 7838 | . . 3 ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) | |
2 | 1 | adantl 481 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) |
3 | sucssel 6481 | . . 3 ⊢ (𝐴 ∈ 𝐶 → (suc 𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝐵)) | |
4 | 3 | adantr 480 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ Ord 𝐵) → (suc 𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝐵)) |
5 | 2, 4 | impbid 212 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2106 ⊆ wss 3963 Ord word 6385 suc csuc 6388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-ord 6389 df-on 6390 df-suc 6392 |
This theorem is referenced by: onsucmin 7841 onsucssi 7862 tfindsg2 7883 ordgt0ge1 8530 onomeneqOLD 9264 cantnflem1 9727 ttrcltr 9754 dmttrcl 9759 r1ordg 9816 r1val1 9824 rankonidlem 9866 rankxplim3 9919 ordeldifsucon 43249 ordeldif1o 43250 oaltom 43395 omltoe 43397 |
Copyright terms: Public domain | W3C validator |