MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordelsuc Structured version   Visualization version   GIF version

Theorem ordelsuc 7808
Description: A set belongs to an ordinal iff its successor is a subset of the ordinal. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 29-Nov-2003.)
Assertion
Ref Expression
ordelsuc ((𝐴𝐶 ∧ Ord 𝐵) → (𝐴𝐵 ↔ suc 𝐴𝐵))

Proof of Theorem ordelsuc
StepHypRef Expression
1 ordsucss 7806 . . 3 (Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))
21adantl 483 . 2 ((𝐴𝐶 ∧ Ord 𝐵) → (𝐴𝐵 → suc 𝐴𝐵))
3 sucssel 6460 . . 3 (𝐴𝐶 → (suc 𝐴𝐵𝐴𝐵))
43adantr 482 . 2 ((𝐴𝐶 ∧ Ord 𝐵) → (suc 𝐴𝐵𝐴𝐵))
52, 4impbid 211 1 ((𝐴𝐶 ∧ Ord 𝐵) → (𝐴𝐵 ↔ suc 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wcel 2107  wss 3949  Ord word 6364  suc csuc 6367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-tr 5267  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-ord 6368  df-on 6369  df-suc 6371
This theorem is referenced by:  onsucmin  7809  onsucssi  7830  tfindsg2  7851  ordgt0ge1  8493  onomeneqOLD  9229  cantnflem1  9684  ttrcltr  9711  dmttrcl  9716  r1ordg  9773  r1val1  9781  rankonidlem  9823  rankxplim3  9876  ordeldifsucon  42009  ordeldif1o  42010  oaltom  42156  omltoe  42158
  Copyright terms: Public domain W3C validator