![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordelsuc | Structured version Visualization version GIF version |
Description: A set belongs to an ordinal iff its successor is a subset of the ordinal. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 29-Nov-2003.) |
Ref | Expression |
---|---|
ordelsuc | ⊢ ((𝐴 ∈ 𝐶 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsucss 7799 | . . 3 ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) | |
2 | 1 | adantl 481 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) |
3 | sucssel 6449 | . . 3 ⊢ (𝐴 ∈ 𝐶 → (suc 𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝐵)) | |
4 | 3 | adantr 480 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ Ord 𝐵) → (suc 𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝐵)) |
5 | 2, 4 | impbid 211 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2098 ⊆ wss 3940 Ord word 6353 suc csuc 6356 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-tr 5256 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-ord 6357 df-on 6358 df-suc 6360 |
This theorem is referenced by: onsucmin 7802 onsucssi 7823 tfindsg2 7844 ordgt0ge1 8488 onomeneqOLD 9225 cantnflem1 9680 ttrcltr 9707 dmttrcl 9712 r1ordg 9769 r1val1 9777 rankonidlem 9819 rankxplim3 9872 ordeldifsucon 42498 ordeldif1o 42499 oaltom 42645 omltoe 42647 |
Copyright terms: Public domain | W3C validator |