MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onnbtwn Structured version   Visualization version   GIF version

Theorem onnbtwn 6357
Description: There is no set between an ordinal number and its successor. Proposition 7.25 of [TakeutiZaring] p. 41. (Contributed by NM, 9-Jun-1994.)
Assertion
Ref Expression
onnbtwn (𝐴 ∈ On → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))

Proof of Theorem onnbtwn
StepHypRef Expression
1 eloni 6276 . 2 (𝐴 ∈ On → Ord 𝐴)
2 ordnbtwn 6356 . 2 (Ord 𝐴 → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))
31, 2syl 17 1 (𝐴 ∈ On → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wcel 2106  Ord word 6265  Oncon0 6266  suc csuc 6268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6269  df-on 6270  df-suc 6272
This theorem is referenced by:  ordunisuc2  7691  oalimcl  8391  omlimcl  8409  oneo  8412  nnneo  8485
  Copyright terms: Public domain W3C validator