MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oaordi Structured version   Visualization version   GIF version

Theorem oaordi 8170
Description: Ordering property of ordinal addition. Proposition 8.4 of [TakeutiZaring] p. 58. (Contributed by NM, 5-Dec-2004.)
Assertion
Ref Expression
oaordi ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))

Proof of Theorem oaordi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onelon 6205 . . . . 5 ((𝐵 ∈ On ∧ 𝐴𝐵) → 𝐴 ∈ On)
21adantll 713 . . . 4 (((𝐶 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → 𝐴 ∈ On)
3 eloni 6190 . . . . . . . . 9 (𝐵 ∈ On → Ord 𝐵)
4 ordsucss 7529 . . . . . . . . 9 (Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))
53, 4syl 17 . . . . . . . 8 (𝐵 ∈ On → (𝐴𝐵 → suc 𝐴𝐵))
65ad2antlr 726 . . . . . . 7 (((𝐶 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ On) → (𝐴𝐵 → suc 𝐴𝐵))
7 sucelon 7528 . . . . . . . . . 10 (𝐴 ∈ On ↔ suc 𝐴 ∈ On)
8 oveq2 7159 . . . . . . . . . . . . . 14 (𝑥 = suc 𝐴 → (𝐶 +o 𝑥) = (𝐶 +o suc 𝐴))
98sseq2d 3985 . . . . . . . . . . . . 13 (𝑥 = suc 𝐴 → ((𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑥) ↔ (𝐶 +o suc 𝐴) ⊆ (𝐶 +o suc 𝐴)))
109imbi2d 344 . . . . . . . . . . . 12 (𝑥 = suc 𝐴 → ((𝐶 ∈ On → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑥)) ↔ (𝐶 ∈ On → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o suc 𝐴))))
11 oveq2 7159 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝐶 +o 𝑥) = (𝐶 +o 𝑦))
1211sseq2d 3985 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑥) ↔ (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑦)))
1312imbi2d 344 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝐶 ∈ On → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑥)) ↔ (𝐶 ∈ On → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑦))))
14 oveq2 7159 . . . . . . . . . . . . . 14 (𝑥 = suc 𝑦 → (𝐶 +o 𝑥) = (𝐶 +o suc 𝑦))
1514sseq2d 3985 . . . . . . . . . . . . 13 (𝑥 = suc 𝑦 → ((𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑥) ↔ (𝐶 +o suc 𝐴) ⊆ (𝐶 +o suc 𝑦)))
1615imbi2d 344 . . . . . . . . . . . 12 (𝑥 = suc 𝑦 → ((𝐶 ∈ On → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑥)) ↔ (𝐶 ∈ On → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o suc 𝑦))))
17 oveq2 7159 . . . . . . . . . . . . . 14 (𝑥 = 𝐵 → (𝐶 +o 𝑥) = (𝐶 +o 𝐵))
1817sseq2d 3985 . . . . . . . . . . . . 13 (𝑥 = 𝐵 → ((𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑥) ↔ (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝐵)))
1918imbi2d 344 . . . . . . . . . . . 12 (𝑥 = 𝐵 → ((𝐶 ∈ On → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑥)) ↔ (𝐶 ∈ On → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝐵))))
20 ssid 3975 . . . . . . . . . . . . 13 (𝐶 +o suc 𝐴) ⊆ (𝐶 +o suc 𝐴)
21202a1i 12 . . . . . . . . . . . 12 (suc 𝐴 ∈ On → (𝐶 ∈ On → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o suc 𝐴)))
22 sssucid 6257 . . . . . . . . . . . . . . . . 17 (𝐶 +o 𝑦) ⊆ suc (𝐶 +o 𝑦)
23 sstr2 3960 . . . . . . . . . . . . . . . . 17 ((𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑦) → ((𝐶 +o 𝑦) ⊆ suc (𝐶 +o 𝑦) → (𝐶 +o suc 𝐴) ⊆ suc (𝐶 +o 𝑦)))
2422, 23mpi 20 . . . . . . . . . . . . . . . 16 ((𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑦) → (𝐶 +o suc 𝐴) ⊆ suc (𝐶 +o 𝑦))
25 oasuc 8147 . . . . . . . . . . . . . . . . . 18 ((𝐶 ∈ On ∧ 𝑦 ∈ On) → (𝐶 +o suc 𝑦) = suc (𝐶 +o 𝑦))
