MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oaordi Structured version   Visualization version   GIF version

Theorem oaordi 8497
Description: Ordering property of ordinal addition. Proposition 8.4 of [TakeutiZaring] p. 58. (Contributed by NM, 5-Dec-2004.)
Assertion
Ref Expression
oaordi ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))

Proof of Theorem oaordi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onelon 6346 . . . . 5 ((𝐵 ∈ On ∧ 𝐴𝐵) → 𝐴 ∈ On)
21adantll 713 . . . 4 (((𝐶 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → 𝐴 ∈ On)
3 eloni 6331 . . . . . . . . 9 (𝐵 ∈ On → Ord 𝐵)
4 ordsucss 7757 . . . . . . . . 9 (Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))
53, 4syl 17 . . . . . . . 8 (𝐵 ∈ On → (𝐴𝐵 → suc 𝐴𝐵))
65ad2antlr 726 . . . . . . 7 (((𝐶 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ On) → (𝐴𝐵 → suc 𝐴𝐵))
7 onsucb 7756 . . . . . . . . . 10 (𝐴 ∈ On ↔ suc 𝐴 ∈ On)
8 oveq2 7369 . . . . . . . . . . . . . 14 (𝑥 = suc 𝐴 → (𝐶 +o 𝑥) = (𝐶 +o suc 𝐴))
98sseq2d 3980 . . . . . . . . . . . . 13 (𝑥 = suc 𝐴 → ((𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑥) ↔ (𝐶 +o suc 𝐴) ⊆ (𝐶 +o suc 𝐴)))
109imbi2d 341 . . . . . . . . . . . 12 (𝑥 = suc 𝐴 → ((𝐶 ∈ On → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑥)) ↔ (𝐶 ∈ On → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o suc 𝐴))))
11 oveq2 7369 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝐶 +o 𝑥) = (𝐶 +o 𝑦))
1211sseq2d 3980 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑥) ↔ (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑦)))
1312imbi2d 341 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝐶 ∈ On → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑥)) ↔ (𝐶 ∈ On → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑦))))
14 oveq2 7369 . . . . . . . . . . . . . 14 (𝑥 = suc 𝑦 → (𝐶 +o 𝑥) = (𝐶 +o suc 𝑦))
1514sseq2d 3980 . . . . . . . . . . . . 13 (𝑥 = suc 𝑦 → ((𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑥) ↔ (𝐶 +o suc 𝐴) ⊆ (𝐶 +o suc 𝑦)))
1615imbi2d 341 . . . . . . . . . . . 12 (𝑥 = suc 𝑦 → ((𝐶 ∈ On → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑥)) ↔ (𝐶 ∈ On → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o suc 𝑦))))
17 oveq2 7369 . . . . . . . . . . . . . 14 (𝑥 = 𝐵 → (𝐶 +o 𝑥) = (𝐶 +o 𝐵))
1817sseq2d 3980 . . . . . . . . . . . . 13 (𝑥 = 𝐵 → ((𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑥) ↔ (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝐵)))
1918imbi2d 341 . . . . . . . . . . . 12 (𝑥 = 𝐵 → ((𝐶 ∈ On → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑥)) ↔ (𝐶 ∈ On → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝐵))))
20 ssid 3970 . . . . . . . . . . . . 13 (𝐶 +o suc 𝐴) ⊆ (𝐶 +o suc 𝐴)
21202a1i 12 . . . . . . . . . . . 12 (suc 𝐴 ∈ On → (𝐶 ∈ On → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o suc 𝐴)))
22 sssucid 6401 . . . . . . . . . . . . . . . . 17 (𝐶 +o 𝑦) ⊆ suc (𝐶 +o 𝑦)
23 sstr2 3955 . . . . . . . . . . . . . . . . 17 ((𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑦) → ((𝐶 +o 𝑦) ⊆ suc (𝐶 +o 𝑦) → (𝐶 +o suc 𝐴) ⊆ suc (𝐶 +o 𝑦)))
2422, 23mpi 20 . . . . . . . . . . . . . . . 16 ((𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑦) → (𝐶 +o suc 𝐴) ⊆ suc (𝐶 +o 𝑦))
25 oasuc 8474 . . . . . . . . . . . . . . . . . 18 ((𝐶 ∈ On ∧ 𝑦 ∈ On) → (𝐶 +o suc 𝑦) = suc (𝐶 +o 𝑦))
