MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onnbtwn Structured version   Visualization version   GIF version

Theorem onnbtwn 6416
Description: There is no set between an ordinal number and its successor. Proposition 7.25 of [TakeutiZaring] p. 41. Lemma 1.15 of [Schloeder] p. 2. (Contributed by NM, 9-Jun-1994.)
Assertion
Ref Expression
onnbtwn (𝐴 ∈ On → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))

Proof of Theorem onnbtwn
StepHypRef Expression
1 eloni 6330 . 2 (𝐴 ∈ On → Ord 𝐴)
2 ordnbtwn 6415 . 2 (Ord 𝐴 → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))
31, 2syl 17 1 (𝐴 ∈ On → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2109  Ord word 6319  Oncon0 6320  suc csuc 6322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-tr 5210  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-ord 6323  df-on 6324  df-suc 6326
This theorem is referenced by:  ordunisuc2  7800  oalimcl  8501  omlimcl  8519  oneo  8522  nnneo  8596
  Copyright terms: Public domain W3C validator