Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordelsuc | Structured version Visualization version GIF version |
Description: A set belongs to an ordinal iff its successor is a subset of the ordinal. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 29-Nov-2003.) |
Ref | Expression |
---|---|
ordelsuc | ⊢ ((𝐴 ∈ 𝐶 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsucss 7533 | . . 3 ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) | |
2 | 1 | adantl 486 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) |
3 | sucssel 6262 | . . 3 ⊢ (𝐴 ∈ 𝐶 → (suc 𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝐵)) | |
4 | 3 | adantr 485 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ Ord 𝐵) → (suc 𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝐵)) |
5 | 2, 4 | impbid 215 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 400 ∈ wcel 2112 ⊆ wss 3859 Ord word 6169 suc csuc 6172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pr 5299 ax-un 7460 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3698 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-br 5034 df-opab 5096 df-tr 5140 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-ord 6173 df-on 6174 df-suc 6176 |
This theorem is referenced by: onsucmin 7536 onsucssi 7556 tfindsg2 7576 ordgt0ge1 8133 onomeneq 8731 cantnflem1 9178 r1ordg 9233 r1val1 9241 rankonidlem 9283 rankxplim3 9336 |
Copyright terms: Public domain | W3C validator |