2625ancoms 460 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ On ∧ 𝐶 ∈ On) → (𝐶 +o suc 𝑦) = suc (𝐶 +o 𝑦))
2726sseq2d 3980 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ On ∧ 𝐶 ∈ On) → ((𝐶 +o suc 𝐴) ⊆ (𝐶 +o suc 𝑦) ↔ (𝐶 +o suc 𝐴) ⊆ suc (𝐶 +o 𝑦)))
2824, 27imbitrrid 245 . . . . . . . . . . . . . . 15 ((𝑦 ∈ On ∧ 𝐶 ∈ On) → ((𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑦) → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o suc 𝑦)))
2928ex 414 . . . . . . . . . . . . . 14 (𝑦 ∈ On → (𝐶 ∈ On → ((𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑦) → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o suc 𝑦))))
3029ad2antrr 725 . . . . . . . . . . . . 13 (((𝑦 ∈ On ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝑦) → (𝐶 ∈ On → ((𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑦) → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o suc 𝑦))))
3130a2d 29 . . . . . . . . . . . 12 (((𝑦 ∈ On ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝑦) → ((𝐶 ∈ On → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑦)) → (𝐶 ∈ On → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o suc 𝑦))))
32 sucssel 6416 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ On → (suc 𝐴𝑥𝐴𝑥))
337, 32sylbir 234 . . . . . . . . . . . . . . . . . . 19 (suc 𝐴 ∈ On → (suc 𝐴𝑥𝐴𝑥))
34 limsuc 7789 . . . . . . . . . . . . . . . . . . . 20 (Lim 𝑥 → (𝐴𝑥 ↔ suc 𝐴𝑥))
3534biimpd 228 . . . . . . . . . . . . . . . . . . 19 (Lim 𝑥 → (𝐴𝑥 → suc 𝐴𝑥))
3633, 35sylan9r 510 . . . . . . . . . . . . . . . . . 18 ((Lim 𝑥 ∧ suc 𝐴 ∈ On) → (suc 𝐴𝑥 → suc 𝐴𝑥))
3736imp 408 . . . . . . . . . . . . . . . . 17 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝑥) → suc 𝐴𝑥)
38 oveq2 7369 . . . . . . . . . . . . . . . . . 18 (𝑦 = suc 𝐴 → (𝐶 +o 𝑦) = (𝐶 +o suc 𝐴))
3938ssiun2s 5012 . . . . . . . . . . . . . . . . 17 (suc 𝐴𝑥 → (𝐶 +o suc 𝐴) ⊆ 𝑦𝑥 (𝐶 +o 𝑦))
4037, 39syl 17 . . . . . . . . . . . . . . . 16 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝑥) → (𝐶 +o suc 𝐴) ⊆ 𝑦𝑥 (𝐶 +o 𝑦))
4140adantr 482 . . . . . . . . . . . . . . 15 ((((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝑥) ∧ 𝐶 ∈ On) → (𝐶 +o suc 𝐴) ⊆ 𝑦𝑥 (𝐶 +o 𝑦))
42 vex 3451 . . . . . . . . . . . . . . . . . . 19 𝑥 ∈ V
43 oalim 8482 . . . . . . . . . . . . . . . . . . 19 ((𝐶 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐶 +o 𝑥) = 𝑦𝑥 (𝐶 +o 𝑦))
4442, 43mpanr1 702 . . . . . . . . . . . . . . . . . 18 ((𝐶 ∈ On ∧ Lim 𝑥) → (𝐶 +o 𝑥) = 𝑦𝑥 (𝐶 +o 𝑦))
4544ancoms 460 . . . . . . . . . . . . . . . . 17 ((Lim 𝑥𝐶 ∈ On) → (𝐶 +o 𝑥) = 𝑦𝑥 (𝐶 +o 𝑦))
4645adantlr 714 . . . . . . . . . . . . . . . 16 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ 𝐶 ∈ On) → (𝐶 +o 𝑥) = 𝑦𝑥 (𝐶 +o 𝑦))
4746adantlr 714 . . . . . . . . . . . . . . 15 ((((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝑥) ∧ 𝐶 ∈ On) → (𝐶 +o 𝑥) = 𝑦𝑥 (𝐶 +o 𝑦))
4841, 47sseqtrrd 3989 . . . . . . . . . . . . . 14 ((((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝑥) ∧ 𝐶 ∈ On) → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑥))
4948ex 414 . . . . . . . . . . . . 13 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝑥) → (𝐶 ∈ On → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑥)))
5049a1d 25 . . . . . . . . . . . 12 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝑥) → (∀𝑦𝑥 (suc 𝐴𝑦 → (𝐶 ∈ On → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑦))) → (𝐶 ∈ On → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝑥))))