2625ancoms 462 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ On ∧ 𝐶 ∈ On) → (𝐶 +o suc 𝑦) = suc (𝐶 +o 𝑦))
2726sseq2d 3985 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ On ∧ 𝐶 ∈ On) → ((𝐶 +o suc 𝐴) ⊆ (𝐶 +o suc 𝑦) ↔ (𝐶 +o suc 𝐴) ⊆ suc (𝐶 +o 𝑦)))
2824, 27syl5ibr 249 . . . . . . . . . . . . . . 15 ((𝑦 ∈ On ∧ 𝐶 ∈ On) → ((𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑦) → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o suc 𝑦)))
2928ex 416 . . . . . . . . . . . . . 14 (𝑦 ∈ On → (𝐶 ∈ On → ((𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑦) → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o suc 𝑦))))
3029ad2antrr 725 . . . . . . . . . . . . 13 (((𝑦 ∈ On ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝑦) → (𝐶 ∈ On → ((𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑦) → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o suc 𝑦))))
3130a2d 29 . . . . . . . . . . . 12 (((𝑦 ∈ On ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝑦) → ((𝐶 ∈ On → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑦)) → (𝐶 ∈ On → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o suc 𝑦))))
32 sucssel 6272 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ On → (suc 𝐴𝑥𝐴𝑥))
337, 32sylbir 238 . . . . . . . . . . . . . . . . . . 19 (suc 𝐴 ∈ On → (suc 𝐴𝑥𝐴𝑥))
34 limsuc 7560 . . . . . . . . . . . . . . . . . . . 20 (Lim 𝑥 → (𝐴𝑥 ↔ suc 𝐴𝑥))
3534biimpd 232 . . . . . . . . . . . . . . . . . . 19 (Lim 𝑥 → (𝐴𝑥 → suc 𝐴𝑥))
3633, 35sylan9r 512 . . . . . . . . . . . . . . . . . 18 ((Lim 𝑥 ∧ suc 𝐴 ∈ On) → (suc 𝐴𝑥 → suc 𝐴𝑥))
3736imp 410 . . . . . . . . . . . . . . . . 17 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝑥) → suc 𝐴𝑥)
38 oveq2 7159 . . . . . . . . . . . . . . . . . 18 (𝑦 = suc 𝐴 → (𝐶 +o 𝑦) = (𝐶 +o suc 𝐴))
3938ssiun2s 4958 . . . . . . . . . . . . . . . . 17 (suc 𝐴𝑥 → (𝐶 +o suc 𝐴) ⊆ 𝑦𝑥 (𝐶 +o 𝑦))
4037, 39syl 17 . . . . . . . . . . . . . . . 16 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝑥) → (𝐶 +o suc 𝐴) ⊆ 𝑦𝑥 (𝐶 +o 𝑦))
4140adantr 484 . . . . . . . . . . . . . . 15 ((((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝑥) ∧ 𝐶 ∈ On) → (𝐶 +o suc 𝐴) ⊆ 𝑦𝑥 (𝐶 +o 𝑦))
42 vex 3483 . . . . . . . . . . . . . . . . . . 19 𝑥 ∈ V
43 oalim 8155 . . . . . . . . . . . . . . . . . . 19 ((𝐶 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐶 +o 𝑥) = 𝑦𝑥 (𝐶 +o 𝑦))
4442, 43mpanr1 702 . . . . . . . . . . . . . . . . . 18 ((𝐶 ∈ On ∧ Lim 𝑥) → (𝐶 +o 𝑥) = 𝑦𝑥 (𝐶 +o 𝑦))
4544ancoms 462 . . . . . . . . . . . . . . . . 17 ((Lim 𝑥𝐶 ∈ On) → (𝐶 +o 𝑥) = 𝑦𝑥 (𝐶 +o 𝑦))
4645adantlr 714 . . . . . . . . . . . . . . . 16 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ 𝐶 ∈ On) → (𝐶 +o 𝑥) = 𝑦𝑥 (𝐶 +o 𝑦))
4746adantlr 714 . . . . . . . . . . . . . . 15 ((((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝑥) ∧ 𝐶 ∈ On) → (𝐶 +o 𝑥) = 𝑦𝑥 (𝐶 +o 𝑦))
4841, 47sseqtrrd 3994 . . . . . . . . . . . . . 14 ((((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝑥) ∧ 𝐶 ∈ On) → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑥))
4948ex 416 . . . . . . . . . . . . 13 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝑥) → (𝐶 ∈ On → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑥)))
