MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onnbtwn Structured version   Visualization version   GIF version

Theorem onnbtwn 6410
Description: There is no set between an ordinal number and its successor. Proposition 7.25 of [TakeutiZaring] p. 41. Lemma 1.15 of [Schloeder] p. 2. (Contributed by NM, 9-Jun-1994.)
Assertion
Ref Expression
onnbtwn (𝐴 ∈ On → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))

Proof of Theorem onnbtwn
StepHypRef Expression
1 eloni 6324 . 2 (𝐴 ∈ On → Ord 𝐴)
2 ordnbtwn 6409 . 2 (Ord 𝐴 → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))
31, 2syl 17 1 (𝐴 ∈ On → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2113  Ord word 6313  Oncon0 6314  suc csuc 6316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-tr 5203  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-ord 6317  df-on 6318  df-suc 6320
This theorem is referenced by:  ordunisuc2  7783  oalimcl  8484  omlimcl  8502  oneo  8505  nnneo  8579
  Copyright terms: Public domain W3C validator