5110, 13, 16, 19, 21, 31, 50tfindsg 7801 . . . . . . . . . . 11 (((𝐵 ∈ On ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝐵) → (𝐶 ∈ On → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝐵)))
5251exp31 421 . . . . . . . . . 10 (𝐵 ∈ On → (suc 𝐴 ∈ On → (suc 𝐴𝐵 → (𝐶 ∈ On → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝐵)))))
537, 52biimtrid 241 . . . . . . . . 9 (𝐵 ∈ On → (𝐴 ∈ On → (suc 𝐴𝐵 → (𝐶 ∈ On → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝐵)))))
5453com4r 94 . . . . . . . 8 (𝐶 ∈ On → (𝐵 ∈ On → (𝐴 ∈ On → (suc 𝐴𝐵 → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝐵)))))
5554imp31 419 . . . . . . 7 (((𝐶 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ On) → (suc 𝐴𝐵 → (𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝐵)))
56 oasuc 8474 . . . . . . . . . 10 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐶 +o suc 𝐴) = suc (𝐶 +o 𝐴))
5756sseq1d 3979 . . . . . . . . 9 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → ((𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝐵) ↔ suc (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵)))
58 ovex 7394 . . . . . . . . . 10 (𝐶 +o 𝐴) ∈ V
59 sucssel 6416 . . . . . . . . . 10 ((𝐶 +o 𝐴) ∈ V → (suc (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵) → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
6058, 59ax-mp 5 . . . . . . . . 9 (suc (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵) → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))
6157, 60syl6bi 253 . . . . . . . 8 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → ((𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝐵) → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
6261adantlr 714 . . . . . . 7 (((𝐶 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ On) → ((𝐶 +o suc 𝐴) ⊆ (𝐶 +o 𝐵) → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
636, 55, 623syld 60 . . . . . 6 (((𝐶 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ On) → (𝐴𝐵 → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
6463imp 408 . . . . 5 ((((𝐶 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ On) ∧ 𝐴𝐵) → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))
6564an32s 651 . . . 4 ((((𝐶 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) ∧ 𝐴 ∈ On) → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))
662, 65mpdan 686 . . 3 (((𝐶 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))
6766ex 414 . 2 ((𝐶 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
6867ancoms 460 1 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wral 3061  Vcvv 3447  wss 3914   ciun 4958  Ord word 6320  Oncon0 6321  Lim wlim 6322  suc csuc 6323  (class class class)co 7361   +o coa 8413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-ov 7364  df-oprab 7365  df-mpo 7366  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-oadd 8420
This theorem is referenced by:  oaord  8498  oaass  8512  odi  8530  onexomgt  41622  onexoegt  41625  oaltublim  41672  oaordi3  41673  oacl2g  41712  ofoafg  41717  oaun3lem1  41737  oaun3lem2  41738  oadif1  41743  naddwordnexlem0  41760  naddwordnexlem3  41763  naddwordnexlem4  41765  oaltom  41769
  Copyright terms: Public domain W3C validator