5049a1d 25 . . . . . . . . . . . 12 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝑥) → (∀𝑦𝑥 (suc 𝐴𝑦 → (𝐶 ∈ On → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑦))) → (𝐶 ∈ On → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑥))))
5110, 13, 16, 19, 21, 31, 50tfindsg 7571 . . . . . . . . . . 11 (((𝐵 ∈ On ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝐵) → (𝐶 ∈ On → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝐵)))
5251exp31 423 . . . . . . . . . 10 (𝐵 ∈ On → (suc 𝐴 ∈ On → (suc 𝐴𝐵 → (𝐶 ∈ On → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝐵)))))
537, 52syl5bi 245 . . . . . . . . 9 (𝐵 ∈ On → (𝐴 ∈ On → (suc 𝐴𝐵 → (𝐶 ∈ On → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝐵)))))
5453com4r 94 . . . . . . . 8 (𝐶 ∈ On → (𝐵 ∈ On → (𝐴 ∈ On → (suc 𝐴𝐵 → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝐵)))))
5554imp31 421 . . . . . . 7 (((𝐶 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ On) → (suc 𝐴𝐵 → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝐵)))
56 oasuc 8147 . . . . . . . . . 10 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐶 +o suc 𝐴) = suc (𝐶 +o 𝐴))
5756sseq1d 3984 . . . . . . . . 9 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → ((𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝐵) ↔ suc (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵)))
58 ovex 7184 . . . . . . . . . 10 (𝐶 +o 𝐴) ∈ V
59 sucssel 6272 . . . . . . . . . 10 ((𝐶 +o 𝐴) ∈ V → (suc (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵) → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
6058, 59ax-mp 5 . . . . . . . . 9 (suc (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵) → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))
6157, 60syl6bi 256 . . . . . . . 8 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → ((𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝐵) → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
6261adantlr 714 . . . . . . 7 (((𝐶 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ On) → ((𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝐵) → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
636, 55, 623syld 60 . . . . . 6 (((𝐶 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ On) → (𝐴𝐵 → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
6463imp 410 . . . . 5 ((((𝐶 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ On) ∧ 𝐴𝐵) → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))
6564an32s 651 . . . 4 ((((𝐶 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) ∧ 𝐴 ∈ On) → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))
662, 65mpdan 686 . . 3 (((𝐶 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))
6766ex 416 . 2 ((𝐶 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
6867ancoms 462 1 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  wral 3133  Vcvv 3480  wss 3919   ciun 4905  Ord word 6179  Oncon0 6180  Lim wlim 6181  suc csuc 6182  (class class class)co 7151   +o coa 8097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6137  df-ord 6183  df-on 6184  df-lim 6185  df-suc 6186  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-ov 7154  df-oprab 7155  df-mpo 7156  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-oadd 8104
This theorem is referenced by:  oaord  8171  oaass  8185  odi  8203
  Copyright terms: Public domain W3C validator